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ABSTRACT
The outer parts of standard steady-state accretion discs around quasi-stellar objects (QSOs)
are prone to self-gravity, and they might be expected to fragment into stars rather than feed
the central black hole. Possible solutions to this well-known problem are examined with an
emphasis on general dynamic constraints. Irradiation by the QSO is insufficient for stability
even if the outer disc is strongly warped. Marginal local gravitational instability enhances
viscous transport but extends the stable regions only modestly. Compton cooling in the observed
QSO radiation field rules out hot thick discs unless the local accretion rate is vastly super-
Eddington. The formation of stars or stellar-mass black holes, and the release of energy in these
objects by fusion or accretion, may help to stabilize the remaining gas in an otherwise standard
disc. But at fixed mass accretion rate, the energy inputs required for stability increase with
radius; beyond a parsec, they approach the total QSO luminosity and are probably unsustainable
by stars. Magnetic torques from a wind or corona, and gravitational torques from bars or global
spirals, may increase the accretion speed and reduce the density of the disc. But dynamical
arguments suggest that the accretion speed is at most sonic, so that instability still sets in
beyond about a parsec. Alternatively, the QSO could be fed by stellar collisions in a very
dense stellar cluster, but the velocity dispersion would have to be much higher than observed
in nearby galactic nuclei containing quiescent black holes. In view of these difficulties, we
suggest that QSO discs do not extend beyond a thousand Schwarzschild radii or so. Then they
must be frequently replenished with gas of small specific angular momentum.
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1 I N T RO D U C T I O N

The outer parts of steady, geometrically thin, optically thick,
viscously-driven accretion discs around quasi-stellar objects
(QSOs) are predicted to be self-gravitating (e.g. Shlosman &
Begelman 1987). This is due to the high mass accretion rate required
to feed a QSO and the relatively shallow gravitational potential at
large radius. Under standard assumptions, the Toomre stability pa-
rameter Q falls below unity at r � 10−2 pc ∼103 RS (Section 2). It
seems unlikely that a strongly self-gravitating disc can persist much
longer than an orbital time.

There are, however, several reasons to suspect that QSO discs are
larger than 10−2 pc. The mass of the disc within this radius is much
less than that of the black hole. Hence, in order to increase the mass
of the hole substantially, or equivalently, to fuel QSO activity for a
Salpeter (1964) time

tSal ≈ 5 × 107ε−1
0.1 yr, (1)

a small disc would have to be replenished. The spectral energy
distribution of typical QSOs shows a strong broad peak in the rest-
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frame infrared, which is interpreted as the reprocessing of light
from the central source by an extended warped disc (Sanders et al.
1989). Nearby Seyferts and other active galaxies, thought to be
low-luminosity analogues of QSOs, sometimes have resolvable
nuclear discs on scales ∼102 pc. Most spectacularly, very long
baseline interferometry (VLBI) observations of maser emission
in NGC 4258 and 1068 indicate discs on parsec scales and have
been used to measure the mass of their central black holes (Nakai,
Inoue & Miyoshi 1993; Greenhill et al. 1995; Greenhill & Gwinn
1997). It is usually difficult to know from observation whether the
outer disc is as dense as would be required to support the cen-
tral luminosity on the assumption of a radially constant accretion
rate.

At least on larger galactic scales, it is believed that strong self-
gravity leads to star formation (Martin & Kennicutt 2001). If the
same is true of QSO discs, there is a danger that most of the gas
would form stars, leaving little to fuel the QSO.

Several theoretical attempts have been made to modify the
standard α-disc model so as to extend gaseous QSO discs self-
consistently into the self-gravitating regime. The options include:
driving accretion with global bars or density waves so as to increase
the radial velocity and lower the surface density needed to sustain
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Table 1. Accretion solutions and their limitations.

