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Self-gravitating discs and the Sobolev inequality
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ABSTRACT
We estimate the minimal mass of self-gravitating polytropic discs using the famous Sobolev
inequality. This resembles the well-known mass formula for Lane–Emden stars. For ideal gas
with the polytropic index n = 3, the minimal mass is not smaller than the Jeans mass. The
accuracy of the estimate is verified in a number of numerical examples. The bound works well
for heavy self-gravitating discs and is less useful for light discs.

Key words: accretion, accretion discs – gravitation – hydrodynamics.

1 IN T RO D U C T I O N

Models of static spherically symmetric configurations of selfgrav-
itating polytropic fluids can be reduced to the analysis of the so-
called Lane–Emden equations. They fall into the class of non-linear
ordinary differential equations. Their solutions can be obtained by
means of simple numerical methods or even analytically for some
polytropic exponents.

In contrast to that, equations describing axially symmetric models
of self-gravitating polytropic fluids undergoing a stationary rotation
are in general intractable analytically (but see Odrzywołek 2003,
for an approximation scheme). They can be written in the form of
the Poisson equation for the gravitational potential and equations
of hydrodynamics that can be formally integrated to yield an alge-
braic relation between the specific enthalpy, angular velocity and
the gravitational potential. Another possibility, less useful compu-
tationally, but revealing the mathematical structure of the problem,
is to express them as a single nonlinear elliptic equation for the
specific enthalpy (or the mass density) with Dirichlet conditions
imposed on the a priori unknown boundary of the disc.

We derive analytical results on rotating discs using simple phys-
ical information and certain functional analytic methods. There
exists the so-called Sobolev inequality (see e.g. Rosen 1971). In
this paper, we demonstrate that it can be used in order to esti-
mate the mass of self-gravitating toroids. The approach works for
those rotation laws for which the centrifugal potential �c satisfies
��c ≤ 0 (here � is the Laplacian). The equation of state of fluid
is p = Kρ1+1/n, where p is the pressure, ρ the density and n ≥ 3.
In analogy to the well-known Lane–Emden case, the estimate re-
quires the knowledge of the maximal density and temperature of
the configuration.

The bound is also valid for rotating polytropic stars. It yields
rigorously, for ideal gas with the polytropic index n = 3, that the
mass of stationary systems is not smaller than the Jeans mass. That
is probably the first rigorous derivation of the Jeans inequality.

�E-mail: malec@th.if.uj.edu.pl

There are physically interesting situations, where it is important
to distinguish between the mass of the whole accretion system
consisting of a central object and a surrounding disc, and the mass
of the central object itself (see e.g. Lodato & Bertin 2003; Kuo
et al. 2010). Our estimate of the mass of the disc constrains some
measurable quantities and can be helpful in making this distinction.

This paper is organized as follows. In the next section, all rele-
vant equations are displayed. Section 3 gives the lower bound for
the mass of a self-gravitating disc. In Section 4, we discuss the
spherically symmetric case. There emerges a striking similarity be-
tween the expression for the mass of a Lane–Emden star and the
bound that is proved in Section 3. Section 5 compares results of
the numerical solutions describing axially symmetric discs and the
analytical estimate of this paper. This comparison shows that our
approach is particularly robust in the strongly non-linear regime,
when the disc masses are much larger than the central mass. The
final section contains a brief summary.

2 N OTAT I O N A N D E QUAT I O N S

Consider a disc of perfect fluid rotating around a central point mass.
In this case, stationary Euler equations can be written as

(U · ∇)U = −∇� − 1

ρ
∇p. (1)

Here U denotes the fluid velocity, � is the gravitational potential,
ρ denotes the density and p is the pressure of the fluid. For a self-
gravitating disc, the gravitational potential satisfies

�� = 4πGρ, (2)

where G is a gravitational constant.
Let (r, φ, z) denote cylindrical coordinates. We will consider

purely rotating, axially symmetric configurations, so that U = ω∂φ ,
where ω is the angular velocity.

In order to find solutions of the above system of equations, it is
customary to assume a fixed form of the rotation law ω = ω(r)
and the equation of state p = p(ρ). There is a vast literature on
the numerical solutions of such problems (see e.g. Stoeckly 1965;
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Ostriker & Mark 1968; Eriguchi 1978; Eriguchi & Müller 1985). In
this paper, we are interested in establishing general analytic bounds
on the mass of the disc.

In what follows, we will specialize to the polytropic equation of
state p = Kρ1+1/n, where K and n are constants. Let us introduce
the specific enthalpy h, so that dh = dp/ρ. For the polytropic
equation of state h = K(1 + n)ρ1/n.

