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Abstract

SALOW, ROBERT, Ph.D. March 2004. Physics & Astronomy

Self-Gravitating Eccentric Disk Models for the Double Nucleus of M31 (103 pp.)

Director of Dissertation: Thomas S. Statler

We present new dynamical models of weakly self-gravitating, �nite dispersion ec-

centric stellar disks around central black holes for the double nucleus of M31. The

disk is �xed in a frame rotating at constant precession speed, and is populated by

stars on quasi-periodic orbits whose parents are numerically integrated periodic orbits

in the total potential. A distribution of quasi-periodic orbits about a given parent is

approximated by a distribution of Kepler orbits dispersed in eccentricity and orienta-

tion, using an approximate phase-space distribution function written in terms of the

integrals of motion in the Kepler problem. We use these models, along with an op-

timization routine, to �t available published kinematics and photometry in the inner

200 of the nucleus. A grid of 24 best-�t models is computed to accurately constrain the

mass of the central black hole and nuclear disk parameters. We �nd that the super-

massive black hole in M31 has mass MBH = 5:62�0:66�107M�, which is consistent



with the observed correlation between the central black hole mass and the velocity dis-

persion of its host spheroid. Our models precess rapidly, at 
 = 36:5�4:2 km s�1pc�1,

and possess a characteristic radial eccentricity distribution, which gives rise to multi-

modal line of sight velocity distributions along lines of sight near the black hole.

These features can be used as sensitive discriminants of disk structure.
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Associate Professor of Physics and Astronomy
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Chapter 1

Introduction

It is widely believed that most, if not all, galaxies have supermassive black holes

(BHs) in their centers. Estimates of the total mass density in quasar remnants (Soltan

1982, Chokshi & Turner 1992), models for the evolution of the quasar luminosity

function in hierarchical structure formation scenarios (Haehnelt & Rees 1993), and the

large numbers of nearby galaxies with low-luminosity nuclear activity (Ho, Filippenko

& Sargent 1997) are consistent with this belief, assuming that active galactic nuclei

(AGNs) are powered by accretion of matter onto a BH (Lynden-Bell 1969, Rees 1984).

The discovery that the BH mass (MBH) correlates with certain host galaxy prop-

erties has made obtaining accurate masses for these objects a high priority in extra-

galactic studies. Kormendy & Richstone (1995) and Magorrian et al. (1998) �nd

that BH mass is proportional to the mass or luminosity of the host spheroidal com-

ponent, though with signi�cant scatter. Ferrarese & Merritt (2000) and Gebhardt et

al. (2000a) �nd that the BH mass correlates with the velocity dispersion (�) of the

stellar component, with much less scatter than the previous correlation; from a sam-

ple of 31 galaxies with secure BH mass estimates, Tremaine et al. (2002) �nd that the

correlation can be written as log(MBH=M�) = �+� log(�=�0), where � = 8:13�0:06
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and � = 4:02 � 0:32 for a reference dispersion of �0 = 200 km s�1. Since � is mea-

sured outside the radius of inuence of the BH, de�ned to be rh = GMBH=�
2, the

MBH - � correlation demonstrates a fundamental relationship between the BH and its

host spheroid. Such a correlation has important implications for theories of BH and

galaxy formation and evolution. It is thus important to con�rm and strengthen the

correlation by providing highly accurate BH masses for a large number of galaxies.

BH masses can be found using a variety of techniques, including: measuring the

kinematics of individually resolved stars (Eckart & Genzel 1996, Ghez et al. 1998,

Sch�odel et al. 2002, Ghez et al. 2003), dynamical modeling of spatially resolved stellar

absorption-line kinematics near the BH (see Kormendy & Richstone 1995, Verolme

et al. 2002, Gebhardt et al. 2003), measuring rotation curves from optical (Harms

et al. 1994, Macchetto et al. 1997, Bower et al. 1998, van der Marel & van den

Bosch 1998, Marconi et al. 2003) or maser (Miyoshi et al. 1995, Ishihara et al. 2001)

emission lines from orbiting gas, reverberation mapping in active galaxies (Peterson

& Wandel 1999, Peterson & Wandel 2000, Gebhardt et al. 2000b), and modeling of

line pro�le widths (Vestergaard 2002). The kinematics of resolved stellar motions and

small maser disks provide the most reliable mass estimates. However, the motions

of individual stars can only be resolved in the Milky Way (see Sch�odel et al. 2002),

and regular maser emission is only found in a few galaxies (Hagiwara et al. 2003).

Of the other techniques, stellar-dynamical modeling provides the most secure BH

measurements; gas near the BH can be subject to non-gravitational forces, unlike the

stellar component.
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The kinematic data must be resolved inside the region where Keplerian motion

dominates, however, to ensure that those stars fully contribute to the line of sight

velocity distribution (LOSVD), and not just in its tails. Simple calculations suggest

that Keplerian motion should dominate within a region of radius rk = krh, where

k � 0:1 - 0:3, depending on the BH mass and stellar radial density pro�le. Using

k = 0:3, it is easy to show that rk � 1:3 � 10�3MBH=�
2 (pc), with MBH in solar

masses and � in km/s. Using values for MBH , �, and distance given in Tremaine et

al. (2002), or from the MBH - � relation, rk subtends an angle of 11:0060, 0:0074, and

0:0015 for the Milky Way, M31, and M32, respectively. Other than the Milky Way,

M31 is the only nearby galaxy in the Local Group with a resolved rk at the resolution

of the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS;

� 0:001); M33 is consistent with having a maximum BH mass of � 3000M� (Merritt

et al. 2001, Gebhardt et al. 2001), so its rk subtends an angle < 0:00005.

M31 o�ers a unique opportunity to obtain a secure BH mass from spatially resolved

stellar kinematics inside rk. M31 is also the nearest galaxy with a normal bulge

(Kormendy 1993), and it has a nucleus; that is, a small-scale stellar component

which is photometrically and dynamically distinct from the bulge and the large-scale

galactic disk (Kormendy & Richstone 1995, and references therein). Galaxy nuclei are

poorly understood, as is the dynamical connection between the nuclear stars and the

central BH. M31's nucleus is � 200 in radius (Light, Danielson & Schwarzschild 1974),

which is fully within the sphere of inuence of the BH; rh ' 2:005, if M31 is located at

a distance of 770 kpc and has a BH mass of 5:5 � 107M�, as implied by the MBH
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- � relation. Thus, M31's nucleus allows for a more detailed dynamical study than

is possible for any other galaxy. Even more enticing is the fact that the nucleus is

shown to be double; the photometric pro�le shows two brightness peaks, one of which

is o�-center with respect to the outer bulge isophotes. Kinematic pro�les also show

strong asymmetries. Thus, standard axisymmetric dynamical modeling techniques

(e.g. in Gebhardt et al. 2003) are inappropriate. New modeling methods are needed

to obtain an accurate measure the BH mass in M31.

M31 was �rst shown to have a photometrically asymmetric nucleus by Light et

al. (1974), using the Stratoscope II balloon-borne telescope. Nieto et al. (1986)

con�rmed those observations with groundbased data, and found that the brightest

point in the nucleus was o�set from the center of the bulge by � 0:004. The HST Wide-

�eld and Planetary Camera (WFPC1) later resolved the nucleus into two brightness

peaks (Lauer et al. 1993, hereafter L93), as did more recent HST images taken

with WFPC2 (Lauer et al. 1998, hereafter L98). The optically brighter peak, P1,

is o�set 0:0049 from the bulge photometric center, which coincides with the fainter

peak, P2. P1 and P2 have central V band surface brightnesses of 13:4magarcsec�2

and 13:7mag arcsec�2, respectively, when averaged over a 0:0022 wide slit (L93). P1 is

compact, with a major-axis core radius of � 0:004; P2 has a weak stellar cusp, unlike

P1 (L93).

Near-IR (Mould et al. 1989, Davidge et al. 1997, Corbin et al. 2001), optical (L93,

L98), and far-UV (King et al. 1995, hereafter K95) images all show that the asym-

metric or double-peaked structure of the nucleus is not caused by dust absorption.
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Along with absorption-line strengths from long-slit spectra (Kormendy & Bender

1999, hereafter KB99), they also demonstrate that P1 has a similar stellar content as

the rest of the nucleus, which is unlike any globular cluster or dwarf elliptical. Thus,

P1 is an intrinsic part of the nucleus, and not an interloping star cluster (K95). The

V � I color of the nucleus is not the same as that of the bulge, implying a di�erence

in stellar populations (L98, Bacon et al. 2001, hereafter B01); line strengths in KB99

also show the same. The color di�erence is not agreed upon, however; L98 �nd that

the nucleus is redder than the bulge, whereas B01 �nd the opposite. Sil'chenko et al.

(1998) argue that the nucleus is more metal rich than the bulge, and, using H� lines

to disentangle metallicity and age, �nd that the nucleus is a factor of three younger

than the bulge.

P2 is brighter than P1 in the UV, as a result of an embedded UV-bright source

(hereafter the UV peak; K95, Brown et al. 1998, L98) whose center is located 0:00076

toward P1 from the center of P2 in the I-band (B01). The UV peak is resolved, with

a half-power radius of � 0:002 (Brown et al. 1998, L98, B01). Brown et al. (1998) show

that the UV peak is consistent with being comprised of extreme horizontal branch

stars with masses between 0:47 and 0:53 M�, but not consistent with a majority con-

tribution from main sequence stars, blue stragglers, or post-asymptotic giant branch

stars more massive than 0:56M�. Unpublished spectra from STIS also suggest that

the UV peak is dominated by starlight (E. Emsellem, private communication), rather

than a low-level AGN (K95). The UV peak is thought to be the location of the

photometric center of the bulge, and the supermassive BH (K95, KB99, B01; Peng
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2002, hereafter P02). Hereafter in this paper, \the nucleus" refers to P1 and P2

together, but does not include the UV peak, which is a separate nuclear star cluster.

The locations of P1, P2, and the UV peak with respect to the nucleus as a whole are

shown in Figure 1.1.

Groundbased observations at � 100 (FWHM) resolution by Dressler (1984), Ko-

rmendy (1988), Dressler & Richstone (1988), and van der Marel et al. (1994) were

the �rst to show that the stellar component in M31's nucleus rotates rapidly, and

that there is a signi�cant velocity dispersion peak (hereafter the dispersion spike)

in the central few parsecs, both possibly indicating the presence of a central BH of

mass � 107M�. The data show the dispersion spike to be centered � 0:006 away from

the peak in brightness (P1) in the Stratoscope II photometry, and the nucleus to

be colder than the bulge on both sides of the dynamical center. Two-dimensional

kinematic maps obtained by Bacon et al. (1994) at similar resolution (0:0087 FWHM),

using the TIGER integral �eld spectrograph on the Canada-France-Hawaii Telescope

(CFHT), are consistent with most of the earlier observations; however, the dispersion

spike in that data set is located � 0:007 from P2 on the anti-P1 side of the nucleus,

which places it � 0:006 farther away from P1 than found previously. The deconvolved

TIGER rotation curve is asymmetric about the rotation center, which is near P2; the

maximum amplitude on the anti-P1 side is roughly 60 km s�1 greater than that on

the P1 side.

Observations at better spatial resolution (0:0064 FWHM) and higher signal-to-noise

(S/N), taken with the Subarcsecond Imaging Spectrograph (SIS) on CFHT (KB99),
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Figure 1.1: WFPC2/HST photometry in the I (F814W) band from L98. The image has been

boxcar smoothed for clarity. North points toward the top of the page, while East points to the left.

Arrows show the locations of P1, P2, and the UV peak; the center of the UV peak is denoted by

an asterisk at the origin. The solid line shows the P1-P2 line (PAd = 42�), or the major axis of

the nucleus. The dotted line shows the kinematic major axis, which is the line joining the velocity

extrema in the two-dimensional kinematic map (PAK = 56:4�).
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show the dispersion spike o�set from the UV peak by � 0:002, roughly 0:004 less than the

Bacon et al. (1994) o�set; the spike's amplitude is 248� 5 km s�1 before bulge sub-

traction and 287� 9 km s�1 after. The nucleus is cold on both sides of the UV peak,

as in Kormendy (1988); for example, the dispersion at r = 0:0092 from the UV peak on

the P1 side is 123� 2 km s�1 with the bulge, and � 100 km s�1 without. KB99 �nd

that the bulge-subtracted maximum rotation velocity is �236� 4 km s�1 on the anti-

P1 side, but only 179� 2 km s�1 on the P1 side, con�rming the � 60 km s�1 rotation

amplitude asymmetry of Bacon et al. (1994). When the bulge is added, the asym-

metry is only � 7 km s�1, with a maximum velocity on the P1 side of 152� 3 km s�1.