Type Where discussed Limitations

Standard steady viscous disc Section 2, Appendix Q < 1 at r � 0.02 pc
As above but warped Section 2.3 Q < 1 at r � 0.02 pc
Unsteady viscous disc Section 2.2 r̄Q=1 increases � ×(t/tSal)8/27 ∼ 4
Optically thin ADAF Section 4.1 Inconsistent at QSO luminosity
Hot optically-thick disc or ADAF Section 2.1 Ṁ � ṀE at r � 103 RS

Wind-driven disc Section 4.3 Accretion subsonic, hence r Q=1 � 1 pc
Disc w. magnetized corona Section 4.4 Accretion subsonic, hence r Q=1 � 1 pc
Disc w. bar or global spiral Section 4.5 Accretion subsonic, hence r Q=1 � 1 pc
Clumpy disc Section 4.6 Clumps collapse unless heated from within
Constant-Q, star-forming disc Section 3 rmax � 1 pc if heated by fusion
Collisional star cluster Section 4.2 Requires σ � 700 km s−1

Disc truncated at � 103 RS Section 5 Mdisc 	 Mbh; needs infall w. jgas � 70 km s−1 pc

a given mass accretion rate (Shlosman & Begelman 1989); heat-
ing or mechanically stirring the disc with embedded stars or black
holes so as to raise the temperature and lower the density of the gas
(Collin & Zahn 1999a,b); or allowing the disc to fragment into col-
liding gas clumps whose epicyclic motions stabilize it against self-
gravity, at least on scales larger than the clumps themselves (Kumar
1999).

Our purpose is to re-examine self-gravity in QSO accretion discs
with an emphasis on dynamical and energetic constraints. These
constraints are most severe for massive and luminous systems, so
our interest is in black-hole masses M � 108 M
 and luminosities
close to the Eddington limit. Because many possibilities must be
considered, we use simple methods and often sacrifice mathemat-
ical precision to simplicity and generality. Vertical disc structure
is represented by algebraic rather than differential relations, per-
mitting easy derivation of scaling laws. In general, however, we are
disappointed in our original hope of finding an hospitable theoretical
environment for extended discs.

The plan of the paper is as follows. In Section 2 we review self-
gravity in steady α discs, including irradiation from the central
source (Section 2.3), and enhancements toα by local gravitationally-
driven turbulence in a moderately self-gravitating disc (Section 2.4).
In Section 3 we consider discs that are stabilized by additional
heating beyond that due to the dissipation of orbital energy, but
in which angular momentum continues to be transported by an α

viscosity. In contrast to the usual situation, the total energy released
per unit mass accreted is strongly dependent on the outer radius of
the disc (Section 3). In Section 4 we briefly explore various alter-
natives to viscous thin-disc accretion. Schemes that involve a thin
disc but invoke faster-than-viscous angular-momentum transport in-
clude global spiral waves (Section 4.5) and magnetized disc winds
(Section 4.3). In every such case, we argue that the accretion ve-
locity is bounded by the sound speed. Other alternatives explored
in Section 4 are less like thin discs: quasi-spherical flows (Sec-
tion 4.1), collisional star clusters (Section 4.2) and clumpy discs
(Section 4.6).

All of these alternatives to the standard α disc face severe the-
oretical difficulties, or else seem unlikely to permit a centrifu-
gally supported accretion flow beyond ∼0.1 pc. The situation
is summarized in Table 1. We conclude in Section 5 that the
gas probably does not circularize beyond this radius and must
be supplied to the galactic nucleus with low specific angular
momentum.

2 S T E A DY α D I S C S

To begin, we review some salient features of a standard theoretical
accretion disc: one that is steady, optically thick, and geometrically
thin (Pringle 1981). The mass accretion rate (Ṁ) is constant with
radius and time. Angular momentum is carried inward by the accret-
ing gas at the same rate that it is transferred outward by viscosity,
and the radiation of energy from the surfaces of the disc is balanced
by viscous dissipation.

Some of the assumptions above are relaxed in later sections. The
following assumptions, however, apply throughout this paper. The
rotation curve is dominated by a Newtonian point mass M, as rel-
ativistic corrections are important only at small radii where self-
gravity is negligible. Elsewhere, though self-gravity may be impor-
tant for local stability, the disc is thin and its mass <M so that
the rotation curve is not much affected. We do not consider radii
so large that the potential of the stars becomes important (r �
1 pc). Except where otherwise stated (Section 4.3), magnetic pres-
sure contributes little to the thickness of the disc even if magnetic
stresses dominate angular-momentum transport, as indicated by nu-
merical simulations of magnetorotational instability (MRI; Balbus
& Hawley 1998). Contrary suggestions, however, do exist (Pariev,
Blackman & Boldyrev 2002).

