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Abstract

Influenza A is a negative sense RNA virus that kills hundreds of thousands of humans each

year. Base pairing in RNA is very favorable, but possibilities for RNA secondary structure of

the influenza genomic RNA have not been investigated. This work presents the first experi-

mentally-derived exploration of potential secondary structure in an influenza A naked (pro-

tein-free) genomic segment. Favorable folding regions are revealed by in vitro chemical

structure mapping, thermodynamics, bioinformatics, and binding to isoenergetic microar-

rays of an entire natural sequence of the 875 nt segment 8 vRNA and of a smaller fragment.

Segment 8 has thermodynamically stable and evolutionarily conserved RNA structure and

encodes essential viral proteins NEP and NS1. This suggests that vRNA self-folding may

generate helixes and loops that are important at one or more stages of the influenza life

cycle.

Introduction

Influenza A virus causes yearly epidemics that kill hundreds of thousands of humans [1] and

undergoes genetic reassortments, that produce infrequent, but more deadly pandemics [2].

The virus is classified by subtypes differing in the viral surface proteins, hemagglutinin (HA)

and neuraminidase (NA). Influenza is a negative sense (-)RNA virus with a segmented genome.

Its life cycle involves RNA exclusively, no DNA intermediate is involved [3, 4]. The genomic

RNA orchestrates various functions including replication, transcription, translation, and virion

assembly. Despite influenza genomic RNA importance, knowledge of its structure is limited.

Genomic RNAs (vRNA) share a common organization consisting of a central open reading

frame (antisense) flanked on both ends by short (19–58 nt) untranslated regions (UTRs) [5].

The base paired 5' and 3' ends form a structure called panhandle that is recognized by the viral

polymerase complex [6]. Binding of polymerase induces a partial conformational change in the

RNA structure [7, 8], thought to allow promoter activity and synthesis of viral mRNA utilizing

an unusual host “cap-snatching” endonuclease activity [9]. Although vRNA UTR structures

PLOSONE | DOI:10.1371/journal.pone.0148281 February 5, 2016 1 / 21

OPEN ACCESS

Citation: Lenartowicz E, Kesy J, Ruszkowska A,

Soszynska-Jozwiak M, Michalak P, Moss WN, et al.

(2016) Self-Folding of Naked Segment 8 Genomic

RNA of Influenza A Virus. PLoS ONE 11(2):

e0148281. doi:10.1371/journal.pone.0148281

Editor: Adrianus CM Boon, Washington University

School of Medicine, UNITED STATES

Received: August 31, 2015

Accepted: January 15, 2016

Published: February 5, 2016

Copyright: © 2016 Lenartowicz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information files.

Funding: This work was supported by National

Science Center grants: N N301 788 440 and UMO-

2013/08/M/NZ1/01062 to EK, UMO-2011/03/B/NZ1/

00576, UMO-2011/03/B/ST5/01098 and UMO-2013/

08/A/ST5/00295 to RK and by National Institutes of

Health grants: R03TW008739 to EK and DHTand

GM22939 to DHT.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0148281&domain=pdf
http://creativecommons.org/licenses/by/4.0/


and roles are reasonably well defined [10], potential structural motifs in the vRNA and also in

the template (cRNA) for RNA dependent polymerase synthesis of vRNA are not known.

There is evidence for a few other sequences and structures in influenza vRNA that play

essential roles in the virus life cycle [11, 12]. For example, gel retardation and cell culture exper-

iments have identified interactions important in packaging [12–16]. Functional importance of

a predicted pseudoknot structure in the segment 5 vRNA packaging region was confirmed by

plaque assays of mutant viruses with disrupted structure and with folding restored by compen-

satory substitutions [12]. Moreover, ADAR1 editing [17] of vRNA was observed in segments

encoding M1 [18] and HA [19] proteins. ADAR1 activity is a restriction factor important for

influenza virus replication [20] and is specific to helical regions of RNA. These findings sup-

port the idea of RNA structure in influenza vRNA. In general, viral genomes are thought to

contain RNA structure, but few details are currently known [21].

The potential for additional stably folded RNA secondary structures has been identified in

influenza A through sequence analysis of both (+) and (-) sense RNA [22]. Prediction of

thermodynamically stable secondary structure combined with suppression of synonymous

codon usage (SSCU) sequence comparison predicted at least twenty conserved local secondary

structures [23], two of which were previously predicted [11, 24]. A combination of in vitro

chemical and isoenergetic microarray mapping validated five mRNA regions as containing sta-

ble structure [25–29].

Much of the time, vRNA of influenza A is associated with the heterotrimeric viral polymer-

ase and multiple copies of the viral NP protein in a ribonucleoprotein complex (vRNP) [30,

31]. This vRNP is packaged into active virions. Results from cryo EM and from in vitromap-

ping studies of RNP particles isolated from virus [32, 33] suggest that NP protein binding

destabilizes folded viral RNA structure [4, 30]. Several studies, however, indicate that vRNA is

not covered by NP in such a way to prevent all regions from folding [34–36]. For example,

influenza A infected cells typically have ~ 24 nucleotides per NP and the average periodicity of

NP on the genomic RNA is 32 ribonucleotides [4]. Salmon anemia virus NP, which is very sim-

ilar to influenza A NP, however, only binds 12 nucleotides of a single stranded RNA [35]. This

suggests roughly half to a third of the RNA is not bound to NP. Cryo EM studies also show

that the RNA binding sites on NP leave large sections of RNA exposed, which explains the sus-

ceptibility of influenza virus RNP to ribonucleases [4, 30]. Moreover, cryo EM indicates that

"the RNA sequences that are most intimately bound by NP are not directly accessible for tran-

scription or replication” suggesting “at least local disassembly of the RNP is required” [4].

During active infections of cells, virions are broken down, and vRNPs are dynamic entities

where regions of protein-free (“naked”) vRNA may be present at various stages (e.g. in newly

synthesized regions of vRNAs and during synthesis of mRNA and cRNA). RNA-RNA interac-

tions are quite strong, e.g. a single GC pair can stabilize a helix by 3 kcal/mol at 37°C [37].