The zero velocity crossing is displaced from the UV peak toward P1 by 0:00051�0:00014.

Slit-averaged velocity pro�les from the OASIS integral �eld spectrograph on CFHT

(B01), which has about twice the spatial resolution (� 0:004 - 0:005 FWHM) as TIGER,

are consistent with the SIS observations. B01 measure the kinematic major axis, or

the line joining the velocity extrema in the two-dimensional map, to be at position

angle PAK = 56:4��0:2�, which is not on the P1-P2 line (PAd = 42�; see Figure 1.1).

The kinematic observations with the best resolution to date (� 0:001 FWHM) come

from the f/48 long-slit spectrograph of the HST Faint Object Camera (FOC; Statler

et al. 1999). The rotation curve is resolved through the rotation center with a

projected velocity gradient of � 300 km s�1pc�1; the zero velocity crossing is o�set

by 0:0016� 0:0005 from P2 towards P1, or � 0:00135 from the UV peak (using the spatial

registration suggested by B01).1 The rotation curve is asymmetric, as in the SIS

1B01 determined that spatial shifts must be applied to the FOC and SIS data to register them
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data, with an amplitude asymmetry of at least 60 km s�1 and a P1-side maximum of

� 240 km s�1. The dispersion spike has amplitude 440� 70 km s�1, but is only o�set

from P2 by 0:0006, in contrast to the � 0:002 o�set found with SIS and OASIS. High-

resolution kinematic data from STIS/HST (B01) also show similar asymmetries. The

rotation curve has an amplitude asymmetry possibly as high as � 90 km s�1, with a

maximum rotation amplitude on the P1-side of 201� 5 km s�1. The velocity gradient

is � 220 km s�1pc�1 through the zero velocity crossing, which occurs 0:0009 from the

UV peak; both of these values are lower than for FOC. The dispersion spike has

amplitude 321 � 33 km s�1, and is located 0:00235 from the UV peak on the anti-P1

side. B01's STIS dispersion spike is substantially more o�set than that in the FOC

data. We refer the reader forward to �gures in Section 4.1 to see FOC, STIS, SIS and

OASIS kinematic pro�les.

Two hypotheses have been explored to account for the photometric and kinematic

asymmetries observed in M31's nucleus: �rst, that P1 represents a captured star

cluster orbiting around a stellar disk and central BH (Emsellem & Combes 1997);

second, that P1 is produced by orbit crowding at apoapsis in an eccentric disk of stars

on apse-aligned Kepler orbits about a BH at P2 (Tremaine 1995, hereafter T95). Of

the two hypotheses, the evidence strongly points toward the second as correct. The

eccentric disk picture naturally explains the nearly uniform colors of the nucleus,

to the center of the UV peak in the F300W band, which is the reference center for the OASIS and
STIS data. The origin de�ned in Statler et al. (1999) must be shifted 0:0025 toward P1, whereas the
origin de�ned in KB99 must be shifted 0:00031 away from P1. They also found that a positive shift
of 30 km s�1 must be applied to the FOC velocity pro�le for consistency with the STIS pro�le; this
amounts to adding 30 km s�1 to the systemic velocity.
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since P1 and P2 are the same stellar population. It is di�cult to explain the colors

with the orbiting cluster picture, since the colors of P1 are unlike any globular cluster

or dwarf elliptical. A further strike against the cluster picture is demonstrated in

self-consistent N-body simulations by Emsellem & Combes (1997); they �nd that the

timescale for disruption is only � 105 years, so it is unlikely that such a con�guration

would be observed.

T95's original model for an eccentric nuclear disk in M31 consists of three nested

and aligned Keplerian ringlets with outwardly decreasing eccentricities. Random

velocities are roughly accounted for by convolution with a Gaussian point spread

function in the plane of the sky. The model �ts the photometry of L93 and is broadly

consistent with the ground-based kinematics of Kormendy (1988) and Bacon et al.

(1994). Though simple, the model predicts many of the asymmetries seen in the more

recent kinematic pro�les from SIS, FOC, STIS, and OASIS, including the displaced

rotation center, the asymmetric rotation amplitudes, the low velocity dispersion at

r � 100 on the P1 side of the nucleus, and the presence of a dispersion spike near P2.

In its original form, the T95 model is too limited to be used to constrain the

mass of the central BH in M31. The model ignores self-gravity, which is necessary

to maintain apse-alignment in the disk against di�erential precession (T95; Statler

1999, hereafter S99). Also, the model does not include a realistic treatment of velocity

disperison, which is needed for an accurate prediction of the dispersion pro�le. Both

of these ingredients need to be included self-consistently.

Hints at how such a model can be constructed were �rst given by Sridhar &
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Touma (1999). They compute orbits in nearly-Keplerian potentials with lopsided

perturbations and �nd a family of periodic loop orbits elongated in the same sense

as the perturbation. They suggest that the nearly elliptical periodic parents of such

orbits can be used as the backbone around which an eccentric disk with self-gravity

and �nite dispersion can be built. S99 computes periodic loop orbits for a continuous,

uniformly precessing T95-like disk model, and shows that the requirement of uniform

precession has important consequences for the disk structure. He �nds that the

periodic orbits follow a non-monotonic radial eccentricity distribution, in which a

steep negative eccentricity gradient though the densest part of the disk is followed

by a reversal of the arrangement of pericenter and apocenter with respect to the BH.

S99 suggests that approximate self-consistent equilibria can be constructed around

such a sequence of numerically integrated closed periodic orbits, by approximating a

distribution of quasi-periodic orbits about a given periodic parent with a distribution

of Kepler orbits dispersed in eccentricity and orientation. Salow & Statler (2001) use

this approximation to construct radially truncated models that reproduce many of

the features seen in FOC kinematics and one-dimensional HST photometry within

0:005 of the UV peak; the models are built by iteration with a phase space distribution

function (DF) written in terms of the integrals of motion in the Kepler problem (S99).

They �nd that the backbone orbits follow an eccentricity distribution similar to that

in S99, which gives rise to distinctive multi-peaked LOSVDs near the UV peak.

Several authors have constructed self-consistent eccentric disk models by other

methods. Jalali & Ra�ee (2001) construct integrable models whose potentials are of
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the St�ackel form in elliptic coordinates. They show that models with double nuclei

are sustained by four general types of regular orbits (butteries, nucleophilic bananas,

horseshoes, and aligned loops). Their models, however, require that both P1 and P2

have density cusps, which is not seen in the data. B01 and Jacobs & Sellwood (2001)

perform N-body simulations of lopsided (m = 1) modes in a cold disk orbiting a

central BH, and are able to �nd models that reproduce some of the observed fea-

tures of the nucleus. More importantly, they demonstrate that lopsided stellar disks

can be long-lived, giving further support to the eccentric disk picture. Sambhus &

Sridhar (2002, hereafter SS02) construct models using a Schwarzschild-type method

(Schwarzschild 1979) with an orbit library composed of both prograde and retrograde

orbits. They �nd that the latter are needed to better �t the kinematics and pho-

tometry near P2; Touma (2002) argues that a small percentage of retrograde orbits

is all that is needed for a Keplerian disk to grow an unstable lopsided mode. Both

SS02 and B01 �nd an eccentricity distribution di�erent than that found by S99 and

Salow & Statler (2001). Orbits follow a steep negative eccentricity gradient through

the dense part of the disk, but do not switch their apoapses to the anti-P1 side of the

disk afterward.

Peiris & Tremaine (2003, hereafter PT03) have recently shown how a T95-like

model can be extended to three-dimensions. They construct models comprised of

non-interacting Kepler orbits in the gravitational �eld of the BH. They draw orbital

elements from a Monte-Carlo scheme, and populate the disk with a parametric DF;

orbits are dispersed in eccentricity, orientation, and inclination, rather than just the
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�rst two, as in Salow & Statler (2001). Their models are able to reproduce most of

the important features in HST photometry and SIS and unpublished STIS (Bender et

al. 2003) kinematics within � 100 of the UV peak. However, their models are missing

self-gravity and gravity-induced precession in the disk.

In this paper we extend the self-gravitating, �nite dispersion models of Salow &

Statler (2001) to include a greater radial extent, in order to rigorously model the dou-

ble nucleus of M31. Along with an optimization routine, these models are used to �t

FOC, STIS, and SIS one-dimensional kinematics, OASIS two-dimensional kinematics,

and one and two-dimensional WFPC2/HST photometry. Best-�t disk parameters and

BH masses are found for a grid of 24 models by minimizing a chi-square merit func-

tion which assesses agreement between model and data. The primary result of this

paper is an accurate mass for the BH in M31. Secondarily, we present the properties

of the disk that best �ts the nucleus.

The plan of this paper is as follows. In Chapter 2, we give the details of model

construction. We then provide a description of the necessary assumptions and instru-

ment speci�cations needed to �nd models that best �t data from the nucleus of M31

in Chapter 3. In Chapter 4 we present results from a grid of 24 best-�t models for

M31's nucleus, including the BH mass in M31 and disk parameters and properties.

Chapter 5 discusses the connection with other work. Finally, Chapter 6 presents some

brief concluding remarks.
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Chapter 2

Eccentric Disk Models

2.1 Theoretical Basis

Following Sridhar & Touma (1999) and S99, we construct realistic models from

sets of quasi-periodic orbits whose parents are closed periodic loops elongated in the

same sense as the lopsided perturbation. The parent loops form the \backbone" of

the disk, around which quasi-periodic orbits will be populated. These backbone orbits

will precess and deform under the inuence of the disk's self-gravity. However, if the

mass of the disk is small enough the backbone orbits will be nearly Kepler ellipses

in the rotating frame. This fact, together with results from simple orbit integrations

in lopsided potentials, is suggestive of a way to approximate distributions of quasi-

periodic orbits about a given backbone orbit. Explorations of the orbital structure

in a nearly Keplerian potential perturbed by a slowly precessing eccentric disk show

that quasi-periodic orbits �ll bands surrounding the backbone orbits (Statler & Salow

2000); alternatively, they can be thought of as librating about the backbone orbits in

eccentricity and orientation. A natural approximation is then to describe a distribu-

tion of quasi-periodic orbits about a given backbone orbit by a distribution of Kepler
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orbits dispersed in eccentricity and orientation. We follow this approximation, taking

it as a postulate.

To represent a distribution of Kepler orbits about a given backbone orbit we use

a phase space distribution function (DF) written in terms of integrals of motion in

the unperturbed Kepler potential, f(a; e; !), where a is the semimajor axis, e is the

eccentricity, and ! is the argument of pericenter of a Kepler orbit; i.e., ! is the

direction of the Runge-Lenz vector. We have chosen a simple DF which is separable

in all three variables; that is, f(a; e; !) = F (a)F (e)F (!). The details of the DF are

given in Section 2.2.

Models include a two-dimensional eccentric stellar disk surrounding a BH of mass

MBH . The density distribution of the disk is �xed in a frame rotating at constant

angular speed 
 about the center of mass of the system, and is normalized to a total

mass m = �MBH . The black hole is located at the origin of a Cartesian coordinate

system, and the disk is oriented such that its major-axis lies along the x coordinate

line. Models are computed on a 200�200 grid with spacing l = 0:25 in dimensionless

units where G = MBH = 1. The potential of a spheroidal bulge component is not

included, since its e�ect on the precession frequencies of Kepler orbits in the absence

of the disk potential is small.1

1Bulge-induced precession frequencies are less than 10% of 
 for a class of spherical, nonrotating
�-models to be discussed in Section 2.4.
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2.2 The Distribution Function

F (e) and F (!) together provide our prescription for the way dispersed Kepler

ellipses are distributed about the sequence of backbone orbits. We have considered

two versions of F (e). The �rst is a Gaussian distribution of eccentricities given by

F (e) = exp

"
� [e� e0(a)]

2

2�e2

#
; (2.1)

where e0(a) describes the sequence of backbone orbits, and the constant �e determines

the spread in eccentricity about a given backbone orbit. The second version of F (e)

is referred to as a Rayleigh distribution of eccentricities, and is given by

F (e) = jej exp
"
� [e� e0(a)]

2

2�e2

#
; (2.2)

where e0(a) and �e have the same meaning as for the Gaussian distribution. The

velocity distribution for the Gaussian form of F (e) is singular at e = 0, and thus

somewhat unphysical. As a result, an extra population of circular orbits will be

populated, in addition to the normal eccentric orbit population around e0(a). The

Rayleigh form adds an extra factor of e to ensure �niteness at e = 0. For both forms

of F (e) we use a Gaussian distribution of orientations. F(!) is given by

F (!) = exp

"
� !2

2�!2

#
; (2.3)

where the constant �! is the dispersion in !.
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The function F (a) gives the mass per unit interval of semimajor axis, and thus

controls the radial mass distribution. We have chosen a form for F (a) which allows

variability in the strength of the central density minimum, and in the strength and

width of the maximum peak in the mass distribution. F (a) is described by two

functions joined together, FI(a) and FO(a), which represent the inner and outer parts

of the disk, respectively. We use

F (a) =

8>>>>>><
>>>>>>:

FI(a) : a � amax

FO(a) : a > amax;

(2.4)

where amax is the value of a at which FI(a) is maximum, Fmax. FI(a) is given by

FI(a) = max(a��; 0) exp

"
�(a� a0)

2

2�a2

#
; (2.5)

where �a controls the width of the inner density distribution, � determines the

strength of the central density minimum, and a0 sets the length scale; we set a0 = 2.

