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Abstract: We study nonlinear propagation of surface plasmon polaritons
along an interface between metal and nonlinear Kerr dielectric. We demon-
strate numerically self-focusing of a plasmon beam at large powers and
the formation of slowly decaying spatial soliton in the presence of losses.
We develop an analytical model for describing the evolution of spatial
plasmon-solitons and observe a good agreement with numerical results.
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1. Introduction

Plasmonics has developed into one of the most active research fields of modern optics. Novel
phenomena have been observed at nanoscales in the structures incorporating metals, with many
promising applications in lasing, sensing, and waveguiding at subwavelength scales [1]. Waveg-
uiding in plasmonic nanoguides and circuits represents a great interest for telecommunication,
computing, and information processing [2]. However, in order to increase efficiency of plas-
monic effects in many of such applications, one should employ nonlinear effects which may
enhance substantially capabilities of plasmonic nanoguides and circuits, also leading to novel
effects such as plasmon self-focusing and frequency conversion.

To study the plasmon propagation in nonlinear media, we should analyze nonlinear
Maxwell’s equations for the transverse magnetic (TM) waves in the presence of a metal-
dielectric interface, and a relatively small number of studies has been devoted to the analy-
sis of the corresponding nonlinear problems. In 1980-s, several groups suggested to employ
simpler approximations for the analysis of Kerr nonlinearities in a single metal-dielectric in-
terface geometry [3, 4, 5]. More specifically, the assumption that the dielectric tensor depends
either on longitudinal [3] or transverse [4] field components simplifies the problem allowing
its analytical description; the validity of both these approaches has been verified by numerical
simulations [5]. Later studies considered more complicated waveguiding structures, including
a metal film embedded into nonlinear Kerr media [6] and nonlinear slot waveguide [7, 8].

Most of the earlier studies considered nonlinear guided waves in metal-dielectric structures
localized in the transverse dimension. The temporal effects and the formation of temporal
surface-polariton solitons were first discussed by Boardman et al. [9], whereas recently Feigen-
baum and Orenstein [10] considered spatial localization of plasmon waves in the planar metal-
dielectric waveguide geometry with a slot width considerably smaller than the wavelength.
However, the surface plasmon polaritons are usually introduced for a single metal-dielectric in-
terface [1, 2], where the analysis of nonlinear localization is more complicated, and it should be
carried out by taking into account the boundary conditions. More importantly, losses in the vis-
ible frequency range cannot be neglected in the study of the soliton generation and propagation
in plasmonic structures.

In this paper, we study nonlinear propagation of surface plasmon polaritons along an inter-
face between metal and nonlinear Kerr dielectric. We describe the plasmon self-focusing and
generation of a spatial plasmon-soliton taking into account losses in metal, by direct numeri-
cal finite-difference time-domain (FDTD) simulations and also theoretically, by developing an
analytical theory based on the effective nonlinear Schrödinger equation with losses.

2. Geometry and theoretical analysis

We study propagation of a surface plasmon-polariton beam along a metal-nonlinear dielectric
interface, as shown in Fig. 1(a). We assume that dielectric is a Kerr-type nonlinear material with
the intensity-dependent dielectric permittivity. The dielectric permittivity in the structure can
be written in the form: ε(x) = εmetal + iγ , for x < 0, and ε(x) = εnln ≡ εlin + α|E|2, for x > 0,
where εmetal is the real part of the dielectric permittivity of a metal, γ is the imaginary part
of dielectric permittivity that describes losses in metal, εlin is the linear part of the dielectric
permittivity of the dielectric, and α is a nonlinear coefficient.

First, we study eigenmodes in the linear case, when α = 0 and losses are neglected, γ =
0. Then, only TM waves with magnetic field H in the plane of the interface can propagate,
and the general wave equation can be written as [11]: ∇×∇×E− ε(x)E = 0, where ∇ is a
three-dimensional vector operator, E = (Ex,0,Ez) is the electric field of a plasmon, and the
coordinates are normalized by 1/k0 = λ/2π , where λ is the free-space wavelength.
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Fig. 1. (a) Schematic of a metal-dielectric interface shown with a transverse structure of the
surface plasmon. (b) Geometry used in the numerical FDTD calculations.