Moreover, hairpins can fold within tens of microseconds [38]. Thus, local structure can form

quickly and be thermodynamically stable.

Oligonucleotides can affect RNA function in influenza [13, 39, 40]. Presumably, oligonucle-

otide sequence dependent effectiveness depends on target structure. Thus insights into RNA

structure can facilitate design of oligonucleotides that can be agents to reveal structure-function

relationships, and potential lead therapeutics.

In this work, the in vitro base pairing of the protein-free entire segment 8 vRNA (vRNA8,

strain A/Vietnam/1203/2004 (H5N1)) is modeled on the basis of chemical mapping combined

with predicted thermodynamics and sequence/structure comparison. Additionally, microarray

mapping is consistent with the in vitro deduced pairing. H5N1 virus subtype was used as a

model strain to find thermodynamically stable and evolutionarily preserved RNA secondary

structure motifs. This strain was isolated from humans. It has high medical importance because
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it is one of a few avian influenza viruses found in humans and causes high morbidity and mor-

tality upon infection [41]. H5N1 virus subtype has a high potential of causing a pandemic if it

acquires ability to transmit easily among humans [42].

Results presented here show that naked H5N1 vRNA8 has structural motifs in vitro that are

thermodynamically stable and conserved throughout influenza A strains. Much of the folding

is local, so individual motifs may only form at particular times of the viral life cycle. This infor-

mation can facilitate design of nucleic acid—based and/or small organic molecules that could

be used in cell culture to provide insight into functional significance and/or as therapeutics.

Materials and Methods

Materials

Standard phosphoramidites for oligonucleotide synthesis (DNA, RNA, 2'-O-methyl RNA),

6-FAM phosphoramidite and C6-aminolinker were purchased from Glen Research. Phosphor-

amidites of LNA, LNA 2,6-diaminopurine riboside and 2'-O-methyl-2,6-diaminopurine ribo-

side were synthesized according to published procedures [43]. Dimethyl sulfate (DMS) was

from Aldrich and N-methylisatoic anhydride (NMIA) was fromMolecular Probes. Reverse

transcriptase SuperScript III was from Invitrogen. AmpliScribe T7 Transcription Kit and

RNase H were from Epicenter. Pfu polymerase and dNTP were from Fermentas. Roche was

provider of ddNTP. Restriction enzymes: EcoRI and PstI were from Promega. DH5α compe-

tent cells, agarose and HybriSlip hybridization cover were bought from Invitrogen. T4 polynu-

cleotide kinase was product of EURx. Silanized slides were purchased from Sigma.

Chemical synthesis of oligonucleotides

DNA and modified DNA-LNA primers for PCR and reverse transcription, and 2’-O-methyl-

LNA modified probes were synthesized by the phosphoramidite approach on a MerMade syn-

thesizer. Oligonucleotide primers for reverse transcription were synthesized with fluorescein

on the 5’ end (6-FAM). Oligonucleotide probes have a C6-aminolinker on the 5' end. Synthe-

sized oligonucleotides were deprotected and purified according to published procedures [37,

44], and their molecular weights were confirmed by mass spectrometry (MALDI-MS). Con-

centrations of all oligonucleotides were measured with a UV spectrophotometer (Picodrop-

Syngen).

RNA synthesis

RNAs were synthesized by in vitro transcriptions. DNA template for vRNA8 (875 nt) was

obtained by PCR from vector pPol1 using appropriate primers (Table A in S1 File). The pPol1

vector containing DNA of segment 8 influenza strain A/Vietnam/1203/2004 (H5N1) was

received from Prof. Baek Kim, University of Rochester. The vRNA8 was purified using RNeasy

MiniElute Cleanup Kit from Qiagen.

The pPol1 vector was also used to make a plasmid coding for an RNA (mini-vRNA8) devoid

of a central 504 nt of segment 8 but retaining the nucleotides required to give optimal packag-

ing of a segment 8 encoding GFP protein [45]. Firstly, two fragments (182 nt from 5’-end and

189 nt from 3’-end) were amplified. The primers used to copy the first fragment included

restriction sites for EcoR1 and BamH1 enzymes, respectively, from the 5’ and 3’end. Similarly,

the second fragment contains restriction sites for BamH1 and Pst1 enzymes (Table B in S1

File). Digestion with BamH1 enzyme was conducted according to Promega protocol. After

ligation of both fragments at 4°C for 16 h, the second polymerase chain reaction was run with

primers containing restriction sites for EcoR1 and Pst1 enzymes (Table B in S1 File). The
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amplification product was cloned into pUC19 vector. From the obtained vector, the DNA tem-

plate of mini-vRNA8 was amplified (primers: Table A in S1 File) and used for transcription of

RNA. The mini-vRNA8 contains 182 and 189 nts, respectively, from the 5’ and 3’ ends of

vRNA8 and five additional nucleotides (5’GGAUC) corresponding to the BamH1 restriction

site giving a total of 376 nts. The RNA was purified by denaturing polyacrylamide gel

electrophoresis.

Chemical modification

As described below, the SHAPE method with NMIA was used to modify flexible riboses [46].

DMS was used to modify Watson-Crick faces of bases in adenosines and cytidines not in Wat-

son-Crick pairs flanked by Watson-Crick pairs. Prior to chemical mapping, RNA was annealed

for 5 min at 65°C in folding buffer A (300 mMNaCl, 5 mMMgCl2, 50 mMHEPES, pH 7.5)

and slowly cooled to room temperature. After folding, the RNAs formed one band on native

agarose gels consistent with formation of one structure (Fig A in S2 File). For chemical modifi-

cation, 1 pmol of RNA per primer was used for readout by reverse transcription. For example,

to 27 μl containing 6 pmol of RNA, 3 μl of 40 mMNMIA in DMSO was added. A control reac-

tion was prepared equivalently with 3 μl of pure DMSO instead of NMIA solution. Samples

were incubated for 3.5 h at 23°C. For modification with DMS, 3 μl of 300 mMDMS in ethanol

was added to 27 μl containing 6 pmol of RNA. A control reaction was prepared equivalently

with 3 μl of water instead of DMS solution. Samples were incubated for 15 min at 23°C. Reac-

tions were stopped by ethanol precipitation. A concentration range of chemicals was tested to

find conditions where the vRNA would be modified on average once per 300 nucleotides. Final

concentrations of 4 mM NMIA and 30 mMDMS were selected.