FO(a) is given by

FO(a) = CFI(a) + (1� C)Fmax sech

"
(a� amax)

�r

#
: (2.6)

The constant C has two e�ects on the behavior of the disk: First, it determines

how much mass is distributed to the outer part of the disk, and second, it partially

determines how quickly the density drops-o� away from maximum for a � amax.
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Larger values of C result in weaker outer disks and steeper drop-o�s in density outside

of maximum. Figure 2.1 shows the behavior of F (a) for three values of C.

The parameter �r is used to extend the disk to the desired cuto� radius, Rd.

Simple algebra shows that if FO(a) = � at a = Rd, where � is some small number,

then �r is given by

�r =
(Rd � amax)

ln( (1�C)Fmax
�

+
q
[ (1�C)Fmax

�
]2 � 1)

: (2.7)

We set � = Fmax=100 to ensure su�ciently small densities at a = Rd.

2.3 The Construction Scheme

A model is speci�ed by the parameters �, 
, �e, �!, �a, �, C, a0, and Rd. Once

these are given, an initial guess for e0(a) must be provided. We choose e0(a) =

1
2
(1� a

Rd
), which gives an initial density maximum at apoapsis. This choice was made

because it leads to rapid convergence, but the results are insensitive to the initial

guess. Following speci�cation of e0(a), construction proceeds iteratively (see Salow

& Statler 2001).

Construction begins by expressing the DF in terms of position and velocity using

the standard Keplerian relations:

a = � 1

2E
(2.8)
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Figure 2.1: The function F (a), which controls the radial mass distribution. F (a) is shown in

model units for three values of the parameter C in Equation 2.6, which determines how mass is

distributed between the inner and outer parts of the disk. C also partially determines how fast

the density drops-o� away from maxiumum. The solid line shows FI(a) for �a = 1, � = 1, and

a0 = 2. The dotted, dash-dotted, and dashed lines show FO(a) when C has value 0:75, 0:5, and

0:25, respectively. A larger value of C results in a weaker outer disk and a steeper drop-o� in density

outside of maximum.
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e =
p
1 + 2Eh2 (2.9)

! = arctan
Ay

Ax

(2.10)

where E = 1
2
(vx

2 + vy
2) + � is the energy per unit mass, � = �(px2 + y2)�1 is

the unperturbed potential, and h = xvy � yvx is the angular momentum per unit

mass (Murray & Dermott 1999). The quantities Ax = vyh + x� and Ay = �(vxh) +

y� are the x and y components of the Runge-Lenz vector, respectively. To avoid

discontinuities in the DF, we allow e to be negative and de�ne ! to lie between ��=2.

The disk density �(x; y) is found by integrating the DF over velocity at each

grid point, and then normalizing the grid to total disk mass m. The potential of

the disk is computed using Fast Fourier Transforms (FFTs) and the discrete fourier

convolution theorem (see Section 2.8 of Binney & Tremaine 1987). Zero padding is

used to suppress Fourier images. We use a softened point-mass kernel of one grid

spacing for the Green function. The disk potential is added to the potential of the

black hole to form the total potential. The total potential is rotated at frequency


 about the center of mass to include inertial e�ects from the rotating frame; only

Coriolis forces are included, since centrifugal terms are of order 
2.

Numerical integration of the equations of motion in the rotating frame is performed

to �nd the set of closed periodic orbits that circulate in the prograde direction and

precess uniformly in the total potential. Orbits are initially launched perpendicularly

from the x-axis, and the velocities are varied until the next x-axis crossing occurs

with vx = 0 (S99). These will be the backbone orbits for the next iteration. To
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ensure that only nearly-Keplerian orbits are found, the total period and computed

semiminor axis have to be within 50% and 20%, respectively, of those values for a

Kepler orbit with the same semimajor axis and eccentricity. These two conditions

enable separation of higher-order resonant orbits from nearly-Keplerian orbits for a

wide range of tested parameter values.

The backbone orbits are expressed as a new function e0(a). This is done by noting

the positions where the orbit crosses the x-axis at positive (x+) and negative (x�)

values of x. Following S99, e and a are determined using e � (x�+x+)=(x��x+) and

a � (x+�x�)=2. In some cases this is all that must be done; however, for large values

of 
 the sequence of periodic orbits truncates inside Rd. When this occurs, e0(a) is

extended out to a = Rd using a function chosen to mimic the behavior of e0(a) for

models with no truncation. Details of this are given in Appendix A. After extending

e0(a), the quantity �r in Equation 2.6 is updated to ensure that the disk extends out

to Rd, since the physical length scale can change at each iteration (see Section 3.2).

A new density distribution is then found and the aforementioned sequence continues.

Iterations continue until the fractional change in the density per iteration is less than

5% everywhere and less than 1% on average.

2.4 Projecting the Model

We project two-dimensional models onto the plane of the sky. Along with in-

clination (i), two position angles in the plane of the sky must be speci�ed to fully
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determine a disk's orientation: the position angle of the major axis of the disk (PAd)

and the position angle of the line of nodes (PAn).
2 We refer to three coordinate

systems to describe how models are projected onto the sky. The �rst, (xs; ys), is a

system on the plane of the sky for which ys points along position angle PA= 0�. The

second, (xd; yd), is the system in which the disk lies with its major axis along xd.

The third system, (xn; yn), is oriented such that xn lies along the line of nodes and

yn is in the plane of the disk. Figure 2.2 shows the relationship between these three

coordinate systems as seen on the plane of the sky.

For computational e�ciency we perform kinematical modeling using velocity mo-

ments, rather than the full LOSVD. We do, however, �nd LOSVDs for minimized

models at speci�c locations, as described below in Section 2.5.

Moments of the LOSVD are found on a 200� 200 grid with spacing 0:0002 in the

(xs; ys) system. The zeroth moment, �, is found by projecting the density distribution

onto the sky directly. The �rst and second moments, �v and �v2, are found using

the DF for the converged model. Each point in the grid is transformed to a point in

the disk plane, (xd; yd). At (xd; yd) the DF and the Kepler relations (Equations 2.8,

2.9, and 2.10) are used to get the distribution of velocities f(vxd; vyd) on a 200� 200

velocity grid with spacing 0:075 in units where G = MBH = 1 and a0 = 2. The

distribution f(vxd; vyd) is then transformed to the (xn; yn) coordinate system to obtain

the distribution f(vxn; vyn) on a similar velocity grid. This distribution is transformed

to an inertial frame to include the ~
� ~r contribution to the velocity, and integrated

2Positive position angles are measured eastward from North on the plane of the sky.
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Figure 2.2: The three coordinate systems used to construct and project a model, as seen on the

plane of the sky for a disk (shown as an ellipse with e = 0:3) inclined at i = 70� with the line of

nodes at PAn = 56:4� and the disk major axis at PAd = 42�. All coordinate axes have the same

unprojected length. Velocity moments are projected onto (xs; ys) in the sky plane, with ys pointing

North (PA=0�) and xs pointing West. (xd; yd) is the system in which the disk is constructed, with

its major axis along xd. (xn; yn) is oriented such that xn lies along the line of nodes and yn is in

the plane of the disk.
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over vxn to give f(vyn), the unprojected disk-plane LOSVD. Multiplying f(vyn) by

the projection factor sin i and scaling to physical velocities gives the LOSVD on the

sky at point (xs; ys). The moments �v and �v2 are obtained from this LOSVD by

one-dimensional numerical integration. Moments from the bulge (see below) are then

added to those of the disk, giving the three projected moment distributions �, �v,

and �v2 on the sky grid.

Moment distributions are convolved with appropriate spatial point-spread func-

tions (PSFs) for the observing instruments. The convolved grids are then observed

over a slit to obtain one-dimensional kinematics or photometry, or binned for two-

dimensional observations. One-dimensional observations are made by averaging over

a slit of width w and pixel scale l at a given position angle PA. Two-dimensional ob-

servations are obtained by averaging over a square pixel of scale l. Averaged moments

yield line-of-sight rotation (v), velocity dispersion (�), and surface brightness (�) pro-

�les. We follow the usual convention that objects moving away from the observer have

positive velocities.

To ensure proper functioning of our code, we generated kinematic and photometric

pro�les using the distribution function for a Keplerian disk with constant surface den-

sity and a Rayleigh distribution of eccentricities; a Rayleigh distribution is equivalent

to a Schwarzschild distribution in velocity (Dones & Tremaine 1993). These pro�les

were compared with similar pro�les generated from analytically determined velocity

moments of the distribution. Moments were projected onto the sky, convolved by

numerical integration with a PSF, and then observed over a slit for the comparison.
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Close agreement was found for the FOC, STIS, and SIS slits at numerous position

angles (see Chapter 3 for instrument speci�cations).

The bulge and central cusp are approximated by a spherical, non-rotating �-model

that dynamically includes the inuence of the BH (Tremaine et al. 1994). An � model

is speci�ed by parameters MBH and �, where � determines the central cusp strength;

the models have outer density pro�les with � / r�4 and central power-law density

cusps with � / r3�� for 0 < � � 3. The bulge model is expressed in physical units

by two additional parameters, Mb and r0, which represent the total bulge mass and

scale length, respectively. The bulge is always centered on the BH.

Scaling to physical units requires speci�cation of the mass-to-light ratio (M=L =

�) and the distance (D) to the nuclear disk's host galaxy.

2.5 LOSVDs

LOSVDs can change signi�cantly over small spatial scales, so it is necessary to

use a �ner grid for their computation and convolution. We �nd the full LOSVD at

any given point on the sky by constructing a 200� 200� 200 data cube centered on

that point. The �rst two dimensions represent the spatial coordinates, while the third

represents the LOSVD at that point. We set the spatial length per pixel to 0:00002 and

bin velocities to an instrument-speci�c resolution. The spatial scale extends beyond

w=2 + 4�I , where �I is the width of the observing instrument's PSF and w is the

width of the observing slit.
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The data cube is built following a procedure similar to that described previously

for the moment distributions, with the exception that now the LOSVD is recorded into

the data cube instead of having the velocity moments calculated. The contribution of

the bulge to the total LOSVD is described by a Gaussian with the projected dispersion

of the appropriate �-model. Convolution is performed by marching through the cube

in velocity and convolving each two-dimensional cut with the PSF. The convolved

data cube is then averaged over the slit width w and pixel size l.
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Chapter 3

Modeling Speci�cs for M31

In this Chapter we provide details necessary to describe how the construction

technique given in Chapter 2 is used to �nd models that best-�t kinematic and pho-

tometric data from M31's nucleus. Best-�t parameters are found for a grid of models

by minimizing a chi-square merit function which assesses agreement between model

and data.

3.1 Assumptions

We take PAd = 42�, the P1-P2 axis measured from WFPC2 photometry (B01).

B01 �nd that the major axis of the nucleus is close to the OASIS-measured kinematic

axis (PAK = 56:4�), so we assume that PAn = 56:4�. Disk inclination is either

�xed to i = 52:5� or left as a free parameter (see Section 3.5); the �xed value of i

is representative of the inclination found by deprojecting the nucleus, assuming the

disk is cold and thin with nearly-circular outer isophotes (B01, SS02, P02).