Under these assumptions,

Ṁ = 3πν� = 3παβbc2
s 

−1�, (2)

where ν is the effective viscosity and has been expressed in terms of
the isothermal sound speed at the disc midplane, cs = √

p/ρ, and
the orbital angular velocity,  = (GM/r 3)1/2, and the dimensionless
(Shakura & Sunyaev 1973) viscosity parameter α. � is the surface
mass density, and β ≡ pgas/p = pgas/(pgas + prad) is the ratio of gas
pressure to total pressure at the midplane. The mechanism likely to
be responsible for the viscosity of most discs is magnetorotationally-
driven turbulence, for which simulations indicate α = 10−3–10−1

(Balbus & Hawley 1998). As discussed below, where the disc is
self-gravitating, α may be as large as ∼0.3. Therefore, we often
write α0.01 ≡ 102α or α0.3 ≡ α/0.3. The parameter b is a switch
that determines whether the viscosity is proportional to gas pressure
(b = 1) or total pressure (b = 0). In the latter case, radiation-pressure-
dominated regions of α discs are viscously unstable (Lightman &
Eardley 1974), but it is possible that b = 0 in an average sense.
Although the average surface density �̄ would be lower and the
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corresponding Q̄ higher for b = 0 than for b = 1, the viscous
instability is expected to produce overdense rings in which these
trends may well be reversed.

Because viscous dissipation draws upon the orbital energy of the
gas and is assumed to be balanced by radiation, the local effective
temperature is

Teff =
(

3

8πσ

G M Ṁ

r 3

)1/4

≈ 2.9 × 103 (M8 Ṁ
)1/4(r/10−2 pc)−3/4 K,

≈ 6.2 × 105

(
lE

ε0.1 M8

)1/4 (
r

RS

)−3/4

K. (3)

We have introduced the abbreviations M8 ≡ M/(108 M
), Ṁ
 ≡
Ṁ/(1 M
 yr−1), dimensionless luminosity lE ≡ L/LE, radiative
efficiency ε ≡ L/Ṁc2 ≡ 0.1ε0.1, and Schwarzschild radius RS =
2GM/c2 ≈ 10−5 M8 pc. The mass accretion rate can then be written
as

Ṁ = 4πG M

κe.s.c

lE

ε
≈ 2.2 ε−1

0.1 lE M8 Ṁ
, (4)

where κe.s. ≈ 0.4 cm2 g−1 is the electron-scattering opacity.
If vertical transport of heat is by radiative diffusion, then the

midplane and surface temperatures are related approximately by

T 4 ≈ κ�

2
T 4

eff. (5)

The numerical factor is somewhat arbitrary, as it depends upon the
vertical dependence of the heating function; it ought to be 3/8 if
the heating rate per unit mass and the opacity are constant. In fact,
simulations of magnetorotational turbulence indicate that the verti-
cal scale height of the turbulent dissipation is larger than that of the
gas density (Miller & Stone 2000), so that the factor should be even
smaller. Hence equation (5) probably overestimates the midplane
temperature. Other things being equal, this would cause self-gravity
to be underestimated, but we assume that the error is not significant.

2.1 Onset of self-gravity

The Toomre stability parameter for Keplerian rotation is

Q = cs

πG�
≈ 2

2πGρ
, (6)

and local gravitational instability occurs where Q < 1. We have
taken � = 2hρ with the disc half-thickness h = cs/. Combining
equation (6) with equation (2), we obtain the simple relation

G Ṁ Q = 3αβbc3
s . (7)

For a flat rotation curve, vcirc = r = constant, the numerical factor
3 is replaced by 2

√
2.

