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By letting water drops fall through rings into cans, high 
voltage can be spontaneously generated with no external 
electrical excitation. Previous work concerning this type of 
electric influence machine for de and three-phase ac high 
voltage generation is extended to include multiphase, multi
frequency operation by considering N streams and N cans. 
A distributed equivalent circuit representation 1:S used to 
calculate the natural frequencies of the system, where it is 
found that many overstable modes are present. Experi
mental observations with up to five cans are presented. 
This device can serve as a model for phenomena concerned 
with atmospheric electricity. 
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FIG. 1. Falling water drops spontaneously produce dc high 

voltage (10-20 kV) with no electrical inputs. 
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1. INTRODUCTION 

In 1867, Lord Kelvin! (then Sir W. Thomson) 

described his famous water dropper, where the 

falling of liquid drops was responsible for the 

generation of high voltages with no external 

electrical excitations. This electrohydrodynamic 

dynamo falls into the class of electrical influence 

machines similar to the classic Wimshurst 

machine, replacing the rotating metal disks by 

falling water drops. Kelvin used the dropper as a 

means of modeling atmospheric electricity since 

the presence of air, water, and high potential are 

the basic ingredients of a thunderstorm. 

A similar apparatus is part of Moore's traveling 

electrostatic show, which Moore comments as 

being his most popular demonstration. 2 This 

device is also discussed and analyzed by Woodson 

and Melcher.3 In their discussion, Lord Kelvin's 

device consists of two cans well insulated from one 

another, two pieces of wire and a pair of pipettes 

connected to a source of water as shown in Fig. 1. 

This apparatus spontaneously generates from 

10-20 kV, which can be measured by a high 

impedance kilovoltmeter. The voltage builds up 

until there is electrical breakdown between the 

cans, or the electric attractive force deflects the 

drops until they hit the rings. 

The generated voltage is maintained by the 

reciprocal arrangement, whereby each charge 

collector (the cans) is also the charge inducer (the 

rings) for the other. Any charge unbalance on the 

rings, either due to random fluctuations or perhaps 

to an initial charge purposely placed on the ring, 

will induce opposite charges on the stream falling 

through the ring. The resulting charged drops 

give up their charge to the can which then com

municates this charge to the other inducer ring 

where the process is repeated, such that the net 

charge on the original inducer ring has been 

increased. This positive feedback results in the 

voltage build-up . 

For voltage build-up to occur, the following 

conditions must be met; 

1. The cans must be well insulated from one 

another, to minimize leakage currents. 
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FIG. 2. (a.) Each of the N identical cans and streams are cross connected to adjacent cans. The Nth can is coupled to the 

first stream, completing the loop. (b) The equivalent circuit representation shows that the potential of any node is 

related to the potentials of the preceding and succeeding nodes. 

2. The stream must break into drops in the 

vicinity of the rings, to maximize the capacitive 

coupling between the rings and the forming 

droplets. 

3. The liquid must be sufficiently conducting 

such that the induced charge relaxes to the 

surface of the stream before it breaks into drops. 

Any conducting liquid such as water meets this 

condition. In fact, even solid conducting balls can 

be used. 

4. Once the drops are formed, the net charge 

on each drop must be conserved. The air must be 

sufficiently insulating such that its electrical 

relaxation time is much longer than the time 

required for a drop to reach the container below. 

The two-can dropper so far discussed has 

voltage build-up at an exponential rate with no 

oscillations. A three-can dropper will produce 

self-excited three-phase ac high voltage. This 

version is included in the film by Melcher,4 and is 

denoted as Euerle's dynamo, after the original 

inventor of this device. 5 

In addition to introducing many readers to the 

classic Kelvin dynamo and Euerle's ac modifica

tion, devices that this writer feels should be more 

widely known, it is the purpose here to generalize 

by considering "N cans" as a means of producing 

multiphase multifrequency ac high voltage. As a 

model of the atmosphere, a continuum of charge 

collectors and inducers can be imagined if we 

let N---" 00 with the size of the cans becoming in

finitesimally small. In processes such as electro

static printing, paint spraying, and precipitation, 

an external high voltage source is needed. In 

configurations, similar to those presented here, 

the particles themselves can genera te the necessary 

high voltage, eliminating the need of an external 

power supply. 