The equation is invariant in the y-direction, so that we look for its solutions in the form

E = C(xEx0 + izEz0)e−iβ z,

where C is the amplitude, β is the plasmon wavenumber normalized to k0, which satisfies
the dispersion relation, β 2 = εmetalεlin(εmetal + εlin)−1 [12]. The field components Ex0 and Ez0

describe the transverse structure, and they are found from the boundary conditions [12]:{
x < 0 : Ez0 = eκ1x, Ex0 = −(β/κ1)eκ1x, κ2

1 = β 2 − εmetal;

x > 0 : Ez0 = e−κ2x, Ex0 = (β/κ2)e−κ2x, κ2
2 = β 2 − εlin

(1)

Next, we take into account losses, nonlinearity and also include the y-dependence describing
the beam self-focusing in the paraxial approximation. In this case, the general wave equation
can not be solved analytically since all three field components interplay in the nonlinear wave
propagation. Hence, we make several simplifications to the problem. First, we assume that the
plasmon remains mainly TM polarized, thus the Ey component of the electric field is negligible,
Ey � Ex,Ez and we do not take it into account in our analysis. This approximation is valid
for paraxial plasmonic beams. Thus, the general vector equation can be rewritten on the axis
projections as follows:

x :
∂ 2Ex

∂y2 +
∂ 2Ex

∂ z2 − ∂ 2Ez

∂x∂ z
+ εEx = 0 (2)

z :
∂ 2Ez

∂x2 +
∂ 2Ez

∂y2 − ∂ 2Ex

∂ z∂x
+ εEz = 0

We search for the solution of the equation in the following form:

E = (xAEx0 + izBEz0)e−iβ z, (3)

where E0 = (Ex0,0,Ez0) is the linear plasmon profile satisfying Eq. (1) with the plasmon
wavenumber β , A and B being slowly varying amplitudes. An other assumption we make is
that the plasmon transverse structure does not change significantly, so that ∂xA� 0 and ∂xB� 0.
Substituting Eq. (3) into Eq. (2) and taking into account the linear plasmon profile of Eq. (1),
we obtain,

Ex0[A′′
yy +A′′

zz −2iβA′
z]− iB′

z
∂Ez0

∂x
+ iγAEx0 +αA(|A|2|E2

x0 + |B|2|E2
z0)Ex0 = 0.

Ez0B′′
yy + iA′

z
∂Ex0

∂x
+ iγBEz0 +αB(|A|2|E2

x0 + |B|2|E2
z0)Ez0 = 0.
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Fig. 2. Magnetic field distribution at the metal-dielectric interface for: (a) Linear diffrac-
tion (low power), R0 = 0.35μm. (b) Self-focusing and soliton generation for |E|2 �
3× 106V 2/μm2 (Media 1). (c) Same as in (b) but for low losses (Media 2). Animations
corresponding to (b) and (c) show that soliton formation with gradual increase of the inci-
dent power.

Assuming that A� B and the field amplitude A varies slowly along the propagation direction,
i.e |Azz|� |2iβAz|, we neglect the term Azz. Multiplying the first equation by Ex0 and the second
equation by Ez0, thus we include the effect of the losses and nonlinearity on the evolution of the
corresponding mode components. Taking the sum and integrating over the transverse dimension
x, we derive the effective nonlinear Schrödinger equation with losses,

−2iβD
∂A
∂ z

+
∂ 2A
∂y2 +2I|A|2A+ iΓA = 0, (4)

where D =
∫

E2
x0dx/

∫ |E0|2dx, Γ =
∫

γ(x)|E0|2dx/
∫ |E0|2dx and I =

1/2
∫

α(x)|E0|4dx/
∫ |E0|2dx, γ(x) is the imaginary part of dielectric constant of metal,

α(x) - Kerr nonlinear coefficient. Equation (4) describes the propagation of the plasmon
polariton beam localized at the interface and expanding or focusing in the transverse direction
y. The similar equation but without losses was derived in Ref. [10] for a nonlinear slot
waveguide. We have verified that the effective coefficient Γ describes the attenuation of surface
plasmons with a good accuracy (as compared to the imaginary part of the plasmon propagation
constant) when the absolute value of metal dielectric permittivity is much larger then the
permittivity of dielectric layer, i.e. in our case for the wavelengths above 600nm.

