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Abstract

A variable is defined to be self-generating if it can be forecast efficiently from its own

past only. Conditions are derived for certain linear combinations to be self-generating in

error correction models. Interestingly, there are only two candidates for self-generation

in an error correction model. They are cointegrating relationships and common

stochastic trends defined by Gonzalo and Granger (1995). The usefulness of self-

generation as a multivariate-modelling tool is investigated. A simple testing procedure

is also presented. Some interesting economic hypothesis can be easily tested in the self-

generation framework. For example, for forward exchange rate to have forecasting

power for the future movements in spot rate, the latter should not be self-generating.

Given that they are cointegrated, the spot exchange rate should not be a common

stochastic trend, which can be easily tested. We also provide additional examples.

Keyword: Self-generation, cointegrated VAR, common stochastic trends, aggregation of

time series, efficiency of forecasting

JEL classification: C22, C32
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1. Introduction

Suppose initially that tX  is a vector of stationary series with six components to

be modelled by a vector autoregression, or VAR. Thus, there will be six equations, each

of which will have one variable, at time t, explained by itself and also each of the other

variables at lags 1, 2, …, p. Suppose, for simplicity, p is the same for each variable and

takes the modest value p = 4. Then each equation will contain 24 parameters, with

matching t-values, giving 144 parameters plus t-values for the whole system, which is

nearly 300 statistics to be reported apart from the covariance matrix of residuals and any

further evaluation statistics. Not only is this a large estimation burden but, if presented

on a printed page, is too much information for easy assimilation. In fact, two famous

papers involving six variables, a four lag VAR, Sims (1980) and King et al. (1991), do

not report any of the parameter values for the model, just a few summary statistics. On

the other hand, VARs, or their modern reformulation as error-correction model, or

ECM, are the major tools for investigating linear relationships between small groups of

economic variables. It is the object of this paper to ask if simplified, more easily

interpreted versions of the models are available on some occasions.

Write the original VAR as

( )t t tX A B X e= + (1)

1 2( , , , ) 't t t ntX x x x= K , so that tX  has n components with mean 0, for simplicity, and

2
1 2( ) p

pA B A B A B A B= + + +L , where jA  is an n × n matrix. Consideration will be

given to instantaneous transformations of the original vector tX  into a new vector Y by

t tY QX= ,

where Q  is an n × n matrix and will be assumed to have an inverse, so that 1
t tX Q Y−=
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and equation (1) now becomes

( )t t tY G B Y ε= +

where 1( ) ( )G B QA B Q−=  and t tQeε = . It will be asked if Q  can be chosen so that

( )G B  is somehow simpler or easier to interpret than ( )A B . For example, the lags

involved in ( )G B  could be less or there could be blocks of zeros. In this paper, use is

made of the following definition.

Definition: Self-generation

A component of tX  is said to be self-generating (in mean) if

, 1 , , 1( | , 0) ( | , 0),i t i t j i t t jE x x j E x X j+ − + −≥ = ≥

so that , ,jtx j i≠  do not (Granger) cause , 1.i tx +

Throughout the paper, “causality” will be taken to mean “Granger causality”, as

discussed in Granger (1969). It may be noted that a special case of self-generation is

when , 1i tx +  is a martingale difference sequence and so is unforecastable from

, 0,t jX j− ≥  so that , 1( | , 0) 0.i t t jE x X j+ − ≥ =  For ease of exposition this will be called

the “white noise” case, although the above definition is more precise. The search for

self-generation will be limited to the contemporaneous aggregation of data series. It is

possible that while no contemporaneous aggregate is self-generating, a non-

contemporaneous one is.1

From standard discussion on causality in VAR models, such as in Lütkepohl

                                                                
1 See equation (1) in Ericsson (1993) for an example.
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(1991), self-generation will involve sections of zeros in ( )A B . Kohn (1982) proves

some useful results for self-generating processes. Let tX  have a moving average

representation,

                            
1

t t j t j
j

X e C e
∞

−
=

= +∑                          (2)

where jC  is an n × n matrix, each j , and te  is a white noise vector and define a single

series ' ,t ty d X=  where d  is a vector of n  components, then ty  is self-generating so

that

1 1( | , 0) ( | , 0)t t j t t jE y y j E y X j+ − + −≥ = ≥
if and only if

' ',j jd C k d=  all j ,
where jk  is a sequence of constants, in which case

1
t t j t j

j

y kε ε
∞

−
=

= +∑
where tε  is a univariate white noise. Write equation (2) in a VAR form, assuming that

all tX  components are stationary,

1

p

t j t j t
j

X A X e−
=

= +∑ ,

where te  is a vector of white noise, then 't ty d X=  is self-generating if and only if

                         ' 'j jd A a d= , 1, ,j p= K ,                      (3)

where ja  is a sequence of constants, in which case

1

p

t j t j t
j

y a y ε−
=

= +∑ .

Thus d  is an eigenvector for each 'jA , with ja  being the corresponding eigenvalue.

Kohn also points out that if there is no one-step forecastability, then there will be no k -
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step forecastability, k  > 1.

A special case of interest is that of 1p = , so that tX  obeys a first order

(Markov) vector autoregressive model, then because of equation (3), there will always

exist a vector d  so that 't ty d X=  for every component that is self-generating. In this

case the original tX  component can all be written as a linear combination of n  self-

generating series. It is generally the case that a linear combination of self-generating

process is not self-generating. If 1tx and 2tx  are both white noise, so unforecastable from

t jX − , 0j > , then a linear combination of these variables will also be a white noise.

Other than this very simple case, the conditions for the linear combinations to be self-

generating seem to be very stringent: suppose that 1tx and 2tx  have the following

VAR( p ) representation;

1,1 1

1 2,2 2

0
.

0

p
t it i t

i t it i t

xx a
xx b

ε
ε

−

= −

      
= +      

      
∑

The off-diagonal elements in the coefficients matrices should be zero because both

1tx and 2tx  are assumed to be self-generating. Using the Kohn’s result for a linear

combination 1 1 2 2t t ty x xα α≡ +  to be self-generating, the condition becomes:

( ) ( )1 2 1 2

0
,

0
i

i
i

a
m

b
α α α α

 
= 

 

where im  is some scalar sequence. This implies that i i ia b m= =  for 1, , ,i p= K  and this

requires that all three processes have the same coefficients for all lags.

The above definition of self-generation can be easily extended to a vector tx ,

which is a subset of tX , being self-generating by requiring that

1 1( | , 0) ( | , 0).t t j t t jE x x j E x X j+ − + −≥ = ≥
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The definition is obviously of no interest if tx  and tX  are identical. Kohn points out

that the definition will also apply to I(1) processes, which is easily expressed in the

moving average form. Further if a variable jtx  is self-generating, it will follow as

obvious that jtx∆  is also self-generating.