To see why self-gravity is inevitable, consider the radiation-
pressure-dominated case, β 	 1, so that the isothermal sound
speed c2

s = 4σ T 4/3cρ. From equations (3) and (5), T 4 =
3κ�2 Ṁ/16πσ . Eliminating T between these relations and using
� = 2csρ/ leads to

cs = κṀ

2πc
= lEκ

εκe.s.
RS (β 	 1), (8)

whence h = (lE/ε)RS = constant for κ = κe.s.. Using this for cs and
equation (4) for Ṁ in equation (7) leads to

Q = 3αβb

8π
√

2

(
lE

ε

)2

κ̂3

(
κe.s.c4

G2 M

)(
RS

r

)9/2

(β 	 1), (9)

in which κ̂ ≡ κ/κe.s.. Hence discs around more massive black
holes are more prone to self-gravity. For b = 0, there is a char-
acteristic mass above which an Eddington-limited disc would be
self-gravitating even at its inner edge. This mass is enormous
(∼1019 M
 for α0.01 = ε0.1 = 1), but even for realistic black-hole
masses, Q < 1 at radii greater than

rQ=1 ≈ 2.1 × 103

(
α0.3β

bl2
Eκ̂3

ε2
0.1 M8

)2/9

RS (β 	 1). (10)

Notice that α has been scaled to 0.3 rather than 10−2 because of the
expected enhancement by gravitational turbulence (Section 2.4).

In the appendix, we briefly derive the radial run of � and T that
follow from the standard assumptions laid out in this section. From
these we derive expressions for β(r) (equation A3) and Q(r) (equa-
tion A4). β increases monotonically with radius, and Q decreases.
For typical parameters, pgas = prad at about the same radius where
Q = 1, r ∼ 103 RS ∼ 10−2 pc. This appears to be a coincidence, as
the two radii r Q=1 and rβ=1 depend differently on the accretion pa-
rameters, especially α and Ṁ . We generally presume Ṁ ∼ LE/c2.
But if the disc were not in a steady state or if there were a massive
wind, then the accretion rate at small radii, where most of the QSO
luminosity presumably originates, could be very different from Ṁ
at large radii where self-gravity is problematic. Therefore, it is in-
teresting to calculate the local value of Ṁ that would yield Q =
1 at each radius. We begin by expressing β in terms of Q using
equations (4), (6) and (7):

β1−(b/2)

(1 − β)1/4
= 2−5/2

(
3

π

)3/4(
εα

lE

)1/2

Q−3/4

(
k4

Bc9κe.s.
2

m4G7σ

)1/4

×
(

r

RS

)−3/4

M−1

≈ 0.39

(
ε0.1α0.3

lE

)1/2

Q−3/4

(
r

2100RS

)−3/4

M−1
8 .

(11)

Unlike equation (A3), this equation does not derive from equa-
tions (3) and (5); it does not assume a balance between radiative
losses and viscous dissipation. The opacity κe.s. enters equation (11)
only because it is used in the definition of the Eddington ratio lE.
Equation (11) remains true regardless of the heat source, whereas
equation (A3) is specific to viscous dissipation.

Eliminating β between these two equations, we obtain loci of
constant Q in the (r, Ṁ) plane, as shown in Fig. 1. These have been
drawn for constant opacity κ = κe.s. regardless of temperature, but,
because of the very strong dependence of Ṁ on r, we expect that
a more realistic opacity law would yield similar results. The unsta-
ble region where Q < 1 is the interior of the wedge. Thus, below
some radius depending on α and M, there are no gravitationally
unstable solutions for any Ṁ . Beyond this critical radius, there are
two marginally stable solutions, which diverge very quickly from
one another in Ṁ . The upper branch is very strongly radiation-
pressure dominated (β 	 1) and very optically thick (κ� � 1), so
that it bears a resemblance to the supercritical solutions studied by
Begelman & Meier (1982). Their solutions, however, besides as-
suming constant Ṁ , are quasi-spherical and advection dominated
out to the ‘trapping radius’

rtr = Ṁc2

L

RS

2
,

whereas those displayed in Fig. 1 are calculated from the thin-disc
equations assuming local balance between radiative losses and vis-
cous heating. The relative thickness h/r increases with r on the
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940 J. Goodman

Figure 1. Loci of constant Q for black-hole masses M = 108 M
 (solid) and M = 109.5 M
 (dashed), α = 0.3, and κ = 0.4 cm2 g−1. Left panel: b = 0, i.e.
viscosity proportional to total pressure. Right panel: b = 1, ν ∝ pgas. Filled circles are labelled (left to right) with log (pgas/prad), log T (K), log � (g cm−2).

upper branch. For b = 0 and M8 = 1, h/r = 0.1 at 1.2 pc and
h/r → 1 at 7.3 pc; for b = 1, h/r = 1 is already reached at 0.11
pc. Thus, the vertical limit of both plots has been set approximately
where the thin-disc assumption breaks down.