In the linear regime (I = 0), Eq. (4) describes plasmon diffraction with the diffraction co-
efficient Ddiff = 1/2βDR2

0, where R0 is the beam width. In the lossless (Γ = 0) nonlinear
(I �= 0) regime, Eq. (4) has a stationary soliton solution. This solution can be presented as
A = φ(y)e−i�β z, where φ(y) satisfies the equation, φyy − 2βD�βφ + 2Iφ 3 = 0, �β being a
nonlinear correction to the plasmon wavenumber. Finally, the spatial plasmon-polariton soliton
profile is φ(y) = qI−1/2sech(qy), where q =

√
2βD�β , and the soliton width is �y ≈ 1/q,

which is much larger than the plasmon transverse width, �x � 1/κ2. In the lossless case, the
soliton peak intensity is found as |E|2 = q2/I|E0|2.

In the presence of losses (Γ �= 0), Eq. (4) has no stationary solutions, and the soliton can be
treated in a generalized sense as a nonlinear localized wave with varying parameters [13].

3. Numerical FDTD simulations

To evaluate the applicability of our analytical results, we employ numerical FDTD simulations
and study the propagation of plasmonic beams along a metal-dielectric interface for differ-
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ent powers. For the FDTD simulations, we use the commercial software RSoft with Fullwave
package implemented at the Australian National Supercomputer Facility.

The simulated structure consists of a metal layer and nonlinear dielectric having a common
interface [see Figs. 1(a,b)]. We choose the nonlinear dielectric with εlin = 4.84 and χ = 1.4×
10−19m2/V 2. Such material parameters can be found in chalcogenite glasses [14]. The metal
is chosen to be silver, since it is widely used for plasmonic applications [1, 2]. The dispersion
of metal is modeled by the Drude-Lorentz formula [1], εmetal = εin f + ∑δk/(akω2 + ibkω −
ω2

0k), k = 1..6 with the coefficients chosen in such a way that the metal permittivity fits the
experimental data [15].

The whole simulation domain is surrounded by perfectly matching layers to minimize re-
flection from the edges of the simulation domain. Both the metal and dielectric layers are 2μm
thick, which is much larger than the plasmon decay into either medium for the wavelength of
interest. The transverse width of the layers is chosen 8μm so that the diffraction and soliton
formation processes can be clearly seen without the effect of the boundaries used in the FDTD
simulations, see Fig. 1(b).

To excite plasmon-polaritons at the metal-dielectric interface we use a setup shown in
Fig. 1(b). We illuminate the structure with a continuous TM polarized light (H ↑↑ y) with the
free space wavelength λ = 800nm. The source is placed in a close proximity to the structure,
and its transverse dimensions are 0.5×0.3μm2 in order to create a relatively narrow plasmonic
beam with R0 � 0.35μm. Plasmons are excited by the light scattered on the metal corner. To
avoid exciting plane waves in the dielectric, we place a thin metal screen parallel to the front
dielectric facet, 250nm above the metal surface, see Fig. 1(b).

To observe the plasmon beam propagation, we plot the field in the interface plane. Distribu-
tion of the magnetic field in this plane is shown in Figs. 2(a-c). Figure 1(a) shows the transverse
plasmon structure in the linear regime, where the plasmon diffracts in the propagation direc-
tion. Due to losses in metal, the plasmon beam decays while propagating along the surface, the
estimated propagation distance is about 5μm. The plasmon is highly localized near the metal-
dielectric interface, the maximum decay length into the dielectric is about 15 nm. The plasmon
wavelength obtained from the simulations is λsp = 0.325μm, which agrees well with the guided
index β = 2.46 (note that at λ = 800nm, we have εmetal �−25+ i1.74).