Computing the divergence of equation (1) yields

�h = −4πGρ + 1

r
∂r (r2ω2) = −Chn − ��c, (3)

where we have introduced the centrifugal potential

�c = −
∫ r

dr ′r ′ω2(r ′), (4)

and a constant C = 4πG/[K(1 + n)]n.
Note that equation (3) can be further simplified by assuming the

so-called v-const rotation law, that is, ω = v0/r , where v0 is a
constant. In this case, the centrifugal term on the right-hand side
vanishes and we have

�h = −Chn. (5)

This simple form does not imply that the rotation does not influ-
ence the structure of the disc. It only means that �c is a harmonic
function inside the volume occupied by a disc. Let us point out
that equation (5) is still difficult to solve, because the boundary
condition h = 0 is to be posed on an unknown boundary of the disc.

In this paper, we will reserve the symbol � for the domain in R
3

occupied by the disc. The disc boundary will be denoted by ∂�.
Equation (5) is also valid for a static polytropic star. In that case,

if we assume isotropy, introduce spherical coordinates and prop-
erly rescale variables, it reduces to the well-known Lane–Emden
equation.

3 ESTIMATES OF THE D ISC MASS

Assume that ��c ≤ 0. For the class of rotation laws of the form
ω = constant/rp , this implies that p ≤ 1, so that the v-const
rotation is a limiting case.

Let us multiply both sides of equation (3) by h and integrate over
�. It is easy to observe that

−
∫

�

d3xh�h =
∫

�

d3x|∇h|2 = C

∫
�

d3xhn+1 +
∫

�

d3xh��c

≤ C

∫
�

d3xhn+1, (6)

where the left-hand side has been integrated by parts, and we have
used the fact that h = 0 on ∂�. Further steps are adapted from Malec
(1988). The last integral in equation (6) can be estimated making
use of the Hölder inequality. For n > 1, we have∫

�

d3xhn+1 =
∫

�

d3xhn−1h2 ≤ ‖hn−1‖L3/2(�)‖h2‖L3(�).

Finally, with the help of the Sobolev inequality

‖h‖L6(�) ≤ C(3, 2) ‖∇h‖L2(�) ,

we arrive at

‖∇h‖2
L2(�) ≤ CC2(3, 2)‖hn−1‖L3/2(�) ‖∇h‖2

L2(�) .

Thus,

‖hn−1‖L3/2(�) =
[∫

�

d3xh3(n−1)/2

]2/3

≥ 1

CC2(3, 2)
.

The Sobolev constant C(3, 2) = 41/3/(
√

3π2/3) is a universal num-
ber in R

3 (cf. Rosen 1971; Talenti 1976). The specific enthalpy h
can be extended to a function defined on R

3 by setting h = 0 outside
�. Such an extension belongs to W 1,2

0 (R3), that is, the closure of the
set of compactly supported C∞(R3) functions in the Sobolev space
W 1,2(R3).

The mass of a disc is given by

M =
∫

�

d3xρ = C

4πG

∫
�

d3xhn.

Let I be

I =
∫

�

d3xh3(n−1)/2 =
∫

�

d3xh(n−3)/2hn.

For n > 3, the value of I can be estimated as

I < h(n−3)/2
max

∫
�

d3xhn,

where hmax denotes the maximum value of the enthalpy within the
disc. The reversed inequality holds for n < 3.

A combination of the above results gives the lower bound on the
mass of the disc in the form

M >
[
4πG

√
CC3(3, 2)h(n−3)/2

max

]−1

=
[

K(1 + n)

4πG

]3/2

ρ−(n−3)/2n
max C−3(3, 2) (7)

valid for n > 3 and ��c ≤ 0. Here, similarly, ρmax denotes the
maximum density within the disc.

The obtained result can be also understood as a bound for the
maximum temperature in the gas configuration. For the ideal gas,
T = pμmp/ (ρkB), where μ is the mean molecular weight, mp

denotes the mass of the proton and kB is the Boltzmann constant.
Inequality (7) can be now written as

Tmax < 4πGμmpM
2/3ρ1/3

maxC
2(3, 2)/ [(1 + n)kB] ,

where Tmax denotes the maximal temperature of gas.
Yet another consequence of equation (7) can be obtained for the

value n = 3 of the polytropic index. Let ρ̄ and T̄ denote volume-
averaged mass density and temperature, respectively. For the ideal
gas, one gets, after simple calculations involving a Hölder inequal-
ity,

T̄ ≤ K
μmp

kB
ρ̄1/n.