The disk and bulge are assigned V band mass-to-light ratios �V = 5:7, as found
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from dynamical modeling (Kormendy 1988, Dressler & Richstone 1988) and corrobo-

rated by a center-of-mass analysis (KB99). This value for �V is also consistent with

that used in other recent investigations of the nucleus of M31 (e.g., SS02, P02, PT03).

The stars are given colors V � I = 1:348, the value 400 from P2 (Table 3 of L98). M31

is assumed to be located at a distance D = 770 kpc, based on Cepheids (Freedman

& Madore 1990, Kennicutt et al. 1998), red giant branch stars and globular clusters

(Holland 1988), and red clump stars with parallaxes (Stanek & Garnavich 1998); at

this distance 100 = 3:733 pc.

3.2 The Length Scale and Zero Point

A model is mapped onto the data by two free parameters: a linear scale factor,

DP1, and a sliding o�set along the major axis of the disk (PAd = 42�), DP2. DP1

gives the separation between the BH and the center of P1 in arcseconds, while DP2

speci�es the separation between the BH and the data origin. In other words, the BH

is assumed to lie somewhere along the major axis, and its exact location is determined

by the data.

3.3 The Data Sample

The kinematic data include one-dimensional stellar kinematics from FOC, STIS,

and SIS, and two-dimensional stellar kinematics from OASIS. We consider only v and

� data falling within 200 of the BH when �tting. Within this range are 46, 58, and
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32 v and � values for FOC (from Table 1 of Statler et al. 1999), STIS (from the

website address in B01), and SIS (from Table 2 of KB99), respectively. OASIS data

consists of 1319 v and � measurements from the high-resolution \M2" data set (from

the website address in B01).

The photometric data include both one (1WFPC2) and two-dimensional (2WFPC2)

surface brightness pro�les taken from the deconvolved I band WFPC2/HST image

of M31 (L98). The one-dimensional pro�le is obtained by averaging the image over

a slit of width w = 0:00353 and pixel scale l = 0:000456 at position angle PA= 52:5�,

as in KB99. At this pixel scale, 88 data points fall within 200 of the BH. The zero

point is found by comparing this pro�le with Figure 8 of KB99, with a shift of

13:9mag arcsec�2 applied to Figure 8 to express it in physical units (J. Kormendy

2001, private communication). The brightness pro�le is converted to the V band

using the assumed V � I = 1:348. The two-dimensional pro�le consists of the I band

image binned on a 80� 80 grid with spacing 0:0005. The zero point for the raw I band

image is found by comparison with Table 3 of L98.

In M31, surface brightness uctuations completely dominate the noise statistics

of the WFPC2 image (T. Lauer 2002, private communication). To estimate errors

for �tting purposes we used the IRAF routines \ellipse" and \bmodel" to make a

smooth image, which was then subtracted from the WFPC2 image to form an arti�cial

\sigma" image. Error estimates for the one-dimensional pro�le were obtained by

�nding the standard deviation of uctuations within the area covered by the slit, at

each position along the slit. Errors for the two-dimensional pro�le were found by
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�nding the standard deviation of uctuations within each bin.

For computational convenience only, the kinematic and photometric data were

shifted to a spatial zero point at the center of P2. The data were �rst registered to

the UV peak (as in B01), and then shifted by the 0:00076 P2-UV peak separation along

the kinematic axis. However, all of the results in this paper are shown relative to a

spatial origin at the UV peak.

3.4 Instrument Speci�cs

FOC observations were made with the f/48 long-slit spectrograph at position

angle PA= 42�. The slit has width w = 0:00063 and pixel size l = 0:00028. The PSF

was modeled using the software package Tiny Tim version 6.0 (Krist & Hook 1999)

from STScI.1 A sum of three Gaussian functions with identical amplitudes was �t

to the azimuthally-averaged PSF pro�le as an approximation; the three Gaussians

have dispersions �1 = 0:000417, �2 = 0:000140, and �3 = 0:000090. STIS observations

were made with the G750M �rst-order grating at position angle PA= 39�. The slit

has width w = 0:001 and pixel size l = 0:0005. The PSF was modeled as the sum of

two round two-dimensional Gaussians with parameters �1 = 0:0003223, �2 = 0:00130853,

and amplitude ratio I2=I1 = 0:053784 (E. Emsellem 2002, private communication).

The G750M grating has a velocity resolution (�v) of � 38 km s�1, so LOSVDs are

binned to 40 km s�1 (see Section 2.5). SIS observations were taken at position angle

1see http://www.stsci.edu/software/tinytim for details



49

PA= 52:5� over a slit of width w = 0:00353 and pixel scale l = 0:000864. The PSF is

given in analytic form in Equation 3 of KB99. OASIS observations were made on a

two-dimensional spectrograph with square pixels approximately l = 0:0011 in size. The

PSF for the M2 dataset is given in Table 3 of B01 as the sum of three Gaussians,

with �1 = 0:0015, �2 = 0:0029, �3 = 0:00448, I2=I1 = 0:98, and I3=I1 = 0:023.

3.5 The Grid of Models

To quantify some of the possible systematic e�ects in modeling M31's nucleus we

compute best-�t models for three sets of kinematic and photometric data. Data Set

1 includes FOC, STIS, and 1WFPC2. Data Set 2 adds SIS and OASIS to Data Set 1.

Data Set 3 is identical to Data Set 2, except that 1WFPC2 is replaced by 2WFPC2;

each kinematical data point in set 3 is weighted by a factor of three to make the

kinematics and photometry equivalent in the �tting procedure.

For each Data Set, we compute models for two choices of bulge model, F (e), and

i; thus, there is a group of 8 best-�t models associated with each Data Set. The two

bulge models are referred to as weak and strong, and are given by �-model parameters

� = 2:17, r0 = 108:0, and Mb = 2:3 � 1010M� and � = 1:55, r0 = 500:0, and Mb =

5:9�1010 M�, respectively. The weak bulge resembles B01's multi-Gaussian expansion

model from 400 to 1000. The strong bulge has a one-dimensional peak projected surface

brightness of 13:65mag arcsec�2, which is roughly equivalent to that at P2, and has

the same brightness as the weak bulge at 400. Figure 3.1 shows projected surface
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brightness and velocity dispersion pro�les for the two bulge models. The two F (e)s

are the Gaussian and Rayleigh distributions given in Equations 2.1 and 2.2. The

inclination is either set to i = 52:5� and Rd allowed to be a free parameter, or i is

free and Rd is �xed to Rd = 300.

3.6 Chi-square Minimization and Analysis

Best-�t models are found using the downhill simplex method (Press et al. 1992)

to minimize the reduced chi-square function

�2�(~a) =
1

N �M

NX
i=1

"
yi � y(xi;~a)

�i

#2
; (3.1)

where ~a is the set of M �tting parameters, yi is one of the N observed data points,

y(xi;~a) is the modeled data point corresponding to yi, and �i is the error estimate

associated with yi. The minimization is 11-dimensional, since the parameter set ~a

includes �, 
, �e, �!, �a, �, C, MBH , DP1, DP2, and i or Rd.

Formal error estimates in the �tted parameters ~a are obtained by �rst forming

the curvature matrix

�kl �
NX
i=1

1

�2i

"
@y(xi;~a)

@ak

@y(xi;~a)

@al

#
; (3.2)

where ak is the kth parameter. The partial derivatives are made using the central

di�erence formula at the location of the minimum �2 value. Second derivative terms
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Figure 3.1: Projected pro�les for the two bulge models. The bulge is approximated by a spherical,

non-rotating �-model that dynamically includes the inuence of the BH (Tremaine et al. 1994).

Solid lines show the weak bulge, which resembles B01's multi-Gaussian expansion model from 400 to

1000. Dotted lines show the strong bulge, which has a peak projected brightness roughly equivalent

to that at P2, and the same brightness as the weak bulge at r ' 400. Panel (a) shows the surface

brightness in the inner 1000. Panel (b) shows the inner 200 of panel (a). Panel (c) shows the projected

velocity dispersion.
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in Equation 3.2 have been ignored, following the recommendation of Press et al.

(1992). The covariance matrix [C] is then found by inverting the curvature matrix.

Squared errors in the parameters are given by the diagonal elements of [C].

Initial parameter estimates for the �tting routine were chosen based on which Data

Set the model is �tted against. For models �tting Data Set 1, the initial parameters

were assigned arbitrarily from the \M31-like" region of parameter space, as found from

trial-and-error searches. The results from the sub-grid �tting Data Set 1 were then

used as initial conditions for the corresponding sub-grid �tting Data Set 2. Similarly,

models from the sub-grid �tting Data Set 2 were used as starting points for models

�tting Data Set 3.
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Chapter 4

Modeling Results for M31

4.1 Best-Fit Models

Results for the grid of 24 models described in Section 3.5 are given in Tables 4.1,

4.2, and 4.3. Each table gives �tted parameters expressed in physical units, with

formal errors, for the 8 best-�t models associated with each Data Set. The disk mass,

Md, is given in place of �, and the peak eccentricity in e0(a), emax, and reduced chi-

square value, �2
� , are provided as well. We now give a brief data-model comparison

for a representative model from each of the three Tables.

Figures 4.1 and 4.2 show one-dimensional kinematic and photometric pro�les for

Model 2 in Table 4.1. The curves in panels (a) and (b) of Figure 4.1 show the model

rotation curve and velocity dispersion pro�le at FOC resolution; Diamonds show FOC

data for comparison. The rotation curve and dispersion pro�le at STIS resolution are

given in panels (c) and (d) of Figure 4.1; STIS data are shown as triangles. Modeled

one-dimensional HST photometry is shown as the curve in �gure 4.2; squares show

the 1WFPC2 data points described in Section 3.3.

Many of the important features in the observed pro�les are reproduced by the
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Model 1 2 3 4 5 6 7 8

Bulge Weak Weak Strong Strong Weak Weak Strong Strong

F (e) Rayleigh Gauss Rayleigh Gauss Rayleigh Gauss Rayleigh Gauss

Inclination Free Free Free Free Fixed Fixed Fixed Fixed

MBH (�107M�) 6.41 � 0.21 5.80 � 0.17 6.11 � 0.19 6.09 � 0.30 5.51 � 0.19 6.18 � 0.17 6.15 � 0.13 6.05 � 0.14

Md (�107M�) 1.15 � 0.09 1.38 � 0.09 1.52 � 0.15 1.77 � 0.14 1.62 � 0.12 2.01 � 0.12 1.61 � 0.09 1.70 � 0.10


 ( km s�1pc�1) 45.7 � 8.4 32.5 � 9.4 41.8 � 16.4 43.6 � 6.3 44.1 � 13.9 31.5 � 11.9 43.4 � 12.7 36.8 � 16.8

�e 0.1821 � 0.0049 0.2231 � 0.0055 0.1840 � 0.0067 0.2403 � 0.0078 0.1802 � 0.0058 0.2346 � 0.0057 0.1794 � 0.0067 0.2410 � 0.0080

�! (rad) 0.674 � 0.065 0.663 � 0.037 0.829 � 0.060 0.618 � 0.042 0.812 � 0.036 0.760 � 0.039 0.830 � 0.078 0.600 � 0.050

�a (arcsec) 0.0020 � 0.0035 0.0017 � 0.0006 0.0017 � 0.0006 0.0001 � 0.0020 0.0018 � 0.0016 0.0114 � 0.0067 0.0014 � 0.0020 0.0074 � 0.0020

� (arcsec) 0.14 � 0.11 0.23 � 0.14 0.15 � 0.07 0.05 � 0.23 0.07 � 0.12 0.08 � 0.04 0.15 � 0.04 0.06 � 0.21

C 0.438 � 0.097 0.522 � 0.067 0.583 � 0.084 0.506 � 0.068 0.470 � 0.088 0.460 � 0.187 0.567 � 0.084 0.487 � 0.153

Rd (arcsec) 3.00 3.00 3.00 3.00 3.82 � 0.26 3.71 � 0.28 3.49 � 0.28 3.32 � 0.28

i (deg) 74.86 � 0.35 71.41 � 0.34 52.71 � 1.17 48.17 � 1.76 52.50 52.50 52.50 52.50

DP1 (arcsec) 0.437 � 0.013 0.462 � 0.014 0.427 � 0.004 0.456 � 0.010 0.410 � 0.014 0.445 � 0.012 0.413 � 0.010 0.450 � 0.019