At low powers, the plasmon beam diffracts, the diffraction length is about 2.5μm. For larger
powers, e.g. |E|2 � 2×106V 2/μm2, we observe the beam narrowing and self-focusing. Further
increase of the beam intensity leads to the soliton generation, see Fig. 2(b); this corresponds
to the maximum change of the nonlinear index α|E|2ε−1/2 = ε−1/23/4χ|E|2 ≈ 0.05, being
consistent with the previous nonlinear plasmonic results [10, 16]. This change of the refractive
index cannot be archived in conventional dielectric materials, however semiconductor multi-
quantum wells can potentially provide such a high-index change [17].

In our case, self-focusing is clearly observed at 1μm. The generated spatial soliton propa-
gates about 700− 800nm and then starts loosing its power due to dissipation, propagating for
about 3μm. Since the process of the soliton formation is overshadowed by the losses, solely for
the presentation purposes we demonstrate the same dynamics at lower value of losses, taking
bk

new = bk/100. The results of the corresponding FDTD simulations are presented in Fig. 2(c),
where the generated soliton propagates practically without loosing its energy, and thus pre-
serving its shape for longer distances, similar to spatial solitons in optics [13]. Although the
spatial soliton exists for longer distances, eventually it decays due to losses, which cannot be
compensated by any value of nonlinearity.

To analyze the effect of losses on the plasmon self-focusing, we trace the variation of the
effective beam width, R, and present the results in Fig. 3(a), similar to the physics of magnetic
solitons [18]. In the linear regime (curve 1), the plasmon beam diffracts, this is indicated by a
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Fig. 3. (a) Evolution of the beam width for: 1 – linear regime, 2 – nonlinear regime with
realistic losses, 3 – soliton formation in nonlinear regime with low losses. Dashed lines
correspond to the results obtained from Eq. (4). (b) Soliton profiles: analytical (solid) and
FDTD simulations (dots). (c) Soliton intensity vs. the effective index: solid – analytical
results; crosses – FDTD data.

monotonic growth of the beam width with the propagation distance. In the nonlinear regime, the
beam width decreases reaching a minimum (curve 2), where self-trapping takes place and the
spatial plasmon soliton is formed. For longer propagation distances, the soliton broadens due to
dissipation decreasing its amplitude, but this broadening is reduced dramatically for low losses
(curve 3). We also model the dissipation processes in the system by solving the Schrödinger
equation (4) with the help of beam propagation method [19]. The theoretical results (dashed
lines) are in a good agreement with numerical simulations. However, our theoretical model
works well only for highly localized plasmons, i.e. with relatively small free-space wavelengths.
For low-frequency plasmons the effective dynamics is not described well by the simplified
model and the assumption A � B is not valid.

To demonstrate the accuracy of our theoretical analysis we compare analytical and numerical
results by calculating the soliton profiles in the stationary lossless regime. From our FDTD
simulations, we find the normalized intensity χ|E|2 of the generated soliton at z � 1μm and,
using the analytical expression for the soliton amplitude, we extract the nonlinear correction to
the wavenumber, �β , and plot the corresponding soliton profile in Fig. 3(b). It is clearly seen
that the theoretical (solid) and numerical (dots) results are in a good agreement. In addition, we
calculate the dependence of the soliton intensity on the nonlinear effective index βNL = β +�β
and compare it to the values obtained in numerical simulations. For different soliton intensities
we find the distance over which the phase incursion is equal to 2π and find the plasmonic
wavelength and nonlinear effective index βNL. The normalized intensity vs. effective index is
presented in Fig. 3(c) demonstrating a good agreement with the FDTD simulations.

4. Conclusions

We have studied nonlinear self-focusing of surface plasmon polaritons propagating along an
interface between metal and nonlinear dielectric. While for low powers, we have observed
linear diffraction of plasmons, the beam propagation becomes different for larger powers with
self-focusing of plasmon beams, even in the presence of strong losses in metal. These feature
of the plasmon propagation in a nonlinear medium have been shown to agree with an analytical
theory based on the nonlinear Schrödinger equation with losses.
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