Primer extension

Modification sites were identified by primer extension using 6-FAM labeled primers (Table C

in S1 File) specific for studied RNA. Six primers were used for vRNA8 and three primers for

mini-vRNA8. Two of six DNA primers contained LNA modified nucleotides. The LNA nucle-

otides increase stabilities of RNA-DNA duplexes and therefore such modified primers increase

reverse transcription efficiency for structured regions of RNA [47]. Also, primers could be

shorter and still efficiently bind the RNA. The shorter primers allow reading out chemical

modification of more nucleotides.

For each reaction, 1 pmol of RNA and 1 pmol of appropriate primer were used. Primer

extension reactions were performed at 55°C with reverse transcriptase SuperScript III and the

buffer and protocol of Invitrogen. Reactions were stopped by ethanol precipitation. For each

primer, two ddNTP ladders were prepared: (most often ddGTP and ddATP). DNA products

were separated by capillary electrophoresis using ABI 3130xl Genetic Sequencer (Laboratory of

Molecular Biology Techniques at AdamMickiewicz University in Poznan).

Processing of chemical mapping data

Results were analyzed with PeakScaner 1.0 program (available from Applied Biosystems).

Reactive nucleotides were identified by comparison to dideoxy sequencing ladders along with

mass marker. SHAPE intensities at each individual nucleotide were examined manually to

identify positions where high background was present in the control experiment. Less than 5%

of positions fell into this category and were marked as containing no data. Quantitative

SHAPE reactivities for individual datasets were normalized to a scale in which 0 indicated an

unreactive site and the average intensity at highly reactive sites was set to 1.0. The normaliza-

tion factor for each dataset was determined by first excluding the most-reactive 2% of peak
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intensities and then calculating the average for the next 8% of peak intensities. All reactivities

were then divided by this average. This normalization procedure places all reactivities on a

scale of 0 to approximately 1.5. In this scale, reactivities>0.650 are considered as strong,

0.250–0.650 as medium and<0.250 as weak, but all calculated reactivities were used for predic-

tion of secondary structure. Nucleotides with no data were indicated as -999. Normalized

SHAPE reactivities from each primer extension reaction were processed independently. DMS

modification analysis was equivalent to that described above. For both SHAPE and DMS, at

least three datasets were obtained from each primer and the average of results was used in the

RNAstructure5.3 program [48, 49] for prediction of secondary structure (S1 Dataset).

Sequence analysis and in silico RNA folding

All non-redundant full-length segment 8 sequences of Influenza A virus were obtained from

the NCBI Influenza Virus Resource [50]. Ambiguous nucleotides were filtered out leaving a set

of more than 14 000 sequences. The reverse complement of these (the vRNA sequences; gener-

ated by BioEdit [51]) were folded in silico using RNAfold [52, 53] with default parameters. Pri-

mary sequences were aligned using MAFFT (FFT-NS-1 strategy) [54]. Minimum free energy

secondary structures predicted with RNAfold were mapped onto the primary sequence align-

ment and consensus helixes (>50% conserved) were identified. These frequently-predicted

helixes were used to constrain base pairing in subsequent modeling.

Prediction of secondary structure using chemical mapping results

RNAstructure [48] uses thermodynamic parameters [49, 55] and free energy minimization for

prediction of base pairing [56]. SHAPE reactivities were converted to pseudo free-energy

change terms to restrain predictions. For this purpose the text file with normalized SHAPE

reactivity (as described above) was input to RNAstructure5.3 using “Read SHAPE reactivity—

pseudo free energy”mode with slope 2.6 and intercept -0.8. DMS mapping data were also

introduced at the same time, using “chemical modification”mode to apply only strong DMS

modifications as constraints. Restricting DMS constraints to strong modification limits poten-

tial misinterpretation if there is an ensemble of secondary structures [57, 58].

Preparation of isoenergetic microarrays

Semi-universal microarrays [59–62] built with isoenergetic probes were synthesized with

probes complementary to all studied RNAs. Probes were 20-O-methyl oligonucleotide penta-

mers and hexamers with incorporated LNA nucleotides and 2,6-diaminopurine riboside (LNA

or 20-O-methylated nucleotide) [43, 63, 64]. Also several modified heptamers complementary

to A/U rich fragments of vRNA8 were synthesized, with 3’-terminal pyrene (Table D in S1

File). Neither RNA target, however, bound to a heptamer.

Specific and negative control probes were printed on the microarray. Each probe was spot-

ted in triplicate, with a spot distance of 750 μm. UUUUU, U, and spotting buffer were used as

negative controls. Microarrays were prepared according to the method described earlier [65,

66]. Silanized slides were coated with 2% agarose activated by NaIO4.

Microarrays were printed in the European Center of Bioinformatics and Genomics in Poz-

nan, Poland with NanoPrint microarray printer (Arrayit). Printed microarrays were incubated

for 12 h at 37°C in 50% humidity. The remaining aldehyde groups on microarrays were

reduced with 35 mMNaBH4 solution in phosphate-buffered saline solution and ethanol (3:1 v/

v). Then slides were washed in water at room temperature (3x), in 1% SDS solution at 55°C,

and finally in water at room temperature (3x) and dried at room temperature.
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Hybridization conditions

For hybridization on microarrays, RNA was radioactively labeled from the 5’ end using [γ-32P]

ATP and T4 kinase. RNA was purified on a 6% polyacrylamide denaturing gel and the radioac-

tivity was measured using scintillation counter MicroBeta (PerkinElmer). Before hybridization,

pure labeled RNA was folded as for chemical mapping (65°C for 5 min and slowly cooling to

room temperature) in buffer A (300 mMNaCl, 5 mMMgCl2, 50 mMHEPES, pH 7.5) or B (1

M NaCl, 5 mMMgCl2, 50 mMHEPES, pH 7.5) or C (300 mM KCl, 5 mMMgCl2, 50 mM

HEPES, pH 7.5) or D (1 M KCl, 5 mMMgCl2, 50 mMHEPES, pH 7.5). The RNAs in these

conditions formed one band on native agarose gels, consistent with formation of one structure

(Fig A in S2 File).