The remainder of the paper is organized as follows: in section 2, the self-

generating variables will be discussed in a cointegrated VAR framework. In section 3,

some remarks on self-generating variables, including a brief literature review, will be

made. In section 4, the concept of partially commuting matrices will be introduced and a

simplifying structure in error correction models will be discussed. In section 5, testing

procedures for self-generation will be introduced. In section 6, several economic

examples will be discussed in the self-generation framework. Section 7 concludes the

paper. Appendix contains more detailed discussion on the condensed form of partially

commuting matrices.

2. Cointegration and self-generating variables

Suppose now that tX  is a vector with n  components, each of which is I(1), so

that the differenced series are (second order) stationary. Further suppose that there are r

linearly independent vectors jα  for 1, ,j r= K  such that '
j tXα  is stationary; jα  is

known as a cointegrating vector and the n × r  matrix α  with jα  in the j th column is

the cointegrating matrix. It follows that tX  can be thought of having a (linear) data

generating mechanism which is an error-correction model:

  
1

*
1

1

'
p

t t j t j t
j

X X A X eγα
−

− −
=

∆ = − + ∆ +∑                    (4)
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where *
jA  are n × n matrices. Assume that the n × n  matrix ( )α γ ⊥  is nonsingular2,

where γ ⊥  is an ( )n n r× −  matrix such that 'γ γ⊥  = 0. We set ( )m n r≡ − . Discussions of

cointegration and error-correction models can be found in the collection of papers by

Engle and Granger (1991). Clearly equation (4) can be rewritten as a VAR in levels, but

with some constraints on the parameters.3

As we are looking for transformations of the form tQX  that produce interesting

properties, there is obviously no problem with starting to search with a convenient

transformation of this from. The transformation that will be used is

t tY MX=

where

'

'
M

γ
α

⊥ 
=  

 
.

It is also convenient to define

'
t tW Xγ ⊥=  and

' .t tz Xα=
Assuming M  has an inverse, tX  can be written as a linear combination of tW  and tz .

It should be noted that tz  is I(0) if tX  is cointegrated and that tW  is I(1) with γ ⊥ α≠ .

tW  thus becomes a candidate for a common stochastic trend and has been proposed by

                                                                
2 The matrix is nonsingular when det( 'α γ ) ≠ 0. It ensures that an r× r matrix 'γ α⊥ ⊥  has a full

rank. See Gonzalo and Granger (1995).

3 In this paper, we use error correction models exclusively to investigate the self-generation

property. However, the discussion can be also made in the triangular representation of Phillips

(1991). The relationship between an error correction model and triangular representation is

studied in Cappuccio and Lubian (1996).
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Gonzalo and Granger (1995) as a particularly convenient estimate of a common

stochastic trend. It is easily estimated and has various other useful properties, some of

which are mentioned below. 4 Note that γ ⊥  is identified up to a nonsingular matrix

multiplication to the left.

Multiplying equation (4) by M  gives two block of equations: the first m

equations explains tW  in terms of lagged tz  and tW  (after substituting tX  for tz  and

tW ) and the final r  equations explain tz  in terms of lagged tz  and tW . Several self-

generation questions can be asked.

Q1. Can the tz  block be self-generating, so that tW  does not appear in those equations?

Q2. Can the tW  vector be self-generating?

Q3. If the vector tz  is self-generating, can one member jtz  be self-generating in relation

to the other z ’s?

Q4. Similarly, if tW  is self-generating, can jtW  be self-generating with respect to the

other W ’s?

Q5. Can any other linear combinations of X ’s be self-generating?

It is convenient to interpret these questions using the error-correction model,

equation (4), after the transformation. Premultiplying equation (4) with 'γ ⊥  and 'α ,

respectively, we will get the following two equations of common stochastic trends and

cointegrating relationships:

                                                                
4 Gonzalo and Granger (1995) define common stochastic trends as a linear combination of data

series and require them not to be Granger caused by the short-run deviation from equilibrium,

tz , at zero frequency. See Granger and Lin (1995) for more discussion.
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1

' * '

1

p

t i t i t
i

W A Xγ γ ε
−

⊥ − ⊥
=

∆ = ∆ +∑                         (5)

and 

           
1

' ' * '
1

1

.
p

t t i t i t
i

z z A Xα γ α α ε
−

− −
=

∆ = − + ∆ +∑                        (6)

Using the relation

' 1 ' 1( ) ( ) ,t t tX W zα γ α γ α γ− −
⊥ ⊥ ⊥= +

the two equations (5) and (6) can be collected as

' * ' 1 ' * ' 1 '1
1

' ' * ' 1 ' * ' 1 '
11

0 ( ) ( )
0 ( ) ( )

p
t t t in r i i

t
it t t ir i i

W W WI A A
z z zI A A

γ α γ α γ γ α γ γ
ε

α γ α α γ α α γ α γ α

− −−
− −− ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

− −
=− −⊥ ⊥ ⊥

∆         
= + +          ∆−         

∑ .

(7)

This representation will be used in the proof of theorem 3 below.

The five questions can now be considered in turn. The first is answered in the

following theorem.

Theorem 1

Let tz  = '
tXα  be the vector of cointegrating relationships. Then the vector tz  is self-

generating if and only if

' * '
i iA mα α=                               (8)

for some r × r  matrices im , 1, , 1.i p= −K  If equation (8) holds, then tz  is a p th order

autoregressive process, with all roots lying outside the unit circle.

Proof:

(a) Necessity: By the Wold decomposition, stationary tX∆  and cointegrating

relationship tz  processes can be represented as
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1

( ) ( )i
t t i t

i

X C B I C Bε ε
∞

=

∆ = = +∑  and

1

,t t i t i
i

z fη η
∞

−
=

= +∑

where if  is an r × r  matrix of coefficients and tη  is an r × 1 vector of white noise.

Also, cointegration restrictions imply that

   ' * ' * * ' *
0

1 1

( ) ( ) ( ) ,i i
t t i t n i t

i i

z C B C C B I C Bα ε α ε α ε
∞ ∞

= =

= = + = +∑ ∑             (9)

where *( ) (1) ( )(1 )C B C C B B= + −  and *

1

, 0,1,j i
i j

C C j
∞

= +

= − =∑ K . The last equality of

equation (9) follows from the fact that ' * '
0 ,Cα α= which is derived from the

cointegration restrictions, ' (1) 0.Cα =  It is assumed that ( )C B  is 1-summable and

therefore *( )C B  is absolutely summable. Self-generation implies that '
t tη α ε= . So

' '

1 1

.t t i t i t i t i
i i

z f fη η α ε α ε
∞ ∞

− −
= =

= + = +∑ ∑

Since ' *

1

( ) ,i
t n i t

i

z I C Bα ε
∞

=

= +∑  it follows that for 1,2,i = K

' ' *
i if Cα α= .

Using the fact that { ( )} ( ) ,I A B C B I B− = −  it can be shown that ' * '
i iA mα α=  for some

r × r  matrices im , 1, , 1.i p= −K

(b) Sufficiency: Conversely suppose that ' * '
i iA mα α=  or ' * '

i iC kα α=  for some r × r

matrices ik , 1, , 1.i p= −K  Then

' ' * ' '

1 1
t t i t i t i t i

i i

z C kα ε α ε α ε α ε
∞ ∞

− −
= =

= + = +∑ ∑ .