2.2 Time dependence

Steady-state accretion is mathematically convenient but the evi-
dence for it is scant, because no QSO has been monitored for a
significant fraction of its growth time (equation 1). The observed
luminosity constrains Ṁ at small r, but Ṁ at large r could be dif-
ferent. Suppose the black hole shines at L ∼ LE with a duty cycle
f 	 1, and that it scarcely accretes at other times. A steady inflow
rate ∼ f LE /εc2 at large radii is sufficient to support this behaviour,
if ε is the radiative efficiency during the bright phase. Assuming
that the black hole gains its mass by accretion, f � tSal/t � 10−2,
where t is the age of the universe when the QSO shone, estimated for
zQSO � 2 and standard cosmological parameters. Thus, the accretion
rate in the outer disc can typically be reduced by at most two orders
of magnitude compared to the peak rate (equation 4). From Fig. 1,
however, we see that a reduction of at least four orders of magnitude
is needed to stabilize a disc at 0.1 pc if M8 = 1.

From this we conclude that a variable accretion rate will not solve
the problem of self-gravity in the outer disc.

2.3 Irradiation

Although flared or warped outer regions can be warmed by irradi-
ation from the inner parts (where most of the total disc luminosity
originates), we now show that this effect is not enough to stabilize
the disc at r ∼ r Q=1.

To do so, irradiation must raise the midplane temperature T , not
just the surface temperature T eff, substantially. As a result, the disc
will be nearly isothermal from surface to midplane. The vertical
pressure gradient, and therefore the disc thickness, will be dom-
inated by the gas even if β 	 1: that is, h2 ≈ pgas/ρ2. If the
effective viscosity derives from local magnetorotational turbulence,
then it probably scales more directly with thickness than with sound
speed because MRIs do not require compression. Then in all relevant
respects the disc behaves as if β = 1 and c2

s → pgas/ρ = kBT /m.

From equation (7), it then follows that the minimum temperature
that the irradiation must provide to ensure gravitational stability is

TQ=β=1 = m

kB

(
G Ṁ

3α

)2/3

≈ 5.6 × 104

(
lE M8

α0.3ε0.1

)2/3

K. (12)

To be conservative, we have scaled to α = 0.3; for α = 0.01, this
temperature would be an order of magnitude larger. On the other
hand, the temperature of the disc in equilibrium with radiation from
the central source is

Teq =
(

c5lE cos θ

4σκe.s.G M

)1/4(
r

RS

)−1/2

≈ 3.8 × 105

(
lE cos θ

M8

)1/4(
r

RS

)−1/2

K, (13)

where θ is the angle between the local normal to the disc and the
radial rays. For a flat disc, cos θ ∼ max(h, RS)/r at r � RS, but even
for a severely warped disc with cos θ ∼ 1, T eq 	 T Q=β=1 at r/RS

� 44(α0.3ε0.1)4/3l−5/6
E M−11/6

8 . Because this last inequality certainly
holds at all r � r Q=1, we conclude that irradiation is not important
for the self-gravity of the disc.

2.4 Local gravitational turbulence

It has occasionally been proposed that a partially self-gravitating
disc may transport angular momentum by spiral waves (e.g.
Cameron 1978; Paczyński 1978; Larson 1984; Lin & Pringle 1987).
Others have suggested that gravitational instabilities are intrinsi-
cally global and therefore not reducible to a local viscosity (Balbus
& Papaloizou 1999). It may be that either opinion can be correct
depending upon the ratio of disc thickness to radius, because the
most unstable wavelength in a Q = 1 disc is ∼h. We consider lo-
cal gravitational turbulence here, as it can be accommodated within
the α model; a (much larger) upper bound on angular momentum
transport by global spirals is given in Section 4.5.

By careful two-dimensional (2D) simulations, Gammie (2001)
finds that gravitationally-driven turbulence can be local and can
support α approaching unity; in fact, in the absence of any other
viscosity mechanism, his discs self-regulate themselves so that
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αgrav ≈ 1

(γ2D − 1)tth
, (14)

where t th ≡ �kBT /σ T 4
eff is the local thermal time-scale, and γ 2D is

the 2D adiabatic index:

γ2D = ∂

∂ log �

)
S

log

[∫ ∞

−∞
p(r, θ, z) dz

]
.