For each microarray, 250 μl of buffer solution with 200 000 cpm (ca. 10 nM) of radioactively

labeled RNA was used similar as described earlier [59, 60, 67]. Hybridization took 18 h at

selected temperature (4°C, 23°C, or 37°C) in 100% humidity. After hybridization, microarrays

were washed 5 min in buffer with the same composition and temperature as for hybridization,

then dried by centrifugation (2 min, 2000 rpm). Hybridization was visualized by exposure to a

phosphorimager screen and scanning on Fuji Phosphorimager. ImageQuant 5.2 program was

used for quantitative analysis. Bindings were normalized to the strongest intensity and have

values in range 1–0, marked as: 0.33� strong, 0.11�medium<0.33, and no binding<0.11.

Experiments were repeated at least three times, and the average of the data is presented. Bind-

ing sites of probes are denoted by the middle nucleotide of the complementary RNA region.

RNase H assays

As for chemical mapping, vRNA8 (6 pmol) was annealed for 5 min at 65°C in folding buffer A

and slowly cooled to room temperature. Then, 3 pmol of DNA oligonucleotide (Table E in S1

File) in buffer with DTT (final concentration 1 mM) and 5 units of RNase H were added to

final volume 20 μl. A control reaction was prepared equivalently but without DNA oligomer.

Reactions were incubated for 30 min at 37°C and then RNase H was inactivated by incubation

for 10 min at 65°C. Samples were precipitated with ethanol and cleavage sites were identified

with primer extension with six primers specific for vRNA8 (Table C in S1 File).

Results

Secondary structure model for naked vRNA8

All influenza A segment 8 vRNA sequences were folded in silico. This initial analysis revealed

five stem regions that are predicted to form across all strains: nucleotides 261-270/277-288,

312-317/322-327, 696-701/775-780, 704-713/758-767 and 736-740/744-748 (the numbering of

vRNA8 is from its 5’ end) (Fig 1). These helixes have base pairing conservation of 97.2, 94.9,

85.2, 97.5, and 92.6%, respectively (S2 Dataset).

The secondary structure of naked vRNA8 was chemically mapped in buffer A (300 mM

NaCl, 5 mMMgCl2, 50 mMHEPES, pH 7.5) at 23°C. NMIA reacted strongly and moderately,

respectively, with 65 and 166 of 875 nucleotides. DMS reacted strongly and moderately with 58

and 115 nucleotides, respectively (Fig 1, and S1 Dataset). In total, 60% of nucleotides showed

only weak or no reactivity, indicating that vRNA8 is highly structured in vitro. Similar reactiv-

ity has been observed for 16S rRNA [68].

The data from chemical mapping were input into the RNAstructure5.3 program as

described in Material and methods. The mapping data were consistent with the six conserved

stem regions, which thus were added as base pairing constraints. The resulting base pairing

model of vRNA8 is presented in Fig 1. While not used in modeling, alignment of over 14 000
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non-redundant sequences (S2 Dataset) revealed compensating changes for base pairs U60/

G77, C63/G74, C99/G117, C661/G814, C664/G811, U662/A808, C694/G782, A697/U779, and

A703/U773. The primer complementary to region 769–789 of vRNA8 did not undergo exten-

sion with reverse transcriptase, so probably did not hybridize, which is consistent with the

strong secondary structure predicted in this region. In the absence of experimental data, RNAs-

tructure predicted 57% of the same base pairs in Fig 1 (see folding in Fig B in S2 File).

The base pairs modeled for vRNA8 in Fig 1 fall into four domains. Domain I (1-27/875-836)

has the 5’ and 3’ ends of vRNA8 partially paired, corresponding to the panhandle structure pre-

viously proposed [5, 6, 10]. The entire vRNA8 structure contains 269 canonical base pairs

(including G-U), so 61% of nucleotides are paired. The results imply that naked vRNA8 is

highly structured in vitro. While there may be an ensemble of structures in vitro, the RNA can

fold stable secondary structure locally as well as in long distance. For example, the predicted free

energies of the hairpins formed by nucleotides 213–246 and 687–789 are, respectively, -13 and

-42 kcal/mol, which translate to equilibrium constants for folding of 1X109 and 4X1029, respec-

tively. The results suggest that some of the structural motifs can also form in vivo.

Fig 1. Self-folding of vRNA8 predicted by RNAstructure 5.3 using as constraints: strong reactivity of DMS; consensus base pairs from sequence
and structure analysis (orange bars); SHAPE reactivities converted to pseudo- free energies. Additionally there are marked results frommicroarray
mapping in buffer A (300 mMNaCl, 5 mMMgCl2, 50 mM HEPES, pH 7.5) at 37°C and also from RNase H cleavage in the same buffer and temperature.
Binding sites of probes are denoted by the middle nucleotide of the five nucleotides complementary in the RNA. Possible regions of tertiary interactions are
marked by letters in open circles—the same letter marks one interaction (see text). Regions with no read-out by chemical mapping are: 807–875 (NMIA) and
835–875 (DMS). The numbering of vRNA8 is from its 5’ end. The template for the AUG start codon is nucleotides 849–847.

doi:10.1371/journal.pone.0148281.g001
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The modeled base pairs are highly conserved—average canonical base pairing is 82.6% con-

served (Fig 2, and S2 Dataset). The highest base pair conservations are in domains I (98.0%)

and II (91.2%). The long hairpin in region 696–780 has 92.1% average canonical base pair con-

servation. When mutations occur in these conserved regions they typically preserve canonical

base pairing (S2 Dataset). Such structurally-neutral (consistent or compensatory) mutations

suggest functional roles for these structures.