We want to show that this is the Wold representation of tz  and '
t tη α ε= . Suppose now
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that 1 0i
ik z+ =∑ . Then,

' ' *0 (1 ) ( ).i i
i ik z I C zα α= + = +∑ ∑

Therefore, *det( ) 0i
iI C z+ =∑ , implying that 1z ≥  from equation (9). Since the Wold

representation is unique, it follows that '
t tα ε η=  and .i ik f=  The remaining part of the

theorem easily follows from the fact that tz  is stationary, assuming that 1 0pm − ≠ .

¦

Under the hypothesis that tz  is self-generating, the newly transformed VAR process,

equation (6), becomes

' '
1 1 2 1 2 1 2 1 1( ) ( ) ( )t t t p p t p p t p tz I m z m m z m m z m zα γ α ε− − − − − + − −= − + + − + + − − +L .

In answering the second question, a more general situation will first be

considered in the following theorem:

Theorem 2

Let 
'

*
'

mS
M

α

 
=  

 
 where mS  is an n m×  matrix and ty = * .tM X  Then * '

t m tW S X=  can be

self-generating if and only if

( )a  mS γ ⊥=  and

(b) ' * '
i iA gγ γ⊥ ⊥=

for some sequence of m m×  matrices ig .

Proof:

(a) follows informally by consideration of the error correction model. If mS γ ⊥≠ , then

the m  equations for the components of *
tW∆  will contain 1tz −  terms, so immediately

are seen not to be self-generating. As there are only a finite ( 1)p −  number of lagged
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differenced terms, conditions on these differenced t jz −∆  terms cannot compensate for

the presence of 1tz − . If mS γ ⊥= , then it will automatically be true that 1tz −  will not enter

the equations for tW∆ , so this is a necessary condition for self-generation. Using the

Kohn’s results and a similar argument as in the Theorem 1, another condition (b) is

determined. A formal proof is available but not given here.   ¦

If tW  is self-generating, then the equation (5) becomes

                         
1

'

1

p

t i t i t
i

W g W γ ε
−

− ⊥
=

∆ = ∆ +∑ .                      (10)

If tz  and tW∆  are either self-generating, then particular linear combinations of

them5, such as '
r td z  or '

m td W∆ , can be self-generating in relation to the other

components of tz  or tW∆ ? rd  and md  are 1 r×  and 1 m×  vectors, respectively. For

instance, consider the self-generating tW∆  process, equation (10); for '
m td W∆  to be self-

generating, the required conditions are

' * '
m i i md g a d=

for constants *
ia  for 1, , 1i p= −K . Combined with the initial conditions for tW  to be

self-generating, the above requirement for '
m td W∆  to be self-generation becomes

                          ' * * '( ) ( ) .m i i md A a dγ γ⊥ ⊥=                        (11)

For '
r td z  to be self-generating,

                      ' '
1( )r i i i rd m m a d− − = , 2, ,i p= K                    (12)

                                                                
5 Recall that a linear combination of self-generating variables is generally not self-generating as

previously mentioned.
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with 0pm ≡  and

                          ' ' '
1 1( )r rd m I a dα γ− − + =                       (13)

Some algebra simplifies equation (13) to

' ' '( ) ( 1)r rd dα γ µ= +

where 
1

p

j
j

aµ
=

= ∑  so that '
rd  is an eigenvector of 'α γ  and 1µ +  is an eigenvalue, and

with the further constraints equation (12) also operating for 2.i ≥  Thus the number of

possible self-generating combinations of z ’s is limited to consideration of the

eigenvectors of 'α γ .

The final question is answered in the following theorem.

Theorem 3

Suppose that tq  is a univariate series, '
t tq k X= , where k  is an 1n×  vector, expressed

as

( )' ' t
t w z

t

W
q d d

z
 

=  
 

,

then for tq  to be self-generating, either 0zd =  or 0wd = .

Proof.

Using the expression in equation (7) and Kohn’s results in equation (8), a necessary

condition for self-generation is that

( ) ( )' ' ' '
'

0
,

0
n r

w z w z
r

I
d d d d

I
ν

α γ
− 

= − 

where ν  is given by

tq = 1( ) tl B q −  + tζ  and

ν = (0)l ,
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where tζ  is an impulse of tq . This gives the pair of sets of equations

'(1 ) 0wdν− =  and

' ' '( ) .z zd I dα γ ν− =

If 1,ν ≠  then 0wd = , and the theorem is proved. If 1,ν =  the second set of equations

give

' '( ) 0zd α γ =

but as 'α γ  has been assumed to be not singular for the theory of cointegration, it

follows that 0zd = , again proving the theorem.                               ¦

It should be noted that if a different definition of the common stochastic trend

is used, so that the new tW  includes tz  in its generation, this proof does not hold and

possibly the theorem. Also in line with the questions posed at the start of this paper,

only linear combinations of tX  are considered, which may consist of combinations of

I(0) or I(1) variables. It follows that both tz  and tW  can not be white noise, so the rules

for combining self-generating variables discussed in the first section do not apply. The

possibility of finding linear combinations of tz  and tW∆  that are self-generating is a

different question as lagged tX  are also involved and will not be considered here, but in

this case the various elements could be white noise, for example if tW  were random

walks.

To summarize this section, both tz  and tW  can be self-generating, with

conditions given in Theorem 1 and 2 and they are the only non-trivial linear

combinations of tX  that can be self-generating. Linear combinations of tz  and tW  or
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tW∆  can also be self-generating according to extra conditions, equations (11) to (13).

3. Some remarks

We consider a special case in which both cointegrating relationships and

common stochastic trends are self-generating and explore the relationship between self-

generation and serial correlation common features. We also provide a brief review of

previous literature on forecasting efficiency from full and aggregate information sets for

both cointegrated and non-cointegrated series.

3.1 A special case

There is a special case worth considering; a first-order cointegrated system of

'
1 .t t tX Xγα ε−∆ = − +

It can be easily shown that both tW∆  and tz are self-generating; tW∆  becomes white

noise and tz  is stationary. Furthermore, if 'α γ = I , tz  is also white noise. Note that

cointegration requires only that det( 'α γ ) ≠  0. The following example used in Engle

and Granger (1987) shows the special case. Assume that the two variables 1tx  and 2tx

are jointly generated as follows:

1 2 1 ,t t tx bx u+ =  1 1 1 1t t tu u ε−= +

1 2 2 ,t t tx ax u+ = 2 2 1 2t t tu uρ ε−= +

where tε  and tε  are possibly correlated white noise disturbances and ρ . The

ECM for the data generating process becomes,

1 1 1 2 1 1( )t t t tx x xβδ α η− −∆ = + +

2 1 1 2 1 2( )t t t tx x xδ α η− −∆ = − + + ,
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where (1 ) ( )δ ρ α β= − −  and 1tη  and 2tη are linear combinations of white noise

processes. Note that .α β≠  Clearly, tW (= 1 2t tx bx+ ) is self-generating because it is

random walk. It can be easily shown that cointegrating relationship, tz (= 1 2t tx ax+ ), is

also self-generating. If ρ  = 0, tz  becomes white noise.