[Our equation (14) differs from that of Gammie by a factor γ 2D

because we define α in terms of isothermal rather than adiabatic
sound speed.] Gammie finds that self-regulation fails and the disc
fragments if t th � 3 for γ 2D = 2. The latter result is not en-
tirely surprising; in the absence of pressure support, the natural
time-scale for collapse is tdyn = −1, and we would not expect col-
lapse to be prevented by thermal energy unless t th > tdyn. The con-
verse statement, that fragmentation can be indefinitely postponed if
t th > 3, is not at all obvious but is supported by Gammie’s simu-
lations.

We are not aware of any direct numerical simulations of discs
that are unstable to both gravitational and magnetorotational modes
at the same radii, as is likely to be the case for QSO discs (Menou
& Quataert 2001). It would be interesting to explore this, as there
might be a synergy between the two instabilities.

QSO discs are expected to be very thin in the regions of interest
to us, so that Gammie’s results may be applicable. Equation (8) im-
plies h = lE RS/6ε in a radiation-pressure dominated disc, and hence
h/r � 0.003 at the innermost radius where Q ∼ 1 (equation 10).
We expect that, from this radius outward, α will rise smoothly
from the value supported by magnetorotational turbulence (perhaps
αm.h.d. ∼ 10−2) up to the maximum allowed by gravitational turbu-
lence, αgrav,max ∼ 0.3, in such a way that Q ≈ constant. It follows
from equation (9) that the ratio of outer to inner radii of this region is
rather modest: ∼(αgrav,max/αm.h.d.)2/9 ∼ 2. At still larger radii, addi-
tional sources of energy are required in order to prevent catastrophic
fragmentation.

3 C O N S TA N T- Q D I S C S

It is not a new idea that accretion discs may regulate themselves at
Q ≈ 1. The heating required to offset radiative cooling and thereby
maintain Q is usually supposed to come at the expense of the orbital
energy of the gas (e.g. Paczyński 1978; Gammie 2001). In that case,
gravitational instabilities and turbulence can be subsumed into the
α parameter, at least to the extent that they act locally (Section
2.4). Bertin (1997) and Bertin & Lodato (1999) have suggested
replacing the energy equation (3) with the constraint of constant
Q (equation 6), while retaining α to describe angular-momentum
transport (equation 7). In this section we adopt that approach and
work out some consequences for the structure of the disc, with due
attention to the effects of radiation pressure, which Bertin et al. seem
to have neglected. It begs the question where the energy required to
heat the disc may come from. Bertin & Lodato (1999) and especially
Lodato & Bertin (2001) appear to suggest that the energy might
ultimately derive from the gas orbits but yet be independent of local
angular-momentum transport. We do not understand how this is
possible. Instead, we attribute any surplus of the local radiative
cooling above viscous dissipation to thermonuclear sources in stars,
or perhaps to accretion on to small black holes that these stars evolve
into. In Section 3.2 we calculate this surplus in terms of Ṁ and the
outer radius of the disc, and compare it to what might be available
by converting a significant fraction of the disc gas into stars.

Although they may seem artificial, these assumptions are prob-
ably appropriate for the discs of spiral galaxies, and for the local
interstellar medium (ISM) in particular. The local Galactic mag-
netic field is consistent with simulations of magnetorotational tur-
bulence: namely, a magnetic energy density somewhat less than
the thermal pressure, a predominantly toroidal orientation, and
fluctuations comparable to the mean (Brandenburg et al. 1995).
It is plausible therefore that there is a non-zero average mag-
netic stress −〈Br Bφ〉/4π = α pgas that systematically transfers
angular momentum outward (Sellwood & Balbus 1999). Taking
pgas/kB ≈ 2000 cm−3 K−1, ρ ≈ 0.3 mH cm−3 (Spitzer 1978),
and circular velocity V 0 ≈ 200 km s−1 (Binney & Merrifield
1998), the implied radial drift velocity vr ≈ −α pgas/ρV 0 ≈
−0.3 α km s−1 is small enough to have escaped detec-
tion. Perhaps coincidentally, equation (7) predicts Ṁ ≈ 3 ×
10−2α0.1 Q−1Ṁ
 yr−1, about half the Eddington rate for the
Galaxy’s 2.5 × 106 M
 central black hole. The implied viscous
heating rate α pgas0 ≈ 2 × 10−29 α0.1 erg cm−3 is negligible
compared to the inferred radiative cooling rate of the gas, ∼2 ×
10−26 erg cm−3 (Spitzer 1978). Presumably, the temperature of the
ISM is maintained by stars. An important difference between the
local ISM and QSO discs is that the former is very optically thin, es-
pecially to absorption, which means that the energy input from stars
is inefficiently radiated. We estimate below that constant-Q QSO
discs remain optically thick out to at least 0.1 pc. A more careful
treatment will be given in a later paper using realistic opacity tables
(Sirko & Goodman 2003).