DP2 (arcsec) 0.07989 � 0.00005 0.07894 � 0.00015 0.07231 � 0.00034 0.07156 � 0.00042 0.07123 � 0.00060 0.05108 � 0.00260 0.07157 � 0.00007 0.07097 � 0.00372

emax 0.133 0.177 0.198 0.177 0.231 0.309 0.151 0.218

�2
�

4.40 4.34 7.22 5.79 12.53 9.48 6.71 6.50

Table 4.1: Parameter values for models �tting Data Set 1
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Model 9 10 11 12 13 14 15 16

Bulge Weak Weak Strong Strong Weak Weak Strong Strong

F (e) Rayleigh Gauss Rayleigh Gauss Rayleigh Gauss Rayleigh Gauss

Inclination Free Free Free Free Fixed Fixed Fixed Fixed

MBH (�107M�) 4.95 � 0.08 4.67 � 0.06 6.07 � 0.08 6.84 � 0.06 5.35 � 0.07 5.55 � 0.07 5.73 � 0.07 5.74 � 0.06

Md (�107M�) 1.06 � 0.03 1.39 � 0.03 1.51 � 0.04 2.18 � 0.05 1.57 � 0.04 1.91 � 0.05 1.96 � 0.04 1.99 � 0.05


 ( km s�1pc�1) 36.8 � 5.7 29.4 � 5.8 42.9 � 11.9 46.7 � 6.0 37.5 � 3.2 31.4 � 5.7 37.8 � 5.0 35.3 � 3.0

�e 0.1710 � 0.0034 0.1940 � 0.0038 0.1734 � 0.0051 0.2386 � 0.0066 0.1818 � 0.0036 0.2460 � 0.0041 0.1241 � 0.0056 0.1926 � 0.0060

�! (rad) 0.758 � 0.035 0.721 � 0.039 0.837 � 0.073 0.692 � 0.030 0.886 � 0.040 0.799 � 0.029 1.070 � 0.038 0.779 � 0.061

�a (arcsec) 0.0017 � 0.0024 0.0030 � 0.0012 0.0016 � 0.0027 0.0043 � 0.0009 0.0042 � 0.0013 0.0122 � 0.0015 0.0023 � 0.0006 0.0030 � 0.0049

� (arcsec) 0.15 � 0.09 0.28 � 0.04 0.16 � 0.03 0.07 � 0.07 0.08 � 0.07 0.12 � 0.13 0.18 � 0.05 0.12 � 0.08

C 0.431 � 0.061 0.614 � 0.035 0.587 � 0.041 0.417 � 0.054 0.471 � 0.085 0.462 � 0.058 0.306 � 0.053 0.509 � 0.158

Rd (arcsec) 3.00 3.00 3.00 3.00 3.79 � 0.19 3.86 � 0.15 4.16 � 0.10 3.33 � 0.22

i (deg) 72.04 � 0.21 68.21 � 0.24 51.53 � 0.34 43.16 � 0.35 52.50 52.50 52.50 52.50

DP1 (arcsec) 0.465 � 0.010 0.427 � 0.010 0.427 � 0.012 0.432 � 0.005 0.413 � 0.006 0.429 � 0.008 0.452 � 0.005 0.467 � 0.007

DP2 (arcsec) 0.07884 � 0.00030 0.06853 � 0.00030 0.07316 � 0.00006 0.06674 � 0.00128 0.07152 � 0.00003 0.05102 � 0.00014 0.06702 � 0.00010 0.06333 � 0.00021

emax 0.197 0.218 0.182 0.197 0.262 0.294 0.148 0.168

�2
�

3.32 2.61 3.62 2.66 3.53 2.77 2.95 2.73

Table 4.2: Parameter values for models �tting Data Set 2
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Model 17 18 19 20 21 22 23 24

Bulge Weak Weak Strong Strong Weak Weak Strong Strong

F (e) Rayleigh Gauss Rayleigh Gauss Rayleigh Gauss Rayleigh Gauss

Inclination Free Free Free Free Fixed Fixed Fixed Fixed

MBH (�107M�) 6.87 � 0.06 5.38 � 0.05 5.33 � 0.04 5.82 � 0.05 5.36 � 0.01 4.98 � 0.03 4.68 � 0.04 4.24 � 0.03

Md (�107M�) 1.40 � 0.02 1.46 � 0.03 0.83 � 0.01 0.78 � 0.01 1.58 � 0.01 1.61 � 0.01 1.06 � 0.02 1.04 � 0.01


 ( km s�1pc�1) 55.6 � 2.5 33.6 � 3.1 27.1 � 1.3 38.2 � 2.9 42.4 � 0.5 27.6 � 1.9 24.5 � 1.0 26.1 � 1.0

�e 0.2886 � 0.0010 0.2923 � 0.0013 0.1691 � 0.0012 0.3129 � 0.0026 0.2040 � 0.0003 0.2327 � 0.0009 0.2634 � 0.0014 0.3597 � 0.0018

�! (rad) 0.746 � 0.007 0.784 � 0.009 0.784 � 0.015 0.718 � 0.015 0.823 � 0.011 0.821 � 0.010 1.008 � 0.009 0.554 � 0.003

�a (arcsec) 0.0009 � 0.0001 0.0022 � 0.0001 0.0058 � 0.0009 0.0086 � 0.0018 0.0005 � 0.0003 0.0070 � 0.0009 0.0292 � 0.0074 0.0374 � 0.0046

� (arcsec) 0.06 � 0.10 0.25 � 0.13 0.20 � 0.05 0.12 � 0.05 0.04 � 0.07 0.14 � 0.02 0.26 � 0.04 0.02 � 0.09

C 0.384 � 0.011 0.625 � 0.006 0.593 � 0.009 0.492 � 0.011 0.445 � 0.026 0.467 � 0.019 0.263 � 0.029 0.466 � 0.032

Rd (arcsec) 3.00 3.00 3.00 3.00 4.20 � 0.04 4.11 � 0.05 3.77 � 0.04 2.98 � 0.04

i (deg) 41.31 � 0.15 49.43 � 0.14 62.57 � 0.08 61.23 � 0.14 52.50 52.50 52.50 52.50

DP1 (arcsec) 0.483 � 0.002 0.456 � 0.003 0.545 � 0.006 0.465 � 0.007 0.435 � 0.001 0.426 � 0.004 0.679 � 0.007 0.775 � 0.009

DP2 (arcsec) 0.07874 � 0.00109 0.06569 � 0.00084 0.07116 � 0.00028 0.06725 � 0.00004 0.07100 � 0.00093 0.05429 � 0.00071 0.05672 � 0.00029 0.06831 � 0.00033

emax 0.086 0.116 0.088 0.004 0.065 0.091 0.214 0.306

�2
�

10.56 10.98 15.55 18.42 10.32 11.33 15.90 15.21

Table 4.3: Parameter values for models �tting Data Set 3
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model. These features include the asymmetric rotation amplitudes in both the FOC

and STIS pro�les, the o�set zero-velocity crossing (ZVC), the low velocity dispersion

at � �0:005, and the shape of the brightness pro�le near P1 and outside 0:006.

The detailed shape of the FOC rotation curve near v = 0km s�1 is not exactly

reproduced by the model; but this part of the pro�le could be improved by adding a

small amount of rotation to the bulge. More conspicuously, the position of maximum

velocity dispersion is not reproduced, especially in the STIS data. This is a ubiquitous

property of all of the �ts. It is not clear whether the problem lies with the models

or with the data. We defer discussion of this issue to Section 4.2 and Chapter 5, and

focus here on the amplitude of the dispersion peak.

Figure 4.3 shows one-dimensional kinematic pro�les for model 10 in Table 4.2.

The photometric pro�le is very similar to Figure 4.2. Figure 4.3 includes SIS rotation

and dispersion pro�les in panels (e) and (f). Panels (a) and (b) of Figure 4.4 show

two-dimensional OASIS mean-velocity and velocity dispersion �elds, while panels (c)

and (d) show the corresponding model kinematic pro�les. One-dimensional model

FOC and STIS kinematic pro�les for Model 10 are similar to those found for Model

2. Parameters shift by at most 30% when SIS and OASIS kinematics are added in

the �tting routine. The SIS rotation curve is well reproduced by the model, but the

dispersion pro�le is not as well �t. The kinematic major axis is PAK = 55:3� for

Model 10, which is close to the measured value of 56:4� (B01). The assumption that

the line-of-nodes is at PAn = 56:4� appears valid (see Section 3.1).

Figures 4.5 and 4.6 show one and two-dimensional kinematic pro�les for Model 17



58

Figure 4.1: Solid lines show one-dimensional kinematic pro�les for Model 2, which is representative

of models in Table 4.1. Shown are the (a) rotation curve and (b) velocity dispersion pro�le at

FOC resolution, and the (c) rotation curve and (d) velocity dispersion pro�le at STIS resolution.

FOC data from Statler et al. (1999) are shown as diamonds and STIS data from B01 are shown as

triangles. The UV peak is at the origin. The model reproduces the asymmetric rotation amplitudes,

the o�set zero-velocity crossing, and the low velocity dispersion at � 0:005. The location of the peak

in velocity dispersion is problematic, and is discussed in Section 4.2 and Chapter 5.
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Figure 4.2: The solid line shows the one-dimensional photometric pro�le for Model 2 in Table 4.1.

Squares show I band WFPC2/HST data (L98), averaged over a slit of width 0:00353 and pixel scale

l = 0:000456, at position angle PA= 52:5� (as in KB99); we refer to this as 1WFPC2 data. The UV

peak is at the origin. The shape of the brightness pro�le near P1 and outside 0:006 is reproduced by

the model.
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Figure 4.3: Solid lines show one-dimensional kinematic pro�les for Model 10, a representative model

from Table 4.2. FOC and STIS velocity pro�les are shown in Panels (a) through (d), as in Figure 4.1.

Panels (e) and (f) show the rotation curve and velocity dispersion at SIS resolution, respectively;

SIS data from KB99 are shown as error bars. Model 10 is similar to Model 2, since parameters shift

by 30% at most when SIS and OASIS kinematics are included in the �t.
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Figure 4.4: Two-dimensional kinematic pro�les for Model 10 in Table 4.2. Shown are the (a)

mean-velocity �eld and (b) velocity dispersion �eld from OASIS (B01), and the (c) mean-velocity

�eld and (d) velocity dispersion �eld of the model. Mean-velocity contours run from -250 km s�1

to 250 km s�1 in steps of 25 km s�1. Velocity dispersion contours run from 0 km s�1to 300 km s�1in

steps of 25 km s�1. The thick line shows the zero isovelocity contour and the 200 km s�1 isovelocity

dispersion. The UV peak is labeled with an asterisk. The kinematic axis is at PAK = 56:4� and

PAK = 55:3� in the data and model, respectively; this validates our choice of equating the PA of

the line-of-nodes with PAK (Section 3.1).
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in Table 4.3. Figure 4.7 shows two-dimensional photometry from 2WFPC2; panel (a)

shows the data, while panel (b) shows the corresponding plot for the model. Model

17 does not �t the one-dimensional kinematic pro�les as well as Model 10. Replacing

1WFPC2 with 2WFPC2 when moving from Data Set 2 to Data Set 3 can cause disk

parameters to shift by more than 100% in some cases. However, the range of BH

masses is not signi�cantly altered by the changes. The mean-velocity map for Model

17 �ts the OASIS data well; the contours are more circular than those found for

Model 10. The kinematic axis is at 56:9�, similar to its value in the data.

Figure 4.7 shows that the surface brightness distribution of Model 17 has a promi-

nent P1 structure, but that it has a crescent shape. Crescent-shaped brightness dis-

tributions are found in our models, and are probably a result of limiting the model

to two-dimensions. A discussion on this point is given in Chapter 5.

The kinematic pro�les in Figures 4.1 through 4.6 suggest that the� 70� inclination

of Models 2 and 10 is too large. Models with i � 50�, like Model 17, are better able

to �t the amplitude of the dispersion spike (Figure 4.5) and the OASIS velocity map

(Figure 4.6).