3.2 Comparison with serial correlation common features

We will only briefly mention the relationship between self-generation and

serial correlation common features of Engle and Kozicki (1993). If a linear combination

eliminates serial correlation in the original data series, so that the new variable becomes

an innovation relative to the past information set, it is called a serial correlation

common feature. Denote the serial correlation common feature by α̂ . From the error

correction model in equation (4), for 'ˆ tXα∆  to be serial correlation common features,

' *ˆ 0,jAα =  0, , 1j p= −K  and 'ˆ 0,α γ =

so that 'ˆ tXα∆ = 'ˆ tα ε  is a white noise process. Serial correlation common features are an

extreme case of self-generation in that they require the eigenvalues of *
jA  to be jointly

null. It is also easy to infer conditions under which cointegrating relationships become a

white noise process;

' * 0,jAα = 0, , 1j p= −K  and ' Iα γ = .

In the previous bivariate example in subsection 3.1, '(1, )b  is a cofeature vector.

Additionally, if 0,ρ =  '(1, )a  is also a cofeature vector, since tz  becomes white noise.

3.3 A brief literature review

For '
t ty d X= , the set which is composed of the past values of tX ,  { ,t jX −

0}j > , is called a full or disaggregate information set, while the set of the past values of
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ty  only, { t jy − , 0}j > , is an aggregate information set. A great number of literature

exists on the efficiency comparison of full and aggregate information sets. We will not

try to be exhaustive. Many of the papers cited here contain more references. In theory at

least, more information in general leads to improved forecasts. However, due to

difficulties associated with model specification and estimation among others, no general

consensus is reached among various empirical results. For instance, Fair and Shiller

(1990) find that in forecasting real GNP growth, VAR models dominate autoregressive

ones. In contrast, Bodo et al. (2000) find that the forecast of an aggregate ARIMA

model beats that from disaggregate models in predicting industrial production of 11

countries in Euro area. Forecasting efficiency is compared in Rose (1977), Tiao and

Guttman (1980), Wei and Abraham (1981), Lütkepohl (1984), among others. Kohn

(1982) derives necessary and sufficient conditions for aggregate forecasts to be as

efficient as disaggregate ones, as previously discussed in section 1 of this paper. He also

provides a very simple testing procedure, which will be discussed below. In this paper,

we extend his framework to the cointegrated vector autoregressive framework and

provide additional results. Fliedner (1999) examines demand forecasts for firms

maintaining thousands of items and discusses strategies that reduce forecast burden by

considering families of items. He also contains a useful review of previous literature on

the subject, especially from the hierarchical forecasting point of view.

If the variables of our interest are not self-generating, full information in

general will produce better forecasts than an aggregate one does. However, it is not

clear which forecasting method should be employed among, for instance, an

unrestricted VAR, a VAR in first differences or an error correction model. Furthermore,
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if one method produces the better forecasts of tX , it does not necessary follow that its

forecasts are also better for its linear combinations, '
tXα  for example. Evidence from

Monte Carlo simulations is of little help. For example, the simulation results in

Clements and Hendry (1995) show that forecasts of tX  from a VAR in first differences

are at par with those from an unrestricted VAR or an ECM, but that its forecasts of

linear combinations of tX  are much worse. However, in an example regarding the

demand for UK M1, a VAR in first differences performs very well in predicting a

cointegrating relationship, contrary to their simulation results. Similar results are also

reported in Hoffman and Rasche (1996)6 and Clark (2000). Clearly, more works need to

be done on this area.

The recent paper by Clark (2000) deserves special comment. He derives

forecast equivalency conditions, as stated in theorem 2 above, among cointegrated

variables and suggests a testing procedure. He also examines the effect of aggregation

on forecasting with simulations in a cointegrated VAR framework. However, he

mentions little on cointegrating relationship as a candidate for self-generation. As the

examples in section 6 below show, there are many interesting economic hypotheses

regarding cointegrating relationships as well as common stochastic trends. For instance,

one would be interested in forecasting the spread between interest rates that have been

                                                                
6 They compare the forecasting ability of different approaches for the three cointegrating

relationships, money demand relation, the Fisher relations and interest rate differential, among

five variables of real money balances, inflation rates, commercial paper rates, real GDP, and the

T-bill rate. The VAR in differences forecasts the money demand relation best, while ECMs

forecast the remaining two cointegrating relationships best.
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known to posses some forecasting power about future economic movements. Since the

spreads are cointegrating relationships, it will be interesting to examine if they are self-

generating. In this paper, we present a coherent framework to investigate self-generation

properties of cointegrated variables, which turns out to be very useful in testing many

interesting economic hypotheses.

4. Self-generation, partially commuting matrices, and error correction models

The conditions for self-generation require that the coefficient matrices in a

VAR or an ECM have a common eigenvector. Interestingly, we can further simplify the

error correction model in this case. For simplicity, we assume only two coefficient

matrices 1A  and 2A  in the following discussion. First, a definition from Alpin et al.

(2000).

Definition

Two complex n n×  matrices 1A  and 2A  are said to be partially commuting if they have

a common eigenvector.

If two matrices have a (nonzero) common eigenvector, then there exist nontrivial

common invariant subspaces of 1A  and 2A , on which these matrices commute. The span

of the common eigenvector is one of such subspaces. Shemesh (1980) gave a criterion

for two matrices to have a common eigenvector. Let [ 1A , 2A ] denote the commutator of

1A  and 2A  such that [ 1A , 2A ] = 1 2A A  – 2 1A A 7. The symbol ( )nM £  stands for the space

                                                                
7 We list some properties of the commutator from Cohen-Tannoudji et al. (1977), p.168.

[ 1A , 2A ] = -[ 2A , 1A ]
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of complex n n×  matrices.

Theorem (Shemesh, 1980)

Let 1A , 2A ∈ ( )nM £ . Then 1A  and 2A  are partially commuting if and only if the

subspace ℵ  defined by the formula

1

1 2
, 1

ker[ , ]
n

k l

k l

A A
−

=

ℵ = I
is nontrivial.

The subspace ℵ  is invariant with respect to both 1A  and 2A , and they commute on ℵ .