In its simplicity, the analysis to be presented 

here yields a wealth of information. In the words 

of Kelvin: "The mathematical theory of the 

action ... is particularly simple, but nevertheless 

curiously interesting."! Researchers in the area of 

atmospheric electricity should consider these 

interactions as fundamental building blocks in 

understanding more complicated phenomena. 

These self-excited dynamos illustrate how nature 

can arrange charge separation with no electrical 

driving forces. Perhaps such mechanisms are at 

work producing the known charge stratifications 

in clouds. 6 

AJP Volume 41 / 197 
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Our approach will be to find an equivalent 

circuit representation for the system similar to 

that of Woodson and Melcher3 consisting of dis

tributed resistances, capacitances, and dependent 

sources. Since the differential equations which 

govern such systems are linear constant coefficient 

in time, exponential solutions of the form eot can 

be assumed. To examine for stability, we simply 

solve for the natural frequencies s. If the real 

part of s is positive, the system is self excited, 

such that any perturbation will grow at an ex

ponential rate. The imaginary part of s yields the 

oscillation rate of the resulting overstability. 

For the special cases of N = 2 and N = 3, we will 

recover the results of Kelvin and Euerle. 

II. EQUIVALENT CIRCUIT REPRESENTATION 

Figure 2(a) illustrates the schematic configura

tion of N coupled cans and streams. Note that the 

Nth can is coupled to the first stream, completing 

the loop. For a net charge to be induced on falling 

droplets as they pass near a charged ring, the 

stream must break up in the immediate vicinity 

of the rings, as at this position, with the forming 

drop still tied to the main stream, charge can flow 

onto the droplet from the reservoir. The drops 

transport this charge to the can below which, 

because it is tied to the ring that encircles the next 

stream, induces charges on that stream also. This 

effect is successively transmitted to each stream, 

eventually reaching the initial stream which again 

finds charge induced such as to add to the initially 

induced charge. This regenerative feedback is the 

reason for the voltage build-up. It is important to 

note that the water reservoir remains neutral, as 

when charge is deposited upon a stream, an equal 

but opposite charge appears upon another stream. 

If the drop is already dissociated from the 

stream as it passes near the ring, no net charge 

can be induced, as through the insulating air, no 

current can flow to deposit charge. If the stream 

III. MATHEMATICAL ANALYSIS 

breaks up into drops past the rings, the droplets are 

uncharged. If the stream just enters the cans 

without breaking into drops, it acts like a short 

circuit, keeping the cans at ground potential. 

In deriving the equivalent circuit of Fig. 2 (b) , 

we consider in particular the drops falling into the 

ith can, where the induced charge on each drop is 

proportional to the voltage difference between the 

ring and the water in the pipette which is at ground 

potential, 

(1) 

where the constant of proportionality CD is the 

capacitance between the ring and the water 

droplet just as it breaks off from the stream. 

(There is no droplet before it breaks off, and hence 

no well defined capacity.) The minus sign is 

because image charges are induced on the stream. 

Because n drops/second fall into the can, the 

charge transport is modeled by a current source of 

value 

(2) 

The cans as charge storers are represented as 

capacitors C to ground. The resistance R represents 

the leakage resistance to ground. The capacitance 

CL represents the capacitance between adjacent 

cans plus the capacitance of a load, such as an 

electrostatic voltmeter. RL represents leakage 

resistance between cans. The essential ingredients 

of self-excitation can be treated by a simpler 

idealized model with no losses where 

(3) 

but for generality we consider finite values for 

these parameters. 