The rotation curve for models with i � 50� and a weak bulge typically over-rotates

inside 0:004, as seen in Figure 4.5. A stronger bulge cusp may improve the �t to the

inner rotation curve for low-inclination models. Figure 4.8 shows kinematic pro�les

for Model 4 in Table 4.1, which includes the strong bulge model. The strong bulge

model is too strong in this case, as can be seen from the nearly-at FOC rotation

curve near x = 000 (panel a), but it is clear that a stronger inner bulge can lessen
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Figure 4.5: Solid lines show one-dimensional kinematic pro�les for Model 17, a representative model

from Table 4.3. Panels (a) through (f) show FOC, STIS, and SIS pro�les, as in Figure 4.3. The

quality of the �t diminishes when two-dimensional photometry is added in the �t; compare this plot

with Figures 4.1 (Model 2) and 4.3 (Model 10). Models with i � 50�, like Model 17, are better able

to �t the amplitude of the dispersion spike.
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Figure 4.6: Two-dimensional kinematic pro�les for Model 17 in Table 4.3. Shown are the (a)

mean-velocity �eld and (b) velocity dispersion �eld from OASIS, and the (c) mean-velocity �eld

and (d) velocity dispersion �eld for the model. Mean-velocity contours run from -250 km s�1 to

250 km s�1 in steps of 25 km s�1. Velocity dispersion contours run from 0 km s�1 to 300 km s�1 in

steps of 25 km s�1. The thick line shows the zero isovelocity contour and the 200 km s�1 isovelocity

dispersion. The UV peak is labeled with an asterisk. Models with i � 50� provide a better match

to the OASIS velocity map; compare with Figure 4.4.
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Figure 4.7: Two-dimensional photometric pro�le for Model 17 in Table 4.3. Panel (a) shows

2WFPC2 data, which is the I band WFPC2/HST data from L98, binned on an 80 � 80 grid

with spacing 0:0005; panel (b) shows the corresponding model surface brightness. Contours run

from 14magarcsec�2 to 12magarcsec�2 in steps of 0.25magarcsec�2. The thick line shows the

13.0magarcsec�2 contour. Two-dimensional models possess crescent-shaped P1 distributions; see

Chapter 5 for a discussion. Model 17 has a weak bulge, so the central surface brightness is weak.
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over-rotation in the central regions. A stronger bulge can also improve the �t to

the surface photometry near the UV peak and P2. The strength of the central dip

between P1 and P2 (Figures 4.2 and 4.7) increases when the inclination is reduced.

A stronger bulge cusp can �ll in the missing light in the hole, but at the cost of

attening the rotation curve near the origin.

4.2 The Supermassive Black Hole in M31

Table 4.4 gives the weighted averages and total uncertainties of parameter values

in each of the three Tables (4.1, 4.2, and 4.3) taken separately, and altogether as one

combined grid of models. The total uncertainty is given by the quadrature sum of the

statistical and systematic uncertainites. The statistical uncertainty is given by the

weighted average of the statistical errors in each model. The systematic uncertainty is

given by the weighted standard deviation of the best-�t values in each table. Weighted

averages and uncertainties for Rd and i include only those models for which the

parameter was free in the �tting. A mean and standard deviation is given for emax.

We take the averages and uncertainties computed from Table 4.2 (Data Set 2)

as the statement of our best results. Data Set 3 is dominated by photometric data

outside 100, which is somewhat poor in quality and de-emphasizes the disk asymmetry.

This also applies to the results for the full grid of models (the fourth column of Table

4.4), since results from Data Set 3 dominate in weighted averages due to their small

errors. Parameter results from Data Set 2 are also consistent, to roughly 1�, where
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Figure 4.8: Solid lines show one-dimensional kinematic pro�les for Model 4 in Table 4.1, which has

a strong bulge; Models 10 (Figure 4.3) and 17 (Figure 4.5) have a weak bulge. A stronger bulge cusp

can diminish over-rotation near the origin in models with i � 50�. The bulge is too strong here, but

the e�ect is clearly demonstrated in the FOC rotation curve in Panel (a).
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Parameter Table 4.1 Table 4.2 Table 4.3 All Tables

MBH (�107M�) 6.04 (0.24) 5.62 (0.66) 5.24 (0.43) 5.29 (0.49)

Md (�107M�) 1.54 (0.26) 1.57 (0.38) 1.34 (0.33) 1.36 (0.34)


 ( kms�1pc�1) 40.9 (6.3) 36.5 (4.2) 36.7 (8.3) 36.7 (8.1)

�e 0.2047 (0.0261) 0.1894 (0.0323) 0.2220 (0.0383) 0.2208 (0.0384)

�! (rad) 0.717 (0.086) 0.806 (0.115) 0.666 (0.142) 0.671 (0.142)

�a (arcsec) 0.0019 (0.0013) 0.0036 (0.0025) 0.0014 (0.0012) 0.0016 (0.0014)

� (arcsec) 0.12 (0.05) 0.17 (0.07) 0.15 (0.06) 0.15 (0.06)

C 0.515 (0.055) 0.505 (0.109) 0.554 (0.094) 0.551 (0.094)

Rd (arcsec) 3.59 (0.24) 3.96 (0.27) 3.69 (0.51) 3.71 (0.50)

i (deg) 71.81 (5.44) 63.51 (10.80) 56.89 (8.10) 58.56 (9.24)

DP1 (arcsec) 0.431 (0.014) 0.438 (0.017) 0.453 (0.050) 0.450 (0.046)

DP2 (arcsec) 0.07663 (0.00401) 0.07063 (0.00424) 0.06711 (0.00181) 0.07125 (0.00503)

emax 0.199 (0.055) 0.208 (0.049) 0.121 (0.095) 0.176 (0.077)

Table 4.4: Weighted averages and total uncertainties (parentheses) for �tted parameters in Tables

4.1, 4.2, and 4.3 separately, and taken all together. The total uncertainty is given by the quadrature

sum of the statistical and systematic uncertainties, as described in Section 4.2. Weighted averages

and uncertainties for Rd and i include only models for which that parameter was free. A mean and

standard deviation is found for emax.
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� is the uncertainty, with results from the other two Data Sets (Data Sets 1 and 3).

The mass of the BH in M31 is thus 5:62�0:66�107M�. Other authors �ndMBH

values of 0:1 � 1 � 107M� (Dressler 1984), 3 � 7 � 107M� (Dressler & Richstone

1988), 0:3 � 10 � 107M� (Kormendy 1988), 4 � 5 � 107M� (Richstone, Bower, &

Dressler 1990), 7� 107M� (Bacon et al. 1994), 7:5� 107M� (T95), 7� 10� 107M�

(Emsellem & Combes 1997), 3:3� 1:5 � 107M� (KB99), 3:5 � 8:5 � 107M� (B01),

and 10:2� 107M� (PT03).

Results from Table 4.4 suggest that the BH is located in the UV peak. The

parameter DP2 gives the BH-P2 separation along the disk major axis. We �nd DP2 =

0:00071� 0:00004, which is close to the 0:00076 P2-UV peak separation measured by B01.

Also, the measured P1-UV peak separation of 0:0044 (B01) is consistent with the 0:00438�

0:00017 value for the P1-BH separation, DP1. The UV peak does not lie along the

major axis (PAd). There is a � 0:0002 perpendicular o�set between the PAd line and

the UV peak. When projected onto the P1-P2 axis, the P1-UV peak and UV peak-P2

separations are 0:00439 and 0:00074, respectively, which are consistent withDP1 and DP2.

The UV peak has a � 0:002 half-power width, so the perpendicular o�set is negligible.

We �nd that the location of the spike in velocity dispersion in the models is al-

ways close to that of the BH. Physically, this is expected, since the bulge dispersion

must peak near the BH if the latter dominates the gravity, and disk material orbiting

close to the BH will produce the same e�ect. Since the BH is in the UV peak and

not near P2, where the spike is found in the data, our models are not able to repro-

duce the o�set location of the dispersion spike. Three possible explanations for this
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inconsistency include: �rst, that there is a problem with the positional registration

of the data; second, that the models are correct in essence but missing an essential

component, such as retrograde orbits; third, that the basic assumptions of the model

incorrectly describe the double nucleus in M31. Further discussion will be given on

these points in Chapter 5.

4.3 Disk Properties

The mass of the eccentric disk in M31 is Md = 1:57� 0:38� 107M� (within � 14

pc). T95 �nds Md = 1:2 � 107M� (within 5:5 pc) for his simple model consisting

of three Keplerian ringlets. B01 �nd Md = 1:7 � 107M� (within 10 pc) in their

N-body simulation of an m = 1 mode in a cold disk. SS02 �nd Md = 1:4 � 107M�

for a disk constructed using a Schwarzschild-type method. The recent photometric

decomposition in P02 gives 2:1� 107M� for the sum of P1 and P2.

The disk rapidly precesses at speed 
 = 36:5 � 4:2 km s�1pc�1; corotation is at

r � 1:0052 for this 
. Model disks in papers from other authors have precession rates

of 3 km s�1pc�1 (B01), 16 km s�1pc�1 (SS02), and � 17 km s�1pc�1 (for � � 0:28 in

N-body simulations of lopsided modes in annular disks; Jacobs & Sellwood 2001);

Sambhus & Sridhar (2000) �nd 
 = 34 � 8 km s�1pc�1 and 
 = 20� 12 km s�1pc�1

using a variant on the Tremaine & Weinberg (1984) method for two di�erent �ts to

the bulge.

Figure 4.9 shows a contour plot of the surface density (panel a), the set of backbone
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orbits (panel b), and the function e0(a) (solid line in panel c) describing the orbit

sequence for the disk of Model 14 in Table 4.2. Model 14 provides a good example

of the properties exhibited by models �tting Data Set 2, and has a BH mass close to

the weighted average in Table 4.4.

The non-axisymmetric density distribution shown in panel (a) is typical of that

found in our �ts. The strong density minimum near the origin is indicative of a

narrow radial mass distribution (�a = 0:00012) and a large central hole (� = 0:0012).

The shape of the backbone orbit sequence shown in panel (c) is similar for models

with Gaussian and Rayleigh F (e)s. The sequence of orbits follows a steep eccentricity

gradient through the densest part of the disk (a � 0:004), but there is no tendency

for the sequence to reverse apoapses to the anti-P1 side of the disk following this

gradient (making e negative), as found in S99 and Salow & Statler (2001). Even

though models �tting M31 do not show an eccentricity sign reversal, such models do

exist for lower values of 
; see Chapter 5 for a discussion. An eccentricity reversal is

found in some models inside a � 0:0015, but the minimum eccentricity never dips below

emin = �0:05 (see the dotted line in Figure 4.9c for an example). Backbone sequences

similar to ours are found for models in B01, SS02, and PT03, except for the small

eccentricity reversal at low semi-major axis in some models. The peak eccentricity is

small (emax = 0:294); other authors �nd emax values of � 0:7 (B01), � 0:7 (SS02), and

� 0:6 (PT03). Disk asymmetry, and thus emax, is most strongly a�ected by changes

in �, 
, and �!. Increasing �, decreasing ��, or decreasing 
 by 20% increases emax

by � 30%.
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Figure 4.9: (a) Disk-only density contours for Model 14 in Table 4.2, which has MBH = 5:55 �

107M�, similar to our overall best-�t value of 5:62� 0:66� 107M�. Contours are at 0.2, 0.35, ...,

0.95 of the maximum density. The 95% contour is labeled with a thick line. The central point mass

is at (0,0), near the point of minimum density. (b) Uniformly precessing periodic orbits in the total

potential. The radial variation of eccentricity is a consequence of disk self-gravity. (c) The solid line

shows the eccentricity of the orbits in (b) plotted against the semimajor axis; this is the function

e0(a) in Equations 2.1 and 2.2. The dotted line shows e0(a) for Model 16, which has backbone orbits

that switch apoapses to the anti-P1 side of the BH at low semimajor axis; many of our models share

this behavior.
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Figure 4.10 shows mean velocity vectors and velocity ellipsoids for the disk of

Model 14, plotted over the density distribution. Figure 4.11 shows the same inside

0:002, with the velocity vectors and ellipsoids scaled by 1/5 of their values in Figure

4.10. A �gure similar to Figure 4.11 is shown for the disk of Model 13 in Figure 4.12;

Model 13 has a Rayleigh eccentricity distribution.

Velocity ellipsoids are elongated in the radial direction, with vertex deviations

typically less than 10� and always less than 30�.1 From epicycle theory, �R=�T ' 2

for a Keplerian disk, where �R and �T are the radial and tangential dispersions,

respectively (Binney & Tremaine 1987). Figure 4.13, which plots the ratio of major

to minor axes for velocity ellipsoids as a function of radius, shows that ellipsoids from

Models 14 (panel a) and 13 (panel b) approximately follow this trend beyond r � 0:004.

The point of transition away from Keplerian behavior occurs near the peak in e0(a)

at a ' 0:003.