Base pair probabilities for vRNA8 self-folding

To assign probability to each base pair and unpaired nucleotide, the partition function module

[69] in the RNAstructure5.3 program was used. For the partition function calculations, experi-

mental data including sequence comparison were incorporated as restraints. Results for the

vRNA8 sequence indicate that there are regions with pairs of more than 90% probability and

that the most probable base pairs are generally in domain IV (Fig 3). Conversely, there are also

regions of predicted low probability of particular base pairs. This includes the panhandle helix

(1-16/861-875), which binds the heterotrimeric viral polymerase. This region is thought to be

dynamic with at least two secondary structure [9, 10]. Thus the probability of particular base

pairs is expected to be low.

Fig 2. Conservation of vRNA8 self -folding in type A viruses.Colors indicate percentage of canonical base pairing preserved across vRNA segment 8 of
type A strains. Compensating changes occur for base pairs U60/G77, C63/G74, C99/G117, C661/G814, C664/G811, U667/A808, C694/G782, A697/U779,
and A703/U773. The numbering of vRNA8 is from its 5' end.

doi:10.1371/journal.pone.0148281.g002
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Microarray mapping results for vRNA8

The chemical mapping and bioinformatics provide a robust model for the secondary structure of

vRNA8. Often, antisense oligonucleotides are used to inhibit RNA function. Therefore, microar-

ray mapping [62] was used to determine vRNA8 binding sites of oligonucleotides and potentially

provide additional insight into RNA folding. Oligonucleotide probes are modified to have average

ΔG°37 of roughly -9.0 kcal/mol at 37°C (between -8.0 and -10.5 kcal/mol) for binding to unstruc-

tured pentamer or hexamer RNAs [43, 63, 64]. This largely eliminates consideration of the

sequence dependence of binding when interpreting microarray results. Microarray mapping was

performed under several conditions (see Materials and methods), differing in salt concentration

and temperature to choose the best conditions for selective binding. The optimized condition was

hybridization at 37°C in buffer A. Only strong and medium binding probes were considered.

The isoenergetic microarray contained 454 oligonucleotides complementary to potential

binding sites on segment 8 vRNA (Fig 4 and Table F in S1 File). vRNA8 hybridized to 28

probes strongly or moderately. Most probes that bind have more than one complementary

potential binding site. Analysis of all possible alternative binding sites (sites within vRNA8

where oligonucleotide probes could bind via complementary and/or mismatched pairing) and

their predicted free energies of hybridization identify several regions accessible for probes.

Fig 3. RNAstructure5.3 predicted probability of nucleotides being paired (colored lines) or single stranded (colored circles) in vRNA8 self-folding.
Probability lower than 50% is not colored. The partition function calculation incorporated restraints from strong reactivity of DMS, consensus basepairs from
sequence and structure analysis and SHAPE reactivities converted to pseudo-energy.

doi:10.1371/journal.pone.0148281.g003
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Several approaches were used to assign unambiguous strong binding sites and the relevant

data for strongly binding probes are summarized in Table 1. Complete data and calculations

(Table E in S1 File) allow unambiguous assignment of medium intensity binding sites

(Table 2). Assigned binding sites are illustrated in Fig 1, and the logic is described below. Addi-

tional probable binding sites, i.e. those where the probe may bind to more than one site, are

illustrated in Fig 4.

Sites 142 and 163 are unambiguous (Table 1) because only those sites have sequences pre-

dicted to have a ΔG°37 favorable enough for binding their probe if the site was completely single

stranded. Moreover, DNA 9-mers targeted to sites 143 and 163 produced strong RNase H

cleavages at nucleotides 143–145 and 165–166 (Fig 1 and Table E in S1 File), indicating those

regions are able to bind oligonucleotides.

The RNase H assay was also used to test other binding sites suggested by the microarray

results (Tables 1 and 2). RNase H cleavage within three nucleotides of the target site for a

strongly binding probe was considered confirmation of oligonucleotide binding to that site.

Several tested sites do not undergo RNase H cleavage. However, these sites may be accessible,

with less affinity for DNA, than for modified microarray probes that can form a more

Fig 4. Self-folding of vRNA8marked with regions not accesible for probes onmicroarray (buffer A) (see Table F in S1 File). RNase H cleavage sites
for selected DNA oligonucleotides are also marked.

doi:10.1371/journal.pone.0148281.g004
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thermodynamically stable duplex with RNA. Therefore, negative assignment of probe binding

cannot be concluded from RNase H assays. Several sites are localized more definitively by com-

parison with binding to a shorter construct, mini-vRNA8 (see below). In general, the deduced

and probable binding sites are in good agreement with the deduced vRNA8 base pairing.

Table 2. Deducedmedium binding sites in vRNA8 for microarray probes.

Binding sites a Probe
sequence b

Predicted ΔG°37
of probe/vRNA8

duplex c (kcal/mol)

Sites of strong
RNase H
cleavage d

Binding to
mini-vRNA8 e

Deduced
sites

Comments

58/267 dGdGdg -10.71/-10.71 - * S 58 Alternative site 267 not in mini vRNA8

107/ 117/ 250/
683

dDcDgg -9.15/ -9.15/ -9.15/
-9.15

117/ 248–253 M 117/ 250

141 dGdCdg -9.83 143–144 M 141

121/ 169/ 210/
253/ 389/
537/ 575

dGdDdg -9.00/ -9.00/ -9.00/-
9.00/ -9.00/
-11.13/ -9.00

166-167/ 250-254/
392/ 535–536

M 169/ 253/
389/ 537

Site 169 in mini-vRNA8 is not structurally
comparable to vRNA8 region, but 169 is
confirmed by RNase H cleavage

194 /254/ 390 GdGdDg -9.50/ -9.50/ -9.50 251-254/ 392 NS 254/ 390

80/ 275 dDcUag -7.89/ -7.89 - no binding 275

405 dDgGdg -12.72 407 NS 405

122/ 180/ 211/
411/ 538/ 730

CdGdDg -9.07/ -11.09/ -9.07/
-11.09/ -9.07/
-11.09

410-414/ 535–536 M 411/ 538

13/ 436 AcCcUg -10.18/ -10.18 - no binding 436 Site 13 is in mini-vRNA8, but site 436 is not
and probe does not bind mini-vRNA8