Such matrices are reducible by the same similarity to triangular form; there exists a

nonsingular matrix T such that 1
1T AT−  and 1

2T A T−  are triangular and its first column is

an eigenvector for 1A  (and for 2A  as well). Alpin et al. show that partially commuting

matrices 1A  and 2A  can be brought by a simultaneous similarity transformation to block

triangular matrices with special structure;

                     1
1R P A P−=  and 1

2S P A P−=                       (14)

where

                                                                                                                                                                                             
[ 1A , 2A + 3A ] = [ 1A , 2A ] + [ 1A , 3A ]

[ 1A , 2 3A A ] = [ 1A , 2A ] 3A  + 2A [ 1A , 3A ]

[ 1A , [ 2A , 3A ]] + [ 2A , [ 3A , 1A ]] + [ 3A , [ 1A , 2A ]] = 0

1 2 2 1[ , ] [ , ]H HHA A A A= , where HA  is the adjoint operator or Hermite adjoint of A.
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11 12 1, 1 1

22 2, 1 2

1, 1 1,

k k

k k

k k k k

kk

R R R R

R R R
R

R R
R

−

−

− − −

 
 
 
 =
 
 
 
 

L

L
L L L                     (15)

and

                  

11 12 1, 1 1

22 2, 1 2

1, 1 1,

k k

k k

k k k k

kk

S S S S

S S S
S

S S
S

−

−

− − −

 
 
 
 =
 
 
 
 

L

L
L L L .                    (16)

They call matrices (15) and (16) the first condensed form of the pair ( 1A , 2A ). The

following theorem specifies the structure of the first condensed form.

Theorem (Theorem 3 in Alpin et al. (2000))

Let 1A , 2A  ( )nM∈ £  be partially commuting matrices. Then for some positive integer

k, 1A  and 2A  can be brought by a simultaneous similarity transformation in equation

(14) to block upper triangular form (15) and (16). In this form, the diagonal blocks 11R ,

22R , K , 1, 1k kR − −  commute with the corresponding blocks 11S , 22S , K , 1, 1k kS − − . The last

diagonal blocks and either commute or do not partially commute. The integer k and the

orders of diagonal blocks are uniquely defined by the matrices 1A  and 2A . Moreover, a

similar matrix P that brings 1A  and 2A  to R and S, respectively, can be computed

rationally.

With necessary modifications, the first condensed form of the pair ( 1A , 2A ) can be also
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defined as a pair of block lower triangular matrices instead. The number k, which is the

index of the first condensed form of the pair ( 1A , 2A ) and the orders of diagonal blocks

in equations (15) and (16) are uniquely defined by the matrices 1A  and 2A . It is also

known that rank[ 1A , 2A ] ≥  k-1. As a corollary, it follows that if the rank[ 1A , 2A ] = 1,

their condensed form is a pair of 2 2×  block triangular matrices.

We can further refine the condensed form to produce as many zeros as possible

in its subdiagonal part; our goal is for commuting n n×  matrices 1A  and 2A  to find a

simultaneous similarity transformation

1
1 1F Q AQ−=  and  1

2 2F Q A Q−=

that produces as many zeros as possible in the subdiagonal part of both matrices 1F  and

2F . Alpin et al. use an approach based on the generalized Lanczos procedure given in

Elsner and Ikramov (1997). We leave the discussion of the procedure in an appendix.

Instead, we consider how the procedure can be used to simplify an error correction

model. Suppose that tX  is cointegrated with the following ECM:

* *
1 1 1 2 2't t t t tX X A X A X eγα − − −∆ = − + ∆ + ∆ + .

If the cointegrating relationship, tz , is self-generating so that ' * '
1 1A aα α=  and

' * '
2 2A aα α=  for constants 1a  and 2a ,

' '
1 1 2 1 2 2 3(1 ) ( )t t t t tz a z a a z a z eα γ α− − −= − + + − − + .

Furthermore, *
1A  and *

2A  are simultaneously triangularizable by a nonsingular matrix T

such that

1 *
1 1R T A T−=  and 1 *

2 2R T A T−=
and the error correction model becomes

0 1 1 1 2 2t t t t tR z R R η− − −Ψ = + Ψ + Ψ + ,
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where tΨ  = 1
tT X− ∆ , 0R = 1T γ−−  and 1

t tT eη −= . The subdiagonal parts of the upper

triangular matrices 1R  and 2R  can be transformed to have as many zeros as possible

following the procedure devised in Alpin et al. at least in principle. The same argument

will be applied to self-generating common stochastic trends.

5. Testing for self-generation

At first, it seems natural to use the commutator of 1A  and 2A , [ 1A , 2A ], for

testing conditions for self-generation; if [ 1A , 2A ] is nonsingular, 1A  and 2A  have no

common eigenvector. However, the singularity of [ 1A , 2A ] is not sufficient. Consider the

following example from Shemesh (1987),

1

0 1 0

0 0 1
0 0 0

A
 
 =  
 
 

 and 2

0 0 0

0 0 0
1 0 0

A
 
 =  
 
 

,

where 1A  and 2A  have no common eigenvectors. Yet

1 2

0 0 0

[ , ] 1 0 0
0 1 0

A A
 
 =  
 − 

is a nilpotent matrix. Or, one may follow the procedure developed in Johansen and

Swensen (1999) for testing the restrictions implied by rational expectations in a

cointegrated VAR framework. There is, however, a very simple testing procedure that

can be easily implemented due to Kohn (1982). Suppose that we are interested in testing

if a linear combination of tx , '
td x , is self-generating. Define a new matrix
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1 2

0 1 0

0 0 1

nd d d

D

 
 
 =
 
  
 

L
L

M M
L

such that t tk Dx= , where 1(d d=  2d  L  nd ) '  is an 1n×  vector. If tx  is a stationary

ARMA process, so is tk . Assume for example that tk  has a VAR(p) representation;

                     1 1 2 2t t t p t p tk k k k ς− − −= Φ + Φ + + Φ +K ,

where iΦ  is an n n×  coefficient matrix and tς  is white noise. For the newly defined tk

process, select '(1,0, 0)δ = K , so that the conditions for '
td x  to be self-generating are

,(1, ) 0i kΦ = , for 1,2, ,i p= K  and 2, ,k n= K ,

where ,(1, ) 0i kΦ =  denotes the first row and kth column element of iΦ . The test for self-

generation is, therefore, equivalent to examining if p lagged values of 2 3( , , , )nx x xK  do

not Granger-cause '
td x .

Clark (2000) extends the above procedure to a univariate ty∆ , where ty  is a

non-cointegrating linear combination of tX ; regress ty∆  with 1tz −  and lagged values of

all but one of the components of tX∆  as well as lagged values of ty∆  and test if 1tz −

and the lagged values of the included tX∆  are significant. He shows that the testing

procedure has an appropriate size and has good power. His testing procedure can be

motivated and generalized by the following observation; define the number of common

trends m n r≡ −  and a selection matrix ( )(0 )r r n r rS I× −= , so that

1, 2,( , , )r t m t m t ntS X x x x+ += K ,m tX −≡ . Assume that '
t ty d X=  is a 1m ×  vector. tX  can be
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written as a linear combination of ty  and ,m tX− , if the inverse of 
'

r

d
S

 
 
 

 exists. From the

error correction model, we get

1
' ' ' * '

1
1

'
p

t t i t i t
i

d X d X d A X d eγα
−

− −
=

∆ = − + ∆ +∑ ,

so that ty∆  is a function of 1tz − , ( 1)p −  lagged values of ty∆  and ( 1)p −  lagged values

of ,m tX −∆ . The test of self-generation for ty∆  is the significance test of 1tz −  and ( 1)p −

lagged values of ,m tX −∆ . If they are significant, the null that ty∆  is self-generating is

rejected. Clearly, we are assuming that p > 1.