Inserting that into equation (7) yields the estimate

M >

(
kB

πGμmp

)3/2
T̄ 3/2

√
ρ̄

C−3(3, 2),

or, writing C−3 (3, 2) explicitly,

M >
3
√

3π

4

(
kB

Gμmp

)3/2
T̄ 3/2

√
ρ̄

≡ MS. (8)

The Jeans mass is usually expressed as

MJ = β

(
kB

Gμmp

)3/2
T̄ 3/2

√
ρ̄

,

where β is a constant (dependent on the convention of the Jeans
mass) of the order of 1/2. Bound systems should possess a mass M >

MJ, according to a derivation that traditionally suffers from severe
gaps. Note that the Jeans mass MJ is close to MS, the right-hand
side of equation (8); indeed, MS = MJ × 3

√
3π/(4β). Therefore,

for bound systems, we rigorously obtain M > 3
√

3π/(4β)MJ.
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4 LANE–EMDEN STARS

Inequality (7) is obviously satisfied for static polytropic stars, de-
scribed entirely in terms of the so-called Lane–Emden functions.

Under the assumption of the spherical symmetry, equation (3)
can be reduced to the Lane–Emden equation

1

ξ 2

d

dξ

(
ξ 2 dθ

dξ

)
+ θn = 0,

where

ξ =
√

4πGρ
1−1/n
max

K(1 + n)
r,

ρ = ρmaxθ
n and r denotes the distance from the centre of the star.

Since ρmax = ρ(r = 0), we have θ (ξ = 0) = 1. A textbook
exposition of the theory of the Lane–Emden equation can be found
in Chandrasekhar (1958).

Let the first zero of θ (if present) be denoted by ξ0. If the Lane–
Emden function corresponding to a given index n has no zeros, we
assume ξ0 = ∞. A radius corresponding to ξ0 will be denoted by
R. The mass of the star can be computed as

M =
∫ R

0
4πr2ρ dr =

[
K(1 + n)

4πG

]3/2

ρ−(n−3)/2n
max M̂, (9)

where

M̂ =
∫ ξ0

0
4πξ 2θndξ = −4π

(
ξ 2 dθ

dξ

)
ξ0

.

Since analytical expressions for θ are only known for n = 0, 1 and
5, the values of M̂ have to be computed numerically.

The similarity between equations (7) and (9) is remarkable. We
see that for n > 3, there must be M̂ > C−3 (3, 2).

The general bound on M̂ can be obtained by observing that M̂

attains its minimum value for n = 0. In this case, the solution θ

is known analytically and M̂ = M̂min = 16
√

6π/5 = 24.625.
Numerical values of M̂ for different indices n are shown on Fig. 1.
The factor M̂ is close to C−3(3, 2) for n close to zero, which is outside
the validity zone of our estimate. The solutions of the Lane–Emden
equations are, however, relatively easy to be obtained numerically,
and this case can only be treated as an illustration of the bound given
by equation (7). In the next section, we will present some numerical
results for the self-gravitating discs.

n

M̂

4.543.532.521.510.50

10000

1000

100

10

Figure 1. The integral M̂ as a function of n. The horizontal line represents
the value of C−3 (3, 2) = 12.821.

5 SELF-GRAVI TATI NG D I SCS

In this section, we shall test the quality of the estimate (7) by
comparing it with appropriate numerical solutions describing self-
gravitating rotating discs. The numerical method used here follows
the Self-Consistent Field scheme introduced by Ostriker & Mark
(1968) and used by many authors and in many variants (cf. Clement
1974; Komatsu et al. 1989; Nishida et al. 1992; Mach & Malec
2010). Here we will only sketch the main idea.

Equations (1) can be formally integrated yielding

h + � + �c = C̃, (10)

where �c is given by equation (4) and � satisfies equation (2). The
integration constant C̃ is important and its value depends on the
solution. Gravitational potential � can be expressed in terms of
the Green function for the Laplace operator

�(x) = −GMc

|x| − G

∫
�

d3x ′ ρ(x ′)
|x − x ′| , (11)

where Mc denotes the central mass. In the implementation of the
numerical method, the singularity of the Green function at x ′ = x
causes a problem that we avoid in the standard way – by expanding
the above integral in terms of Legendre polynomials.

We assume that the domain � ranges from r = rin to r = rout

in the equatorial plane and the maximal density within the disc
reaches a fixed value ρmax. The rotation law is ω(r) = v0/r and the
equation of state has the form p = Kρ1+1/n.