Comparison of Figures 4.11 and 4.12 shows that the disk velocity dispersion is

larger in Model 14. This results from the singular nature of the Gaussian form of F (e)

at e = 0 (see Section 2.2). The singularity causes there to be two orbit populations:

�rst, a normal population of eccentric orbits around e0(a), and second, an extra

population of circular orbits from the singularity. Di�erences in eccentricity between

the two populations increases the velocity dispersion. The increase in dispersion is

more prominent at radii where e0(a) is signi�cantly di�erent than zero.

1Vertex deviation is de�ned as the inclination of the principal axis of the velocity ellipsoid with
respect to the direction of the BH.
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Figure 4.10: Disk-only mean velocity vectors (arrows) and velocity ellipsoids (ellipses) plotted

over the surface density (contours) for Model 14 in Table 4.2, which has a Gaussian F (e). Density

contours are at 0.1, 0.2, ..., 1.0 of the maximum density. An asterisk marks the location of the

BH. Velocity ellipsoids in our disks are elongated in the radial direction, as expected from epicycle

theory; most ellipsoids have a vertex deviations of < 10�, and the maximum deviation is � 30�.
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Figure 4.11: Same as in Figure 4.10 for the inner 0:002. Velocities are scaled to 1/5 of their values

in Figure 4.10.
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Figure 4.12: Similar to Figure 4.11, but for the disk in Model 13 in Table 4.2, which has a Rayleigh

F (e). Comparison with Figure 4.11 shows that the velocity dispersion in a disk with a Gaussian

F (e) is larger; the singularity at e = 0 in the Gaussian distribution causes there to be an extra

population of circular orbits, in addition to the normal eccentric population about e0(a).
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Figure 4.13: Ratio of major to minor axes for disk-only velocity ellipsoids as a function of radius

from the BH. (a) For Model 14, which has a Gaussian F (e). (b) For Model 13, which has a Rayleigh

F (e). Dotted lines show an axis ratio of 2, which is expected from epicycle theory for a Keplerian

disk. The departure from Keplerian behavior occurs near the peak in e0(a) at a ' 0:003.
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Chapter 5

Discussion

We �nd that the mass of the central BH in M31 is 5:62 � 0:66 � 107M�. To

put our result into context, we show BH mass estimates from various authors (see

Section 4.2) in Figure 5.1 as a function of publication date. With the exception

of the Dressler (1984) and KB99 values, all BH mass estimates are consistent with

MBH � 5 � 107M�. Dressler's value was estimated from gradients in M=L and �,

rather than from kinematic and photometric modeling, and thus is only an order-of-

magnitude estimate. KB99's value was determined using the displacement of the UV

peak relative to the bulge center, and may be low due to systematic errors in position

measurements (PT03).

The cross in Figure 5.1 shows the BH mass estimate from the slope of theMBH - �

correlation given in Tremaine et al. (2002). Recall that the authors �nd log(MBH=M�) =

(8:13�0:06)+(4:02�0:32) log(�=200 km s�1), from a sample of 31 galaxies with reli-

able BH masses and dispersion measurements. For M31, � = 160�8 km s�1 (Tremaine

et al. 2002), which gives MBH = 5:5� 1:5� 107M� using the correlation. The close

agreement between this value and ours is rather remarkable.
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Figure 5.1: M31 BH mass versus publication date for the values reported in Section 4.2. Diamonds

give the median value when a range of BH masses was published. Asterisks show BH masses for

which no error estimate or range was provided. Also plotted is our best-�t value, 5:62�0:66�107M�,

denoted by a square, and the value computed from the MBH - � correlation given in Tremaine et

al. (2002), 5:5� 1:5� 107M� (assuming their value of 160� 8 km s�1 for the dispersion), denoted

by a cross. The close agreement between our value and that from the correlation is remarkable.
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Our BH mass is signi�cantly lower than that found by PT03 in their �t to bulge-

subtracted SIS/CFHT data (KB99) using Monte-Carlo simulations of eccentric disks

built from non-interacting Kepler orbits. They �nd MBH = 10:2� 107M� for their

non-aligned model, in which the orientation of the disk is �tted to the data; error

bars are not given with this measurement. This value is more than 60% larger than

the upper limit for our measurement.

Understanding this discrepancy is di�cult, due to fundamental di�erences in

model approximations. PT03 ignore disk self-gravity and precession, but include

the three-dimensional structure of the disk; our disks include self-gravity and pre-

cession, but are assumed to be thin, and limited to two dimensions. PT03 suggest

that ignoring the disk self-gravity is likely to cause the BH mass to be 10� 20% too

large. However, it is unknown how including both self-gravity and precession together

would further a�ect their mass value, especially if the precession rate is as large as we

�nd in our models (36:5� 4:2 km s�1pc�1). Similarly, it is di�cult to ascertain how

including a vertical structure to our disks would a�ect MBH , 
, and possibly other

parameters.

Results from PT03 suggest that some vertical structure is needed to match the

photometry. Their non-aligned model reproduces the well-de�ned double structure

of M31's nucleus, whereas our two-dimensional simulations produce crescent-shaped

P1 structures. The dip in surface brightness between P1 and P2 is reproduced in

their models, even with the disk at i = 54�; our models possess overly-strong central

surface brightness minima, unless a strong bulge cusp is included in the model. PT03
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also give dynamical reasons for having vertical structure in the disk. Using results

from studies of disk heating by two-body relaxation in protoplanetary disks (Ohtsuki,

Stewart, & Ida 2002), they show that their non-aligned disk must have a vertical-to-

radial axis ratio of � 0:25 in the radius range 0:5� 100. This being said, PT03 point

out that the e�ect on the kinematics is less dramatic than for the photometry. Since

weighting of the data is dominated by one and two-dimensional kinematics in our best

�ts (Table 4.2), our value for the BH mass should su�er only minor modulation with

the addition of the third dimension. Vertical dispersion would increase the overall line

of sight velocity dispersion, while minimally a�ecting the rotation curve; this would

improve the �t in models like Model 2 ( Figure 4.1), which has a small dispersion

spike.

PT03 present bulge-subtracted LOSVDs from unpublished STIS observations of

M31's nucleus (Bender et al. 2003) at a few locations within �0:0015 of the UV peak,

along with model LOSVDs extending another �0:0025, in their Figure 15. We show

corresponding LOSVDs for Models 14 and 13 as solid and dotted lines in Figure 5.2,

respectively. LOSVDs from Bender et al. possess multiple maxima, some of which

may be real features. Of particular interest are their LOSVDs at 0:0010 and 0:0015, both

of which show a small bump near v = 750 km s�1; our LOSVDs also show these bumps,

which occur at supracircular velocities, as indicated by the arrows in our Figure 5.2.

Supracircular peaks occur when the tangent point falls near the pericenters of orbits

with substantial eccentricity. Such features arise from the characteristic density and

eccentricity structure of the disk, and can be used as sensitive discriminants of disk
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structure in the nucleus of M31 (as was found in Salow & Statler 2001).

Model LOSVDs from PT03 do not have multiple maxima; instead, they �nd

asymmetric LOSVDs with strong wings toward prograde velocities. However, their

LOSVDs between 0:0010 and 0:0020 have a shoulder that appears to move inward toward

v = 0km s�1 in the same manner as the bump at supracircular velocities does in our

LOSVDs. This may be a signature of the tangent point traversing the pericenters of

eccentric orbits, with the gap between the maxima somehow �lled in by the density

structure of the disk.

We show disk-only LOSVDs at the resolution of STIS along the kinematic axis

(PAK = 56:4�) in Figure 5.3 for Models 14, 12, and 10 from Table 4.2, which have BH

masses of 5:55� 107M�, 6:84� 107M�, and 4:67� 107M�, respectively. These are

shown as predictions for upcoming STIS observations, which should yield S=N � 120

in the 4500 � 5500�A region, and allow detailed features in the LOSVD to be seen

(Cycle 12 ID-9859, E. Emsellem, PI). MBH , Md, and 
 all increase from Model 10

to Model 14 to Model 12. The most signi�cant di�erences in LOSVDs are seen

between Model 10 and the other two, mostly due to the � 16� inclination di�erence.

LOSVDs for Models 14 and 12 are similar throughout much of the near-UV peak

region, though there are measurable di�erences in the number of maxima and their

strength and location, especially between �0:0010 and 0:0005. Thus, with high S/N, it

should be possible to di�erentiate between models using LOSVDs.

The Bender et al. (2003) velocity dispersion pro�les presented in PT03 (their

Figure 12) deserve special mention. The dispersion spike in their bulge-subtracted
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Figure 5.2: Disk-only LOSVDs near the UV peak for Model 14 (solid lines) and Model 13 (dotted

lines) from Table 4.2, for the 0:001 wide STIS slit along PA= 39�. The distance from the UV peak

along the slit is given above each panel. Arrows mark the circular speed at the tangent point.

These are to be compared with LOSVDs from unpublished STIS observations (Bender et al. 2003)

presented in PT03 (their Figure 15). Both model and data show a small bump at supracircular

velocities in the 0:0010 and 0:0015 Panels; these result from the density and eccentricity structure of

the disk.
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Figure 5.3: Disk-only LOSVDs for Model 14 (solid lines), Model 12 (dotted lines), and Model 10

(dashed lines) from Table 4.2, for the 0:001 wide STIS slit along the kinematic axis (PA= 56:4�). The

distance from the UV peak along the slit is given above each panel. MBH , Md, and 
 all increase

from Model 10 to Model 14 to Model 12; Model 10 is at i = 68�, compared to i = 52:5� for the

other two. These are shown as predictions for upcoming STIS observations at S=N � 120. The

three models can be distinguished between �0:0010 and 0:0005, so with high S=N it should be possible

to di�erentiate between models using LOSVDs.
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STIS pro�le is o�set from the UV peak by only 0:0008, compared to the � 0:002 o�set

found by B01 in both STIS (their Figure 11) and slit-averaged OASIS (their Figure

8) dispersion pro�les. The large o�set cannot be reproduced by our models. But

the � 0:001 discrepancy suggests that there may be a problem with the positional

registration of the data in either the Bender et al. (2003) or B01 results. The

Bender et al. results are bulge-subtracted, unlike in B01, but the addition of a bulge

component should move the dispersion spike slightly closer to the UV peak, not away

from it, if the BH is centered in the bulge. Bender et al.'s pro�le is favored by our

models, which typically have the dispersion spike only slightly o�set toward P2; for

example, the dispersion pro�le for Model 10 (Figure 4.3) has a dispersion spike o�set

of � 0:03 from the UV peak.

If the dispersion spike really is o�set from the UV peak by � 0:002 toward P2, then

either our models are essentially correct but missing a key ingredient, or the basic

assumptions of the model incorrectly describe M31's nucleus. This second possibility

is unlikely, given that our models are able to reproduce many of the key features in

both the kinematic and photometric data; the same holds true for models presented

in T95, KB99, B01, Salow & Statler (2001), SS02, Jacobs & Sellwood (2001), and

PT03. As for the �rst possibility, one suggestion is the addition of retrograde orbits.

Our models include only prograde orbits. SS02, who build their model using an orbit

library with both prograde and retrograde orbits, �nd that the �t near P2 is improved

greatly with the addition of retrograde orbits comprising only 3:4% of the total disk

mass. However, the dispersion spike in their model is located very close to the UV
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peak, even with retrograde orbits (see their Figure 4). As a rough test, we added

velocity moments from retrograde orbits comprising 0:05Md to a few models before

convolution with the PSF. A set of retrograde periodic orbits was found numerically

in the same way as was done for the prograde orbits, and the moments were found

using the DF, as in Section 2.3. We similarly found that the dispersion spike did

not signi�cantly move. It should be noted that these tests were performed using the

same F (a) and other disk parameters, excepting Md, as the main eccentric disk itself,

which may not realistically describe the hypothetical retrograde population.

Using a simple heuristic velocity model, B01 �nd that the best overall �t to FOC,

STIS and slit-averaged OASIS kinematics requires a high velocity component in the

central 0:003 aligned with the kinematic axis. This component is added to reproduce

the abrupt jump in the FOC rotation curve near x = 0:001 (see Figure 4.1). B01 argue

that, with the addition of this component, the dispersion spike is then just the result

of the e�ect of velocity broadening. The high velocity component may be related to

retrograde orbits. The question of whether or not retrograde orbits can a�ect the

dispersion spike clearly needs further investigation.