3.1 Density and temperature

The midplane density in a constant-Q disc follows from equation (6)

ρ = M

2πQr 3
= 1.2M−2

8 Q−1

(
RS

r

)3

g cm−3, (15)

so that the density at r Q=1 (equation 10) is ∼10−8 M−4/3
8 g cm−3.

The ratio β/(1 − β) = 3cρ/4σ T 3 is determined by equation (11),
which shows that β 	 1 at r � 10RS if Q ∼ O(1). The temperature
itself is

T = 2−7/6

(
3

π

)1/12(
lE

αεQ1/2

)1/6

c19/12G−5/12σ−1/4κe.s.
−1/6 M−1/3

×
(

RS

r

)3/4

≈ 6.9 × 106

(
lE

α0.3ε0.1 Q1/2

)1/6

M−1/3
8

(
RS

r

)3/4

K if b = 0;

(16)

T = 2−1/3

(
π

3

)1/6 (
lE Q1/2

αε

)1/3

c5/6G1/6σ−1/6κe.s.
−1/3(kB/m)−1/3

×
(

RS

r

)1/2

≈ 1.4 × 106

(
lE Q1/2

α0.3ε0.1

)1/3 (
RS

r

)1/2

K if b = 1.

(17)
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942 J. Goodman

The surface density is

� =
(

lE c8

12π2
√

2 εαQ2 G4κe.s. M2

)1/3 (
RS

r

)3/2

≈ 7.4 × 109

(
lE

α0.3ε0.1 Q2

)1/3

M−2/3
8

×
(

RS

r

)3/2

g cm−2 if b = 0; (18)

� = 2

3

(
2lE m

εα kBκe.s.

)2/3 (
3 σc7

πQ G

)1/6 (
RS

r

)

≈ 5.4 × 108 Q−1/6

(
lE

α0.3ε0.1

)2/3 (
RS

r

)
g cm−2 if b = 1.

(19)

As a check on the self-consistency of the thin-disc approximations,
it is useful to calculate the fractional thickness. Because h ≡ �/2ρ

and ρ can be eliminated via equation (6),

h

r
= πr 2�

QM
=

{
0.033Q−5/3(lE/α0.3ε0.1)1/3 M−1/6

8 r 1/2
pc b = 0,

0.79Q−7/6(lE/α0.3ε0.1)2/3rpc b = 1.

(20)

Here we have expressed the radius in absolute units because h/r
then depends weakly or not at all on black-hole mass.

Beyond 104–105 RS ≈ 0.1–1 M8 pc, the above formulae predict
T � 5000 K, so that the opacity κ 	 κe.s. and the disc becomes
optically thin. (This assumes M8 = lE = ε0.1 = α0.3 = 1. Dust will
raise opacity again at T � 1700 K.) The disc must then be supported
by gas pressure, notwithstanding equation (11) which presumes that
the radiation is trapped. But in a gas-pressure dominated disc, the
minimum temperature for gravitational stability is equation (12),
which is about an order of magnitude larger than predicted by the
formulae above. Note that this temperature is nearly independent of
the disc rotation curve, whether dominated by the mass of the black
hole or of the bulge stars, as  is subsumed into Q and Ṁ . So, in
a marginally gravitationally stable disc, there must be an extended
region where the temperature adjusts itself within a limited range
(5000 K � T � 104 K) so that the disc is marginally optically
thin. At the low densities relevant here, the maximum opacity is
κmax ≈ 10κe.s. and is achieved at T ≈ 104 K (Kurucz 1992; Keady
& Kilcrease 2000). Hence the outer edge of the region in question
should end at � ≈ κ−1

max ≈ 0.3 cm2 g−1, which occurs (assuming
Q = 1 and T = 104 K) at

rthin ≈ csκmaxvcirc

πG
≈ 170M0.24

8 pc, (21)

provided, of course, that the disc extends to such large radii. We have
taken the circular velocity as σbulge