535 dDdGug -10.48 535–536 NS 535

a
—binding sites are denoted by the middle nucleotide of the complementary sequence of the target, sites in italic do not exist in mini-vRNA8;

b
—nucleotides in capital letter (A, C, G, U, D) are 2’-O-methyl-RNA nucleotides, in small letter (a, c, g, u, d)—LNA nucleotides; D and d—

2,6-diaminopurine (2’-O-methyl type or LNA, respectively);
c- ΔG°37 calculated as modified probe/RNA duplex [63, 64];
d
—vRNA8 nucleotide preceding RNase H cleavage. Cleavage within 3 nucleotides of probe site was considered confirmation of probe site, “-“–not tested,

*—site 13 was not tested for RNase H cleavage, site 436 has no strong cleavage;

e—symbols: S—strong binding, M—medium binding, NS—no binding and possible site not exist in mini-vRNA8.

doi:10.1371/journal.pone.0148281.t002

Table 1. RNase H confirmed strong binding sites in vRNA8 for microarray probes.

Confirmed binding sites a Probe sequence b Predicted ΔG°37 of probe/vRNA8 duplex c (kcal/mol) Sites of strong RNase H cleavage d

68/534 dDgUgg -12.37/-12.37 70/535

69 GdDgUg -11.17 70

142 dDgDcg -9.58 143–145

163 dDgGug -12.07 165–166

170/408 dDgDdg -9.24/-11.37 172/407/410/411-415

171/409 GdDgDg -9.74/-9.74 172/407/410/411-415

407/410 DgDdGg -12.19/-9.61 407/410/411-415

412 dCdGdg -9.83 410/411-415

a
—binding sites are denoted by the middle nucleotide of the complementary sequence of the target;

b
—nucleotides in capital letter (A, C, G, U, D) are 2’-O-methyl-RNA nucleotides, in small letter (a, c, g, u, d)—LNA nucleotides; D and d—

2,6-diaminopurine (2’-O-methyl type or LNA, respectively);
c- ΔG°37 calculated as modified probe/RNA duplex [63, 64];
d
—vRNA8 nucleotide preceding RNase H cleavage. Cleavage within 3 nucleotides of probe site was considered confirmation of probe site.

doi:10.1371/journal.pone.0148281.t001
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Isoenergetic probes that do not bind to vRNA8 provide additional information about struc-

ture (Fig 4). Generally, non-binding probes are in agreement with double helix regions of

vRNA8. Small loops (3–4 nt) are also not accessible for oligonucleotides, which agrees with

previous studies [59, 66]. Often, parts of larger hairpin loops or bulges are not accessible for

probes. For example, predicted hairpin loops 225–232 and 637–644 are not accessible, which

suggests strong local non-canonical or tertiary interactions (discussed below).

Self-Folding of mini-vRNA8 on the basis of chemical mapping

The base pairing model for complete vRNA8 suggests several independently folded domains.

Two regions of particular interest are those from nucleotides 1–177 and 688–875 because a

mutant vRNA8 encoding only GFP protein was efficiently incorporated into virion if those

nucleotides were included [45]. Therefore, the base pairing of mini-vRNA8 containing nucleo-

tides 1–182 and 687–875 was probed.

To construct mini-vRNA8, five additional nucleotides, 5’GGAUC, were inserted to provide

a restriction site of BamH1 for cloning. These nucleotides were placed in a region predicted not

to change structure and where wild type coding sequence has been replaced by GFP sequence

with less than a 2-fold effect on packaging [62].

Chemical mapping data for mini-vRNA8 were input into RNAstructure5.3 as for the entire

vRNA8 (see Materials and methods). The mini-vRNA8 base pairing model (Fig 5) has three

regions with secondary structure identical or similar to full length vRNA8: panhandle 1-16/

861-875 (part of domain I), region 35–159 (part of domain II), and region 687–789 (part of

domain IV). Base pairing of mini-vRNA8 differs from analogous fragments in vRNA8 only in

the region connecting two preserved vRNA8 structural motifs and with three small hairpins—

none of these differences affect the conserved local structures (Figs 1 and 5).

Fig 5. Self-folding of mini-vRNA8 predicted by RNAstructure 5.3 using as constraints: strong reactivity of DMS and SHAPE reactivities converted
to pseudo-energy. Additionally there are marked results frommicroarray mapping in buffer A (300 mMNaCl, 5 mMMgCl2, 50 mMHEPES, pH 7.5) at 37°C.
All symbols are the same as in Figs 1 and 4. The regions without readout of chemical mapping results are: 327–376 (826–875) (NMIA), and 322–376 (821–
875) (DMS). Numbering of mini-vRNA8 is from its 5’ end and numbers in parenthesis correspond to respective nucleotides in vRNA8. Nucleotides 183–187,
5’GGAUC, were introduced for cloning (see Materials and methods). Nucleotides 1–182 and 188–376 correspond to wild type. Efficient packaging of a
segment 8 encoding only GFP protein required nucleotides 1–177 and 198–376 (mini-vRNA8 nomenclature) [45].

doi:10.1371/journal.pone.0148281.g005
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The mini-vRNA8 results support the analysis of vRNA8

Mini-vRNA8 was more strongly modified than corresponding regions in vRNA8 (1–182 and

687–875), but similar regions are modified in both RNAs (Figs 1 and 5). Comparisons of chem-

ical mapping between comparable regions of mini-vRNA8 and vRNA8 suggest that the region

60–113 in vRNA8 may be sequestered or involved in tertiary interactions in naked vRNA8 but

not in mini-vRNA8 because more nucleotides are modified in mini-vRNA8. In contrast, the

region between nucleotides 694–782 of vRNA8 is modified similarly in the two constructs, sug-

gesting a lack of tertiary interactions. The 5’ and 3’ termini of mini-vRNA8 form a panhandle

helix as in vRNA8, but the 19-27/844-836 helix in vRNA8 does not form in mini-vRNA8. This

may be due to the destabilizing effect of the 2X16 nt internal loop closed by the 19-27/844-836

helix in vRNA8. In vRNA8, this internal loop may be stabilized by coaxial stacking of helix 19-

27/844-836 on helix 29-34/164-169 and/or by potential tertiary helix 426-430/852-848 (Fig 1).