We �nd that disks with i = 52:5� provide the best match to the two-dimensional

kinematics and photometry. This inclination is consistent with that found by depro-

jecting the nucleus, assuming a thin disk (B01, SS02, P02), and with PT03's �t for

their non-aligned model. Thus, the nuclear disk is most likely not aligned with the

large-scale disk of M31, which is at i = 77� with the line-of-nodes at PAn = 38�
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(T95). M31's bulge is thought to be triaxial, and possibly aligned with the large-

scale disk (Lindblad 1956, Stark 1977, Stark & Binney 1994, Berman 2001, Berman

& Loinard 2002). The nuclear disk should then be subject to dynamical friction from

the bulge, which acts to damp the inclination di�erence on the precession time (� 107

yr; PT03 and references therein). At that timescale, the inclination di�erence should

have been damped out long ago, since absorption-index radial pro�les suggest that

the age of the nuclear disk is roughly 1=3 that of the bulge (Sil'chenko et al. 1998),

which is on order of a Hubble time. However, the recent photometric decomposition

by P02 suggests that the inner bulge may be spherical, rather than triaxial. P02

�nds that the overall bulge is �t best by two components; an inner, nearly spheri-

cal component (axis ratio q = 0:97 � 0:02) described by a S�ersic (1968) light pro�le

with e�ective radius 3:0031 and exponent n = 0:83, and a large-scale, more elliptical

component (q = 0:81� 0:01) described by a Nuker law (Lauer et al. 1995) of break

radius 66:0048 and an asymptotic inner power law slope  = 0:17. The mass of the

spherical component is Ms = 2:8�107M�, roughly half of the mass of the BH. If this

is correct, then the bulge potential is spherical around the nucleus, which might allow

the non-aligned orientation to survive, even if the outer bulge is triaxial. Another

possible way to avoid dynamical friction from the bulge is to have an axisymmetric

bulge which is aligned with the nuclear disk (PT03). It is intriguing that Ruiz (1976)

�nds that an axisymmetric bulge is consistent with kinematic and photometric data

if i = 55�.

All of the models presented in this paper have a backbone orbit sequence, e0(a),
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similar to that shown for Model 14 (the solid line in Figure 4.9c), in which there is no

tendency for the orbits to switch their apoapses to the P2 side of the disk following

the large negative eccentricity gradient. This is contrary to the the �ndings of S99

and Salow & Statler (2001). B01 and SS02 also �nd e(a)s similar to that for Model

14, though with a larger maximum eccentricity (emax � 0:6). Many of our models do,

however, show such a switch at low semimajor axis, before the maximum in e0(a) (see

the dotted line in Figure 4.9c), as in Salow & Statler (2001). Tremaine (2001) �nds

such a switch on both sides of a maximum in e(r), where r is the radius from the

central massive object, for certain slow p-modes in nearly Keplerian disks with soft-

ened gravity, using the WKB approximation (see his Figures 6 and 9); self-gravitating

disks with signi�cant velocity dispersion support prograde \pressure" modes, corre-

sponding to Tremaine's p-modes (B01). Models like ours can, in principle, possess

e0(a)s with an eccentricity sign switch after maximum, or on both sides of maximum,

but only if 
 is decreased by about 40% from the values we �nd in our �ts to M31.

For example, Figure A.1a in Appendix A shows e0(a) for an arbitrary model with

� = 0:2 and 
 ' 12 km s�1pc�1.

The small value for emax in our models (0:21 � 0:05) is a consequence of the

large precession rate (36:5� 4:2 km s�1pc�1). Lagrange's planetary equations for the

secular evolution orbital elements undergoing an external perturbation have 
 '

(1=na2e)(@R=@e), where n is the mean motion and R is the Disturbing Function, or

perturbing potential (Murray & Dermott 1999); thus, e � 1=
. Models in B01 and

SS02 have larger values for emax (� 0:7) and lower precession rates (3 km s�1pc�1 and
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16 km s�1pc�1, respectively), in agreement with the rough trend emax � 1=
. It is

interesting to note that the precession rate measured using the Tremaine & Weinberg

(1984) method gives 
 = 34� 8 km s�1pc�1 and 
 = 20� 12 km s�1pc�1 for a Nuker

and S�ersic �t to the bulge (Sambhus & Sridhar 2000), respectively, both of which are

consistent with our value for 
.

The question of how the eccentric disk formed in M31 is still an open question.

Currently, two formation scenarios are favored: �rst, that an initially axisymmetric

disk becomes lopsided due to an external perturbation (T95, B01, P02, PT03), or by

a dynamical instability (Touma 2002, SS02); second, that the disk is formed when

an infalling star cluster is tidally stripped by the central BH (Bekki 2000, Quillen &

Hubbard 2003). The external perturbation may come from a globular cluster or giant

molecular cloud passing by the disk (B01, P02), or by the inuence of dynamical

friction from the bulge (T95, PT03), both of which may excite the mean eccentricity

of the disk. Using a softened analogue of the Laplace-Lagrange secular theory for

interacting planar Keplerian rings, Touma (2002) showed that a small fraction of

counter-rotating stars is su�cient to cause a pre-existing disk to develop a linear

m = 1 instability. The retrograde orbits may have originated from a tidally disrupted

stellar cluster on a retrograde orbit (SS02); Tremaine et al. (1975) have shown that

dynamical friction can cause globular clusters to spiral into the nucleus and be tidally

disrupted.

Bekki (2000) performed N-body simulations in which a globular cluster is dis-

rupted by a massive BH, and found that a long-lived eccentric disk can be produced.
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The progenitor cluster, however, was only about one-tenth as massive as the disk in

M31. From simple tidal disruption arguments in a single disruption-event scenario,

Quillen & Hubbard (2003) show that many Galactic globular clusters satisfy core

radius and density requirements necessary for the formation of an eccentric disk near

the BH, supporting Bekki's simulations. Normal globular clusters are not massive

enough, however, to be plausible progenitors, and their colors are unlike those in the

nucleus. Instead, Quillen & Hubbard suggest that a dense bulge core or nuclear star

cluster might be the progenitor, since both can be massive and compact enough to

satisfy requirements for M31. They point out that if merging galaxy bulges can form

eccentric disks, then such disks would be a natural consequence of hierarchical galaxy

formation.

An interesting connection may exist between the disruption-event scenario and

the spherical inner bulge found by P02. Milosavljevic & Merritt (2001) perform

N-body simulations of merging stellar systems with black holes, and �nd that the

inward-spiraling binary black holes scatter stars from the center via gravitational

slingshot. P02 suggests that these ejected stars could form a spherical distribution

after redistribution in phase space. If this is true, then the presence of the spherical

bulge component would lend support to the idea that the disk formed during a merger

of galaxies with central BHs.
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Chapter 6

Conclusion

Our models of eccentric stellar disks around central black holes incorporate self-

gravity, �nite velocity dispersion, and gravity-induced precession, in a self-consistent

way. We have used these models to perform the �rst detailed �t to the nucleus of M31

which includes both one and two-dimensional kinematics and photometry; the data

set includes FOC, STIS, and SIS one-dimensional kinematics, OASIS two-dimensional

kinematics, and one and two-dimensional WFPC2 photometry. The primary result of

this modeling e�ort is an accurate measurement of the mass of the central black hole

in M31. We �nd that MBH = 5:62� 0:66� 107M�. This value is consistent with the

MBH�� correlation (Tremaine et al. 2002), which gives a value of 5:5�1:5�107M�.

We �nd eccentric disks with large precession rates (
 = 36:5�4:2 km s�1pc�1) and

small maximum eccentricities (emax = 0:21� 0:05) for the backbone orbit sequence,

e0(a). The backbone orbits possess a characteristic non-monotonic distribution with a

steep negative eccentricity gradient (de=da < 0) through the densest part of the disk,

which gives rise to distinctive multi-modal LOSVDs for lines of sight near the central

BH. Such features may be used to further constrain model parameters when LOSVDs

from upcoming high S/N STIS observations of M31's nucleus become available.



92

Although our models provide an accurate estimate for the BH mass, there is room

for improvement. We have assumed that the disk in M31 is thin. The disk may have

non-negligible vertical structure, however, which could slightly alter our BH estimate.

Vertical velocity dispersion can be added to our models by including dispersions in

inclination, i, and in the longitude of the ascending node, 
n, in our prescription for

populating quasi-periodic orbits about the backbone orbit sequence. We would then

have a DF which includes all �ve integrals of motion in the three-dimensional Kepler

problem; that is, f(a; e; !; i;
n); PT03 demonstrate how the third dimension can

be included in this way. Further improvement may require that new bulge models

be considered, to better �t the behavior of the models within the central 0:004 of the

nucleus. More exible versions of F (a) and a population of retrograde orbits can also

help in this regard. Retrograde orbits should be included self-consistently with their

own DF and parameters, to determine if the location of the dispersion spike can be

adjusted by their presence.

The eccentric disk picture for the nucleus of M31 is clearly the correct one, given

the success that our models, along with those of other investigators, have at repro-

ducing most of the asymmetric features in the kinematic and photometric data. A

complete description of the available data should be possible with models like ours,

which already include most of the key physical ingredients, once they are extended

as mentioned above. Such models should be exible enough to probe the connection

between the BH and nuclear stars in greater detail, and may yield new clues about the

formation of eccentric disks around BHs. With the knowledge gained from detailed
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study of these models, other systems exhibiting features like those seen in M31, which

do not have resolved Keplerian-dominated regions (rk), can be investigated with con-

�dence, as long as the sphere of inuence of the BH (rh) is resolved.

Galaxies with central properties similar to those in M31 are already known to exist.

NGC 4486B, a low-luminosity E1 companion of M87, is already known to possess two

brightness peaks (Lauer et al. 1996). This galaxy has no distinct nucleus, however,

and its P1-P2 separation is � 10 - 13 pc (� 0:0015 at D = 16 Mpc), which is about six

times that in M31; also, its P1 and P2 have nearly the same brightess, unlike in M31.

Models like ours may be applicable, with some modi�cation to the density structure

to account for lack of a distinct nucleus. Dynamical modeling of spectroscopic data

from SIS/CFHT suggests that NGC 4486B harbors a BH of mass � 6 � 108M�

(Kormendy et al. 1997). Kormendy et al. �nd � ' 130 km s�1, which, along with the

aforementioned BH mass, implies that rh ' 200 (probably as an upper limit), which

can be resolved by STIS/HST. Further examples are shown by Lauer et al. (2002),

who recently discovered six early-type galaxies with surface brightness pro�les that

decrease inward near their centers, reminiscent of the central dip in surface brightness

found in M31. These galaxies harbor torus-like brightness distributions, rather than

double nuclei. Such structures can possibly be �t by a thin disk with low �=
, which

is only slightly asymmetric. The sharpest structure observed in the sample is in the

S0 galaxy NGC 3706, which has a bright stellar torus of radius r � 20 pc (0:0012 at

D = 35 Mpc). Using the velocity dispersion observations from Carollo & Danziger

(1994), the MBH - � correlation gives MBH ' 6� 108M� for this galaxy. With this
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mass, rh ' 0:0015. Modeling this galaxy will require observations with higher resolution

than is currently available, but which may be available in the near future.
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Appendix A

Extending the Orbit Sequence

Beyond the 2:1 resonance it becomes di�cult to �nd nearly-elliptical periodic or-

bits using the method described in Section 2.3. Periodic orbits beyond this resonance

belong to various resonant families. Since the 2:1 resonance falls within Rd for models

with larger values of 
, we must approximate the backbone structure of the disk in

those cases. When truncation occurs, we simply assume that the sequence of nearly-

Keplerian orbits continues out to Rd. We do this in a way that mimics the behavior

of e0(a) for those models whose orbit sequence does not truncate, using the decaying

oscillatory function

E(a) = exp
�
�Aa2

�
cos (Ba+ C) : (A.1)

We �t this function to the last 10 orbits in e0(a), just before the cuto�. Figure A.1

shows three examples of extended e0(a)'s for arbitrary models. The disk structure

and dynamics was found to be insensitive to the choice of the extending function for

a wide range of decaying functions.
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Figure A.1: Three examples of extended e0(a) functions, using E(a) in Equation A.1. The dotted

lines show the point where the orbit sequence truncates, near the 2:1 resonance. The three models

shown are not from the grid of 24 best-�t models; they are arbitrary models showing three di�erent

types of behavior typically found for e0(a) in the M31-like region of parameter space.