The choice of the initial parameters is to a large extent arbitrary.
We fix values of rin, rout, n, ρmax and Mc, whereas constants C̃, v0

and K are computed, once the solution is known. For v0 we have
the formula

v2
0 = �(rout, z = 0) − �(rin, z = 0)

ln(rout/rin)
,

where we use the fact that the enthalpy h vanishes on ∂�. Values
of C̃ and K can be obtained from equation (10) taken at (rin, z = 0)
[or (rout, z = 0)] and the point where ρ = ρmax, respectively.

The structure of the disc is obtained by an iterative procedure. One
starts by assuming an initial density distribution in the toroidal shape
ranging from rin to rmax with the a priori given maximum value ρmax.
The gravitational potential is then found from the formula (11). In
the next step, we compute constants v0, C̃ and K corresponding to
the assumed density distribution. Finally, equation (10) can be used
to obtain a new approximate solution for h and the corresponding
distribution of ρ. If equation (10) gives a negative value of h in
some region of interest, then we assume that h = 0 there. In this
way, a new shape of the disc is obtained. This three-step procedure
is iterated until a satisfactory convergence is reached.

The disadvantage of such approach is that a good spatial resolu-
tion is required in order to obtain accurate solutions, and computa-
tions of the gravitational potential � given by equation (11) become
time-consuming.

An example of a disc solution obtained by the procedure de-
scribed above is shown in Fig. 2. The solution was obtained for
rin = 1 R�, rout = 100 R�, n = 3, ρmax = 0.1g cm−3 and Mc =
1 M�. The corresponding mass of the disc is equal to M =
1.8 × 103 M� and the bound given by equation (7) is M > 3.8 ×
102 M�. Here M� and R� denote the solar mass and solar radius,
respectively.

Table 1 summarizes results obtained for a couple of numerical
solutions and analytic estimates. The first three columns show val-
ues of the initial parameters: the inner radius rin, the outer radius
rout and the maximal mass density ρmax, respectively. The last two
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Figure 2. An example of the density distribution in the self-gravitating
rotating disc. The plot shows a cross-section of the upper hemisphere in a
meridian plane. Spatial dimensions are expressed in solar radii R�. The
density is grey-scale coded in g cm−3.

Table 1. Disc masses and their lower bounds computed from equation (7).
Configurations listed in the table were computed for n = 3 and Mc = 1 M�.

rin rout ρmax M Mass bound
(R�) (R�) (g cm−3) (M�) (M�)

5 10 0.1 1.4 5.1 × 10−2

1 10 1 25 2.7
50 100 10−2 1.8 × 102 7.3

500 1000 10−5 1.8 × 102 7.3
2500 5000 10−6 2.2 × 103 92

1 1000 10−4 1.5 × 103 3.8 × 102

1 100 0.1 1.8 × 103 3.8 × 102

1 5000 10−5 1.8 × 104 5.5 × 103

columns display the mass of a disc and its lower bound derived from
equation (7).

The obtained inequality is never saturated. Relatively heavy discs,
with the mass exceeding the central mass by three to four orders
of magnitude, have masses close to the bound of equation (7). It is
clear that the accuracy of the functional-analytic bound increases
with the increase in the mass of the disc, and thus with the increase
in the self-gravity. The exact numerical mass and the lower mass
bound differ by a factor of 3 for heavy discs, and by less than two
orders of magnitude for light discs.

6 C O N C L U S I O N S

We derive, using certain functional inequalities, an analytic lower
bound for the mass of self-gravitating axially symmetric stationary
configurations of polytropic fluids. It is valid for polytropic indices
n ≥ 3, both for rotating stars and for accretion discs with centrifugal
potentials satisfying the condition ��c ≤ 0. This class of potentials
is quite general and includes several common types of rotation, with
the rigid ω = constant and the v-const rotations. The accuracy of
the analytic bound increases with the mass of the disc. The exact
numerical mass and the mass bound differ by a factor of 3 for large
disc masses and by less than two orders of magnitude for lighter
discs.

The bound on the mass is given in terms of the polytropic index,
maximal density and maximal temperature of the gas. The obtained
expression is strikingly similar to the mass formula of the Lane–
Emden stars. One can use this result in order to obtain the Jeans
inequality for equilibrium ideal gas discs and non-spherical stars,
for the polytropic index n = 3. We believe that this is the first
rigorous derivation of the Jeans mass and of the Jeans inequality for
stationary systems.

It is well known that in some active galactic nuclei, rotation
curves indicate the existence of massive discs, and their measured
mass can be significantly larger than the actual core mass (Lodato
& Bertin 2003). Our result can be applied in order to constrain mass
and density parameters of these systems.
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