Microarray mapping results for mini-vRNA8

The accessibility of mini-vRNA8 to probes in isoenergetic microarrays was compared to that of

the complete vRNA8 under the same condition (37°C in buffer A) (Figs 5 and 6, Table F in S1

File). Similar regions are accessible to probes but there are several new binding sites. Binding of

some probes disappears due to lack of the middle part of the complete vRNA8 sequence. Some

target sites differ in relative strengths of binding. Unambiguous binding sites in the mini-

vRNA8 are shown in Fig 5 and listed in Table G in S1 File. Binding of unambiguous probes is

consistent with the base pairing model of mini-vRNA8 (Fig 5). Because the smaller size of

mini-vRNA8 eliminates many potential alternative binding sites, unambiguous assignment of

probe binding in vRNA8 can be confirmed or expanded to sites: 275, 390, 436, and 535

(Table 2 and Table G in S1 File). For example, probe 535 could bind to sites 68 and 535 in

vRNA8 but does not bind to mini-vRNA8 where site 535 is absent. Therefore probe 535 binds

to site 535 in vRNA8. Generally, probe binding for regions 1–173 and 687–789 are similar in

vRNA8 and mini-vRNA8.

Discussion

Influenza stores its genetic information in RNA and RNA base pairs are particularly stable

thermodynamically. For example, RNA and DNA nearest neighbor interactions between Wat-

son-Crick base pairs on average stabilize a double helix by 2.1 and 1.4 kcal/mol, respectively, at

37°C. Therefore, the equilibrium constant for forming an RNA helix will be 3-fold larger per

base pair than for an equivalent DNA helix. Thus RNA has a strong propensity to self-fold and

form short helixes. Here, the self-folding propensities of an influenza A segment 8 vRNA are

modeled on the basis of thermodynamics, NMIA and DMS chemical mapping, and sequence

comparison in order to provide insight into modules that may be important at some stage of

the viral life cycle.

Base pairing model for naked segment 8 genomic RNA of influenza A

The secondary structure model of vRNA8 (Fig 1) agrees with chemical mapping data and bio-

informatics analysis of conserved influenza A canonical base pairing. The structure has four

domains: I (1-27/875-836), II (29–169), III (175–468) and IV (470–827). Domains II-IV can

fold independently, so all domains or even motifs in a single domain do not have to be simulta-

neously present at a given stage of a virus life cycle. Thus, the model in Fig 1 presents motifs

that are thermodynamically stable and likely to fold. Bioinformatics analysis with RNAz 2.0

[70] of two sequences each from human, swine, and avian strains predicted self-folding in the

Self-Folding of Segment 8 vRNA of Influenza A Virus

PLOS ONE | DOI:10.1371/journal.pone.0148281 February 5, 2016 13 / 21



region between nucleotides 670 and 829 [23]. The results in Fig 1 confirm stable self-folding

between 670 and 804. Equivalently probable regions of self-folding were predicted by RNAz to

only be present in segments 1 and 2 [23]. Perhaps segments 1, 2, and 8 have special require-

ments for strongly folded regions.

The modeling successfully recapitulates the one currently known functional pairing in

vRNA8—annealing of the 5’ and 3’ ends to form the panhandle structure that is essential for

viral replication [9, 10]. Evidently, this pairing is not dependent on the polymerase bringing

the 5' and 3' ends together. This raises confidence in the novel structures presented here.

In general, the vRNA8 base pairing in Fig 1 is highly conserved in influenza A viruses, with

average conservation of canonical base pairing of 82.6% in an alignment of over 14 000

sequences (Fig 2, and S2 Dataset). Such structurally neutral (consistent and compensatory)

mutations suggest biological functions for these folds. In particular, the region 696–780 is con-

served in structure and comprised of many highly preserved (>95%, Fig 2) and highly-proba-

ble (>99%, Fig 3) base pairs. This suggests that this region is likely to fold at some stage of the

virus life cycle and, perhaps, have important function.

Although the biochemical analysis focused on an H5N1 strain of influenza A, the base pairs

uncovered are common throughout influenza A (Fig 2). The H5N1 strain studied differs in one

sense, however, from other influenza strains—there is a 15 nt deletion that brings together nt

614 and 615 in H5N1 vRNA8 (Fig 1). Interestingly, the 15 nucleotides with consensus sequence

(5’CAGAGGCAAUGGUCA3’) can expand and increase the stability of the hairpin in region

611–625, while leaving the rest of the model unchanged.

Regions with low base pair probabilities may be important for function. On the basis of gel

retardation experiments on protein-free RNAs, segment 8 was found to pair with segment 2,

which suggests an interaction important for packaging [71]. Region 461–473 is complementary

to segment 2 of Vietnam/1203/2004 (H5N1) with only one mismatch. Most segment 8 base

pairs modeled in this region have low probabilities (Fig 3).

Fig 6. Aligned results of hybridization of vRNA8 (blue) andmini-vRNA8 (orange) to isoenergetic microarrays. All complementary sites for binding
probes are shown and grouped in regions of binding.

doi:10.1371/journal.pone.0148281.g006
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Oligonucleotide binding does not always overlap with long runs of
chemical reactivity of nucleotides

One application that benefits from determining RNA secondary structure is the design of oli-

gonucleotide therapeutics [48, 72, 73]. Surprisingly, regions of consecutive probe binding do

not always overlap with regions of consecutive nucleotides reactive to NMIA and/or DMS and

vice versa (Fig 1). There are several possible reasons that probe binding and chemical modifica-

tion may not always overlap. For example, tertiary interactions or weak base pairing may inter-

fere with chemical modification [74], but probes may be able to zip open tertiary interactions

and weak base pairing. Non-canonical pairs may be susceptible to chemical modification, but

strong enough to reduce binding of a short oligonucleotides. These results suggest that isoener-

getic microarrays can provide complementary data to biochemical probing in addition to pro-

viding lead target sites for oligonucleotide therapeutics and/or probes of function.