We expand the procedure to the cointegrating relationship tz . Define another

selection matrix ( ) ( )(0 )n r n r r n rS I− − × −= , so that ,r tX− ≡ 1, 2,( , , )n r t r t r t ntS X x x x− + += K . For a

1r ×  vector '
t tz Xα= , if the inverse of 

'

n rS
α

−

 
 
 

 exists, tX  can be written as a linear

combination of tz  and ,r tX− . From the error correction model, we get

1
' ' ' ' * '

1
1

p

t t i t i t
i

X X A X eα αγα α α
−

− −
=

∆ = − + ∆ +∑ ,

so that tz  can be written as a function of p lagged values of itself and ( 1)p −  lagged

values of ,r tX −∆ . Testing if tz  is self-generating is equivalent to the test of significance

of ( 1)p −  lagged values of ,r tX −∆ .

Ahn and Reinsel (1990) show that various estimators of “stationary

parameters” γ  and *
iA , 1, , 1i p= −K  in the error correction model are asymptotically

equivalent with limiting multivariate normal distributions that do not depend on the

manner in which α  is estimated. The common stochastic trend vector 'γ ⊥  has also
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asymptotic normal distribution, as shown in Gonzalo and Granger (1995) or in Ahn and

Lee (2000). Therefore, the standard tests for significance will have a 2χ  distribution, as

also noted in Gonzalo and Granger (1995).

We conduct a limited number of computer simulations to investigate the size

and power of the proposed tests. We assume that the cointegrating relationship is

known; in fact, there are many economic models that imply cointegration with known

cointegrating vectors. For instance, in the examples in section 6 below, all cointegrating

relationships are known a priori. The lag order is also assumed to be known for

simplicity, even though it can be easily relaxed. We test for self-generation at a 5%

significance level for a sample of 125 and 250 observations, respectively, with 10,000

simulations. We set 0X = 0 and discard initial 100 observations to lessen the influence

of the initial condition.

First, the test of self-generation for common stochastic trends. We use the same

data generating process [DGP] as in Clark (2000);

1 1 2 2t t t tX A X A X Uµ − −= + + + ,

where 1(t tX x=  '
2 )tx  and tU  denotes bivariate standard normal random errors. We

choose the following values for the DGP; 
0.5
1.5

µ
 

=  
 

 and 
1
1

α
 

=  − 
. For

parameterization 1-4, we set 2

0.6 0.2
0.0 0.4

A
 

=  
 

 and 
0.3

0.3
γ

− 
=  

 
, 

0.3
0.5
− 

 
 

, 
0.1

0.5
− 

 
 

, or

0.2
0.5

 
 
 

. For parameterization 5-8, we set 2

0.6 0.3
0.2 0.4

A
− 

=  
 

 with the same values of γ  as

used in parameterization 1-4. The unweighted sum ( 1 2x x+ ) is a common stochastic
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trend when 2

0.6 0.2
0.0 0.4

A
 

=  
 

 and 
0.3

0.3
γ

− 
=  

 
. Therefore, the results for the

parameterization 1 show the size of the test, while others show its power. The

simulation results from likelihood ratio tests are summarized in table 1. Note that the

results in the first column are corresponding to those in the table 2 in Clark (2000). The

size of the test is appropriate and the power is very good. The power gets higher with

more observations.

Second, testing of self-generation for cointegrating relationships. We use a

slightly different DGP from above;

1 1 2 2t t t tX A X A X Uµ − −= + + + ,

where 
0.5
1.5

µ
 

=  
 

, 
1
1

α
 

=  − 
, 

2

0.3
γ

γ
− 

=  
 

, where 2γ ∈{0.4, 0.3, 0.2, …, -0.1}. Also,

2

0.6
0.0 0.4

k
A

 
=  

 
, with k ∈ {-0.5, -0.4, …, 0.4, 0.5}, which guarantees that tX  has a

unit root. The only exception occurs when k = -0.5 and 2γ  = 0.4, in which case a root

lies outside unit circle. The cointegrating relationship is self-generating when k = -0.2,

regardless less of the values of γ . We still assume that the cointegrating relationship is

known. Table 2 shows some of the simulation results from likelihood ratio tests. We test

if the cointegrating relationship is self-generating at a 5% significance level with a

sample of 125 and 250 observations, respectively. With k = -0.2, the size of the test is

appropriate across different values of 2γ . The results indicate that the test has a better

power when the value of k is farther away from -0.2. Clearly, the power increases with

more observations.

We can summarize the proposed testing procedure as follows. Run
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cointegration analysis using, for example, the maximum likelihood approach of

Johansen (1991) and find cointegrating relationships and common stochastic trends as

defined by Gonzalo and Granger (1995). Conduct hypothesis tests on the cointegrating

relationships and common stochastic trends if necessary. Only cointegrating

relationships and common stochastic trends can be candidates for self-generation. If the

variables of interest are neither of them, conclude that they are not self-generating. If

error correction models have no short-run dynamics, conclude that both cointegrating

relationships and common stochastic trends are self-generating. Otherwise, run the self-

generation test by examining the significance of “other variables” in the cointegrating

relationships or common stochastic trends equations.

6. Examples

In this section, we present several examples to which the framework of self-

generation can be fruitfully applied.

6.1 Spot and forward exchange rates

There is a large number of studies testing whether forward exchange rates or

forward premium help forecasting the future movements of spot exchange rates. Clarida

and Taylor (1997) call the problem one of the most persistent questions in international

finance. Zivot (2000a), among others, contains previous references on the subject. The

null hypothesis is

1 1[ | , , 0] [ | , 0]t t j t j t t jE s s f j E s s j+ − − + −≥ = ≥ ,

where ts  and tf  are the spot and forward exchange rates, respectively. Under the null,

the spot rate is self-generating. Zivot (2000a) finds that the following error correction
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model is adequate for the monthly exchange rates on the pound, yen, and Canadian

dollar relative to the US dollar;

1 1( )t f f t s t ftf f sµ γ α ε− −∆ = + − + ,

1 1( )t s s t s t sts f sµ γ α ε− −∆ = + − + ,

where sα  is a cointegrating coefficient, fµ  and sµ  are constants, and fγ  and sγ  are

adjustment coefficients. Readers are referred to his paper for more details on the data

and on empirical results. With no lagged values of tf∆  and ts∆  in the above error

correction model, both cointegrating relationship and common stochastic trend are self-

generating. We examine cointegrating relationship first, even though it is not the main

hypothesis we want to test. Zivot shows that the exchange rates are cointegrated with

1sα =  after restricting the intercept into the error correction term such that f f cµ γ µ= −

and s s cµ γ µ= −  for all three currencies. He also finds that cµ = 0. Therefore, the

cointegrating relationship or forward premium ( t tf s− ) is self-generating. Note that the

condition |1 f sγ γ+ − | < 1 is required for stationarity and the forward premiums are

highly autocorrelated, especially when fγ  and sγ  are close to each other.