At the ith node in the equivalent circuit of Fig. 2 (b) , the algebraic sum of the currents into the node 

must sum to zero, resulting in the general relation 

198 / February 1973 
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where since the elements of the equivalent circuit are linear time invariant, we have written the voltages 

in the form 

Then the circuit equations of (4) can be put in the form 

A -D 0 0 0 

-B A -D 0 0 

0 -B A -D 0 

0 0 -B A -D 

o o o o o 

-D o o o o 

where 

A = 1+[2R(RLCLs+l)/RLCRCs+l)], 

B= [-nCD + (R LCLs+l)/RL ][R/(RCs+l)], 

D= [(RL CLs+l) / (RCs+l) J(R/RL ). 

Because all t.he rows are alike in form, t.he 

general difference equation for the ith row is 

(6) 

Equation (6) is a linear difference equation with 

constant coefficients, for which standard solutions 

can be assumed of the form7 

(7) 

which when substituted into (6) yields 

0 0 -B VI 

0 0 0 V 2 

0 0 0 Va 

0 0 0 V 4 =0. (5) 

-B A-D 

o -B A 

Equation (9) indicates that there are two 

characteristic solutions for (6). As with linear 

constant coefficient differential equations, the 

most general solution is the superposition of all 

allowed independent solutions, 

(10) 

The two conditions which (10) must obey are 

VO=VN' 

VN+1 = Vb (11) 

which can be checked in (6) with i=1 and i=N. 
Using (11) in (10), we obtain the coupled relations 

Kl(I-A1N) +K2(I-A2N) =0, 

K1A1(I-A1N) +K2A2(I-A2N) =0, (12) 

-B+AA-DA2 =0, (8) which for nontrivial solutions yields 

with solutions 

A1.2= (A/2D) ±[(A/2D)2- (B/D) J1/2. (9) 

A1N = 1; 

A2N = 1; (13) 

AJP Volume 41 I 199 
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Either case in (13) can be treated simultaneously by using (9) to write 

Al,2= (l)1IN = (A/2D) ±[(A/2D)2- (B/D) J1 /2 

or 

(1)2IN - (A/D) (l)l/N + (B/D) =0. 

Using the definitions of (5), we solve for the natural frequencies to be 

[1- exp( j27rr/N) J2- exp(j27rr/N) (RdR) -RLnCD 
8= 

RL{ C exp( j27rr/N) -CL[I- exp( j27rr/N) ]21 
r=I,2, "', N, (14) 

where we use the fact that 

(l)l/N = exp( j27rr/N); r=I,2, "', N. (15) 

From (13) we also obtain the relative phases of adjacent cans as 

(16) 

To examine the conditions for self-excitation and oscillation frequency, we must examine the real 

and imaginary parts of (14). 

For the idealized model, when the loss less conditions of (3) hold, (14) reduces to 

r=1,2, "', N. 

IV. DISCUSSION OF RESULTS 

N = 2-Kelvin's Dynamo 

Consider Kelvin's dynamo, for which N =2, then (14) and (16) yield 

-4- (RdR) +RLnCD 

R L(C+4CL) 

82= _[R-l+nCD J/C; 

(17) 

(18) 

Note that the second root of (18) always decays, while the first root allows a growing solution with 

no oscillations if 

nCD> (4/RL) + (I/R). 

This indicates that if the leakage is significant, voltage buildup will not occur. 

N = 3-Euerle's Dynamo 

Consider now Euerle's dynamo, for which N =3, in the limits given by (3). Then from (17) 

81= (-nCD/C) (-t+tV3j); 

82= (-nCD/C) (-t-tV3j); 

83= -nCD/C; 

V3/V2 = V2/V1 = exp(j47r/3), 

V 3/V2 = VdV I = exp (j27r/3), 

V1 = V2 = V 3• 

(19) 

(20) 

The first two roots which are complex conjugates represent overstability while the third root strictly 

decays. Note the three phase relationship between the voltages for the growing modes. If leakage 

became significant, a condition similar to (19) would be necessary for voltage build-up to occur. 

200 / February 1973 



Downloaded 16 Apr 2013 to 194.167.230.202. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission

N Arbitrary 

In general, for an arbitrary number of cans, 

there are many growth rates and oscillation fre

quencies. Since random fluctuations will excite aU 

modes, that mode with the fastest growth rate 

will dominate. We restrict our discussion now to 

the lossless case with conditions given by (3), so 

we focus attention on (17). 