Many local helixes also form in a shortened construct, mini-vRNA8

The mini-vRNA8 construct is devoid of domain III and part of domain IV (Fig 5), but contains

182 and 189 nt long 5’ and 3’ terminal regions of vRNA8 corresponding to regions 1–182 and

687–875 in Fig 1, respectively. Thus, the terminal regions include the 150 nts on each end from

the coding region that give efficient packaging of a segment 8 construct encoding GFP protein

[45]. The structure predicted on the basis of experimental data has mostly the same folding as

in analogous regions in vRNA8 (Figs 1 and 5). Evidently, the secondary structures in these

regions are self-folding domains that could be important for packaging.

Mapping results suggest possible tertiary interactions

The single stranded regions in the vRNA8 model, especially hairpins, are generally well-sup-

ported by chemical mapping and oligonucleotide binding. In domain III, however, there are

predicted single stranded regions in three hairpins and a large bulge loop (452–462) that are

not reactive to chemicals. This suggests there could be alternative secondary structure for the

region or possible tertiary interactions (e.g. kissing loops and pseudoknots [59, 60]) that are

not captured by our model. The strongest potential tertiary interactions involve base pairing

between regions: (a) 227-231/409-405 and (b) 426-430/852-848 or (b’) 400-404/431-428,426.

These interactions are potentially conserved: with 88.7, 95.7 and 84.7% base pair conservation,

respectively (Fig 1, Table 3). These speculative tertiary interactions may exist for naked RNA in

vitro and explain the lack of reactivity in some regions.

There are several possible binding sites for probes in region 409–405. From experiments

with complementary DNA and RNase H (Table 1), this region is clearly accessible for oligonu-

cleotides. If the possible tertiary base pairing labeled (a) in Fig 1 and Table 3 takes place, then it

is weak and probe binding apparently out-competes this tertiary interaction.

Table 3. Possible tertiary interactions in vRNA8 structure.

Regions of interacting RNA
fragments (5’!3’/3’!5’)

Sequence of fragment
1 (5’!3’)

Sequence of fragment
2 (5’!3’)

Canonical base pairs (including G-U) count of
interaction for segment 8 vRNA type A (%)

(a) 227-231/409-405 GGAAG CUUCU 88.7

(b’) 400-404/431-428,426 UGCUC G-AGUA 84.7

(b) 426-430/852-848 GUAGU AUUAU 95.7

doi:10.1371/journal.pone.0148281.t003

Self-Folding of Segment 8 vRNA of Influenza A Virus

PLOS ONE | DOI:10.1371/journal.pone.0148281 February 5, 2016 15 / 21



SHAPE and DMS reactivity can provide complementary information

NMIA and DMS, respectively, interrogate ribose flexibility [75] and accessibility of Watson-

Crick faces of A and C [76]. Often the reactivities do not completely overlap [57, 77, 78]. In the

future, comparisons of NMIA and DMS reactivity may provide useful restraints for modeling

3D structures of RNA. The data in Fig 1 show 65 strong and 166 moderate NMIA hits and 58

strong DMS hits. There are 24 strong DMS hits that do not overlap with the strong or moderate

NMIA hits. In the case of A40, A41, A153, and A154, this may reveal a local structure with

adjacent AA sheared (trans Hoogsteen/Sugar-edge) base pairs. That conformation exposes the

Watson-Crick faces of each A and involves base-ribose interactions [79, 80] that may reduce

SHAPE reactivities. Such a correlation has been recently reported [78] for two AA pairs in the

P4-P6 domain of the Tetrahymena self-splicing intron [80]. For the Bacillus subtilis RNase P

specificity domain, three additional examples of A's in sheared AA or GA pairs (A56, A57, and

A82) are apparent from comparing chemical mapping [77] with the crystal structure [81]. For

that RNA, A55 is also only reactive with DMS and could form a sheared GA pair to complete a

three purine—purine sheared pair motif [82]. In the crystal structure, however, it is part of an

A55-G83-U84 base triple. As more 3D structures are determined for RNA, comparisons with

reactivities of various chemical reagents may provide a foundation for improving prediction of

3D structure from secondary structure.

Can base pairing defined in protein-free segment 8 vRNA be functional
in cells?

In cells, influenza vRNA is thought to be largely, but not completely coated with NP protein

that destabilizes base pairing [34, 36, 83]. RNAWatson-Crick helixes can be very stable [37]

and sequence comparison is consistent with most of the base pairs determined for segment 8

(Fig 2). While unlikely that the structure in Fig 1 will completely form in cells, it would be sur-

prising if none of the helixes present in the protein-free vRNA form at some stage of the influ-

enza life cycle. The panhandle sequence is known to form [9, 10] and was generated by the

modeling reported here. Moreover the base pairing probabilities predicted for the panhandle

sequence are modest (Fig 3), which is consistent with the expected structural dynamics of this

region [9, 10]. The results in Figs 1–4 suggest other regions that could be tested for possible

function, e.g. regulating local speed of transcription to allow formation of pseudoknot second-

ary structure in mRNA, formation of tertiary interaction or binding of protein. The isoener-

getic microarray results suggest regions that could be tested with antisense oligonucleotides. It

might also be possible to use mutational studies, although it would be difficult to design

sequences to compensate mutations while maintaining vRNA, mRNA and protein structures.

Similar favorable folding is predicted for segments 1 and 2, but not 3–7 [23]. For segment 2,

the most favorable folding is predicted to be 74 nts from the 3’ end similar to the 85 nts for seg-

ment 8. The results suggest that searches for possible reasons for structure in the vRNAs should

be focused on segments 1, 2 and 8.

Summary

The self-folding base pairing of an entire naked influenza RNA genomic segment in vitro was

determined on the basis of thermodynamics and chemical mapping coupled with sequence

comparison. A shorter fragment, mini-vRNA8, was also mapped. The vRNA8 self folds into

many highly probable helixes. While all the structural motifs identified may not be simulta-

neously present in cells, the very favorable free energies for RNA folding [37, 49] would make

it surprising if they never occur.
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