Now consider the self-generation property for common stochastic trend. For

the spot rate to be self-generating, it should be the common stochastic trend of the two

exchange rates, which requires that 0sγ = . It follows that the changes in spot rate are

white noise. However, formal tests strongly reject the hypothesis that 0sγ =  for all

three currencies; see table 7 in Zivot (2000a). The spot exchange rate is not common

stochastic trend of the exchange rates and therefore it cannot be self-generating; the

information held in forward rates help forecasting the future movements in spot rates.
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This conclusion agrees with that in Clarida and Taylor (1997), who use weekly data

series for Germany, Japan and the UK.

6.2 Dividends/stock prices and consumption/income

These relationships are investigated in Cochrane (1994) and Gonzalo and

Granger (1995). We will investigate the empirical results presented in Zivot (2000b)

instead, mainly because the latter lends an easier interpretation of empirical results in

terms of self-generation. The present value model of stock prices together with dividend

smoothing model implies that dividends follow a random walk and price/dividend ratio

is stationary. Zivot (2000b) finds that a simple error correction model with no short-run

dynamics is adequate for dividends/stock prices; see table 2 of Zivot (2000b). The

estimated error correction model indicates that the dividend price ratio ( t td p− ) is self-

generating, approximately t td p− ≈  -.64+.80( 1 1t td p− −− ) + tη , where td  and tp  are

dividend and stock price, respectively, and tη  is white noise. The error correction model

shows also that dividend is common stochastic trend and self-generating as well.

Furthermore, td∆  is approximately white noise.

For consumption and income, their difference is found to be stationary and

consumption is their common stochastic trend, as the permanent income theory

indicates. The empirical results in table 2 in Zivot (2000b) show, however, that neither

their cointegrating relationship nor common stochastic trend is self-generating. For

instance, the consumption equation is approximately 1.08t t tc y e−∆ = ∆ + , even though

the coefficient of determination, 2R , of the equation is pretty small. tc  and ty  denote

consumption and income, respectively.8

                                                                
8 Zivot (2000b) contains additional results on spot and forward exchange rates, which are
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We can add some additional remarks on investigating another implication of

the permanent income hypothesis as tested in Campbell (1987). He showed that under

the permanent income hypothesis restrictions, the revision from time (t-1) to t in the

expected value of human wealth,

1(1 )t lt ts y r s −− ∆ − + ,

is unpredictable given lagged lty∆  and ts . Saving, ts lt kt ty y c≡ + − , is the difference

between (capital and labor) income and consumption9 and r is an expected real interest

rate. The condition implies that 1(1 )t lt ts y r s −− ∆ − +  is a serial correlation common

feature. Given that a serial correlation common feature is a special case of self-

generation, we examine the condition for 1(1 )t lt ts y r s −− ∆ − +  to be self-generating in the

framework adapted in Campbell. Even if we make a strong assumption that both ts  and

lty∆ are self-generating, since ts  is a cointegrating relationship and lty  is assumed to be

a common stochastic trend, their linear combination will not be self-generating in

general. In fact, Campbell found that ts  Granger caused lty∆ , as shown in his table IV,

and rejected the hypothesis that 1(1 )t lt ts y r s −− ∆ − +  is unpredictable.

6.3 Real interest rate

There are large empirical studies on the time series behavior of real interest

rate, see for example Mishkin (1995). Can we improve the forecasts of real interest rate

by considering the information held in past nominal interest rates and inflation rates

                                                                                                                                                                                             
consistent with those reported in Zivot (2000a) and in the previous subsection of this paper.

9 Note that we use the same notation as in Campbell (1987) to be consistent with him. The

notations in this subsection should not be confused with those in the previous subsection.
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than just real interest rate’s past history? Let tR  be the one-period nominal interest rate

from time t to (t+1) and 1tπ +  the realized inflation during that period. Define ( t tR π− )

as the proxy of real interest rate, since 1tπ +  is not observable at the beginning of time t.10

Using quarterly U.S. data on three month Treasury bill rate and the inflation rate

calculated from the CPI, Bidarkota (1998) finds that both tR  and tπ  are nonstationary

and cointegrated with t tR π−  as their cointegrating relationship. Results are reported for

the following restricted error correction model; 

( ) 1, 11 11 1 11 12
1 1

2, 11 22 2 21 22

0
0

tt t t
t t

tt t t

R R
R

ζζω ω θ θ
π

ζπ π ζω ω θ θ
−−

− −
−−

∆ ∆            
= − − + +            ∆ ∆            

,

where itζ  is white noise, 1,2i = . From the estimation results reported in his table 6, we

can infer that the proxy of real interest rate is not self-generating when we acknowledge

that 1ω  is significantly different from zero and 2ω  is insignificant. Therefore, improved

forecasts of real interest rate will be possible by considering a bigger information set of

nominal interest rate and inflation rate.11 Bidarkota also finds that a bivariate error

correction model produces better forecasts than a univariate unobserved component

model of real interest rate. Additionally, we can infer that inflation rate is the ir common

stochastic trend and self-generating.

                                                                
10 ( 1t tR π +− ) is usually used as ex-post real interest rate, which is also employed in Bidarkota

(1998). The following results on self-generation are not changing when this definition is used

instead.

11 The time series behavior of real interest rates is known to change, possibly due to monetary

policy shifts or budget deficits. See for example Bekdache (1999).
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6.4 Nominal GDP

Consider the forecast of nominal GDP growth from a model with real GDP,

price, and M2. Can the nominal GDP growth be efficiently forecast by its own past only

without using the information held in other variables? In a working paper version of

Clark (2000), the full information set is found to produce improved forecasts of nominal

GDP growth; Clark (1995). We can provide a simple argument that the nominal GDP

growth cannot be self-generating using the self-generation framework. According to the

P-star model of Hallman et al. (1991), there is a cointegrating relationship among (log

transformed) real GDP, price, and M2, so that the M2 velocity is stationary, which in

turn indicates a cointegrating vector of (1 1 -1) '  among the three variables. Therefore,

the nominal GDP is not a cointegrating relationship and cannot be self-generating. No

hypothesis tests are reported in Clark (1995) on the cointegrating relationship, even

though the estimated values seem to be close to (1 1 -1) ' . The nominal GDP can be a

candidate for a self-generating process only on an extremely unlikely situation when

real GDP and price are common stochastic trends respectively with the same stochastic

structure. Empirical results for UK using M4 as presented in Hall and Milne (1994)

show also that the velocity is stationary and the nominal GDP is not self-generating in

the UK data. We acknowledge that in recent years the relationship among the variables

considered in the example is changing due to financial innovations.