If we have an even number of cans, note from 

(17) that the fastest growing mode occurs when 

r=!N; 

This mode is purely exponential with no 

oscillations, and the voltages alternate in a posi

tive- negative sequence between adjacent cans. 

However, if we measure the potential difference 

between alternate cans, the potential difference 

due to this fastest growing mode will be zero, thus 

allowing measurement of oscillatory modes with 

slower growth rates. With an odd number of cans, 

the fastest growing modes will be for 

r =!(N±l) ; 8= (nCD/C) exp[=FjC,,/N) ]; 

(22) 

with frequency of oscillation 

Wo= (nCD/C) sinC,,/ N). (23) 

V. EXPERIMENTAL OBSERVATIONS 

A four-can version was built, depicted in Fig. 3. 

The maximum voltage build-up between cans was 

in the range of 10- 20 kV. Because of the valves, it 

was possible to operate with either N = 2, N = 3, 

or N =4. Voltage build-up was measured with an 

electrostatic kilovoltmeter and could be observed 

visually by the spreading of the drops. If electrical 

breakdown did not occur, the voltage was limited 

by the attractive force on the drops on the rings. 

At limiting voltages, the drops would spiral about 

the rings. 

With strict exponential growth with no oscilla

tions, the drops would spread and then spiral in a 

steady-state fashion until voltage breakdown 

occurred, and then the cycle would begin again. 

High Voltage Generation Using W ater Droplets 

FIG. 3. By adjusting the valves this four-can version can 

be operated with either N =2 (dc), N = 3 (three-phase ac), 

or N =4 (two-phase ac or de). 

With three cans, each stream would spread, spiral, 

and contract in a three phase 120° sequence. For 

comparison, an identical fifth can and stream was 

added to the device in Fig. 3. The ratio of fre

quencies for the five-can version to that of three 

cans, assuming the geometry and drop rate are the 

same, are given by the imaginary part of (17) for 

those roots which are in the right-half s plane, 

also given by (23) 

15/13= sin 36°/sin 60°=0.68. (24) 

It was measured that 15= (1/184) sec- 1 and 

fs= (1/ 125) sec-1 yielding the ratio 

(15/is) measured >=:::::0.68 (25) 

in agreement with (24) . 

AJP Volume 41 / 201 
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Actual values for CD and C are difficult to 

measure because of the irregular geometry, but it 

is safe to assume these values to be in the low 

picofarad range. Typically the number of drops 

falling per second was on the order of 10 (n = 10) , 

as measured by a strobotac. Thus from (23) and 

the measured frequencies, this device has CD < C. 

It is also difficult to measure the resistances R 

and RL as these values are usually due to leakage 

from moisture and dirt, as well as the resistance 

due to the supporting structure. However, if we 

assume CD~lO pf with n= 10, the leakage re

sistance must exceed 1010 [2, as determined from 

(19). 

With four cans, the natural frequencies are 

either pure real or pure imaginary. Experi

mentally, the drops would behave in the same 

1 W. Thomson (Lord Kelvin), Proc. Roy. Soc. (London) 

16, 67 (18671. 

2 A. D. Moore, Electrostatic8 (Anchor-Doubleday, New 

York, 1968), p. 175. 

a H. H. Woodson and J. R. Melcher, Electromechanical 

Dynamics (Wiley, New York, 1968), p. 388. 

4 J. R. Melcher, "Electric Fields and Moving Media," 

film produced for the National Committee on Electrical 

Engineering Films by the Educational Development 

Center, 39 Chapel St., Newton, Mass. 02160. (Distributed 
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steady spiraling manner as for two cans, indicating 

the dominance of the pure exponential mode. 

However, the voltage difference between any two 

opposite cans (cans one and three, or two and 

four) was oscillating as expected. 

A bigger three-can dynamo was built using 20 

gallon cans, similar to that shown in Melcher's 

film.4 Here voltages were in the 30 kV range with 

frequencies on the order of 1 Hz. 
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