6.5 U.S. GNP, consumption, and investment

We investigate the self-generation property among the famous data set used in

King, Plosser, Stock and Watson (1991, KPSW); per capita US quarterly GNP,

consumption, and investment from 1947:1 ~ 1988:4. With a lag order of 6 as in KPSW,

two cointegrating relationships are found. The hypothesis that the so-called great ratios
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are stationary is not rejected with a p-value of 0.15. Furthermore, the hypothesis that

consumption is the only element of their common stochastic trend is not rejected with a

p-value of 0.13, along with the restrictions on the cointegrating relationships. The

finding that consumption is the only element of common stochastic trend of the three

aggregate variables seems to quite robust. For instance, Penm et al. (1997) report

similar findings, using quite different approach for a different sample period. Therefore,

the maintained cointegrating and common stochastic vectors are, respectively,

'1 1 0
1 0 1

α
− 

=  − 
 and ( )'

0 1 0γ ⊥ = .

We first test if the common stochastic trend is self-generating; the hypothesis that the

lagged two cointegrating relationships and lagged GNP and investment are jointly zero

is rejected with a p-value of 0.02. Therefore, consumption is not self-generating. For the

hypothesis that the two cointegrating relationships are self-generating, we test if the

lagged values of GNP growth are significant in the system of equations of the

cointegrating relationships. The hypothesis is rejected with a p-value of 0.00 according

to a likelihood ration test. The results are not changing if lagged values of consumption

or investment is used instead of GNP. Therefore, neither common stochastic trend nor

cointegrating relationships is self-generating among the three aggregates. The results are

not changing when a lag order of 8 as in Proietti (1997) or a shorter one of 4 is used in

an error correction model.

7. Conclusion

In this paper, a new class of model has been introduced, some properties of if

determined, testing procedure considered, and various applications given. A variable is
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called self-generating if it can be efficiently forecast by its past only. The definition can

be easily extended to vectors of variables. In a cointegrated VAR framework,

cointegrating relationships and common stochastic trends are only two candidates for

self-generation. The conditions for self-generation suggest a simplifying structure in

multiple time series. Many interesting economic hypotheses can be easily examined by

utilizing the properties of self-generation in a cointegrated VAR framework.



37

Table 1
Size and power of the self-generation test for a common stochastic trend

Parameterization Sample size =125 Sample size = 250
1 0.051 0.051
2 0.653 0.922
3 0.979 0.998
4 0.999 0.999
5 0.996 1.000
6 0.999 0.998
7 0.985 0.998
8 1.000 1.000

The number shows the ratio in which the null hypothesis of self-generation is rejected at
5% significance level using likelihood ratio tests. The total number of simulations is
10,000. Parameterization 1 shows the size of the tests.
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Table 2
Size and power of the self-generation test for a cointegrating relationship

2k γ↓ → 0.4 0.3 0.1 0.0 -0.1

0.5 0.995
0.998

0.993
0.999

0.999
0.998

0.996
0.997

0.989
0.998

0.3 0.949
0.994

0.932
0.996

0.938
0.992

0.943
0.994

0.952
0.990

0.1 0.512
0.800

0.509
0.808

0.537
0.812

0.528
0.820

0.545
0.830

0.0 0.251
0.447

0.259
0.457

0.263
0.468

0.278
0.481

0.272
0.486

-0.1 0.102
0.149

0.109
0.152

0.109
0.159

0.106
0.156

0.108
0.162

-0.2 0.049
0.053

0.054
0.052

0.053
0.051

0.054
0.050

0.052
0.050

-0.3 0.099
0.149

0.103
0.155

0.094
0.150

0.102
0.156

0.108
0.154

-0.4 0.216
0.406

0.257
0.447

0.255
0.470

0.253
0.463

0.266
0.458

-0.5  N/A. 0.476
0.770

0.487
0.780

0.488
0.786

0.499
0.785

The number shows the ratio in which the null hypothesis of self-generation is rejected at
5% significance level using likelihood ratio tests. In each cell, the numbers are from a
sample of 125 and 250 observations, respectively. The total number of simulations is
10,000. The result for k = -0.2 shows the size of the test. When k = -0.5 and 2γ  = 0.4, a
root lies outside unit circle, so no results are reported.
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Appendix

In the appendix, we briefly present the procedure to have as many zeros as

possible in the condensed form of two commuting matrices 1A  and 2A  as mentioned in

section 4 of the text. The following discussion is from Alpin et al. (2000). Let 1, , km mK

be the orders of diagonal blocks in the condensed form of ( 1A , 2A ), which we denote by

R and S, respectively, and consider a nonsingular block diagonal matrix

                        1 2 ,kD D D D= ⊕ ⊕ ⊕L                         (a1)

where ( ),
ii mD M∈ £  1, ,i k= K  and ⊕  denotes direct sum of matrices. Then the

matrices

                      1R D RD−=%  and 1S D SD−=%                       (a2)

are another condensed form of ( 1A , 2A ). We explore the possibility to gain more zeros in

the subdiagonal part of matrices R%  and S%  by using a freedom in choosing

transformations (a1) and (a2). The approach to solving this problem is based on the use

of the generalized Lanczos procedure as presented in Elsner and Ikramov (1997). Let

nυ ∈£  be a fixed nonzero vector and consider the vector sequence

         2 2 3 2 2 3 4
1 2 1 1 2 2 1 1 2 1 2 2 1, , , , , , , , , , ,A A A A A A A A A A A A Aυ υ υ υ υ υ υ υ υ υ υ K            (a3)

It is convenient to consider the sequence (a3) as consisting of segments of length 1, 2,

3,…, respectively. The (k+1)th segment is called the kth layer of (a3). It can be

described as the totality of vectors of vectors of the form 1 2( , )k ku W A A υ= , where

( , )kW s t  is any words of degree k  in two commuting variables s  and t ; for k  = 0,

0 1 2( , )W A A = nI . The subspace

1 2 1 2( , ; ) { ( , ) :mL A A span W A Aυ υ= degree( ) }W m≤
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is called the mth generalized Krylov space and its dimension is denoted by ml . Call

1m m mw l l −= −  the width of the mth layer and set 0 1.w =  Clearly, 1.mw m≤ +  Assume

also .pl n=  We need another definition. The vectors

1 2, , , nx x xK                             (a4)

are said to be a graded basis of n£ , if for 0,1, ,q p= K , the first ql  vectors in (a4) form

a basis of the generalized Krylov subspace qL .

The positions of zeros in the ith column can be determined by finding the

minimal index s  of the subspace qL  to which the vector ix  belongs and set

                            11i s sN i w w += − + + .                      (a5)

Then the entries with row indices exceeding iN  are zero. It follows from (a5) that

among the subdiagonal entries of the ith column, only iM  entries can be nonzero, where

1 1i s sM w w += + − . In sum, the procedure shows a way to obtain additional zeros in the

diagonal blocks of a condensed form of partially commuting matrices 1A  and 2A .
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