√
2 ∝ M0.24 (see equations 32

and 33) rather than
√

G M/r , because r thin lies outside the black
hole’s sphere of influence (equation 25). Optically-thin constant-Q
discs have been considered by Bertin & Lodato (2001) in a somewhat
abstract context, but apparently without regard to radiation pressure,
which remains important for the vertical hydrostatic balance even
at small τ ; see Sirko & Goodman (2003).

The parts of the disc beyond r thin would radiate predominantly
in optical emission lines with velocity widths ∼σ bulge, so that they
might be identified with the QSO narrow-line region. However, we
now see that the energy required to maintain the disc at constant Ṁ
and Q � 1 all the way out to r thin would be prohibitive.

3.2 Energetics

We define a local disc efficiency by

ε′(r ) ≡ 4πr 2σ T 4
eff

3Ṁc2
. (22)

For a viscously heated disc in Newtonian gravity, ε′c2 reduces to
the local binding energy per unit mass, GM/2r = c2 RS/4r (see
equation 3), which is largest at small radii; given a torque-free inner
boundary at r = rmin, the global efficiency is ε = ε′(rmin). But
the constant-Q discs require additional energy inputs, so that ε′ is
generally larger than RS/4r and tends in fact to increase with radius.

Using the results of Section 3.1 for the midplane temperature T ,
and assuming that vertical radiative transport obeys equation (5),
we find that

ε′(r ) = π1/3

27/631/3
κ̂−1

(
Qε2

αl2

G RS

c2κe.s.

)1/3(
r

RS

)1/2

≈ 0.85 × 10−3 Q1/3α
−1/3
0.3 (ε0.1/lE)2/3

× κ̂−1 M−1/6
8 r 1/2

pc if b = 0; (23)

= π5/6

21/635/6

κ1/3
e.s.

κ

Q5/6ε1/3

α2/3l1/3
E

(
G

c

)5/6 (
m

kB

)2/3

σ 1/6 r

≈ 1.2 × 10−2 Q5/6α
−2/3
0.3 (ε0.1/lE)1/3 κ̂−1 rpc if b = 1. (24)

It would appear from these relations that ε′ → ∞ as κ → 0, but they
are not valid when the disc is optically thin. If the absorption optical
depth τ = κ� < 1, then T 4

eff ≈ τ T 4 rather than T 4/τ . So in fact
ε′ → 0 as κ → 0. Hence the largest radius at which equations (23)
or (24) are valid is the smallest among the radii r thin, RN and r out,
where the first is the radius at which a Q = 1 disc would become
optically thin (equation 21), the second is the radius within which
the black hole dominates the potential,

RN ≡ G M

2σ 2
bulge

≈ (6 ± 1) M0.5±0.1
8 pc, (25)

and the last is the actual outer edge of disc, which depends upon the
angular momentum of the gas supplied to it. The final expression
in equation (25) has used the recently reported M–σ bulge relation
(Gebhardt et al. 2000; Merritt & Ferrarese 2001, see Section 4.2 be-
low). Actually, equation (25) probably underestimates the distance
to which the black hole dominates the circular velocity, because the
density profile in the cusp of bright bulges is considerably shallower
than r−2.

At r = 10 pc ≈ 106 M8
−1 RS, equations (23) and (24) imply

ε′ ≈0.003 M8
−1/6 and ε′ ≈0.1, respectively. The former efficiency is

barely compatible with thermonuclear burning even if all of the disc
gas is processed through high-mass stars. The latter is unsustainable
by stars and in fact comparable to the efficiency of the central engine.

Even if the energy required to maintain Q ∼ 1 can be found, these
discs may have severe thermal instabilities. In a steady viscously
heated disc, the thermal time (defined as the internal energy per unit
area divided by the power radiated per unit area) is t th ∼ (α)−1,
hence longer than the local dynamical time if α < 1 (Pringle 1981).
While this does not guarantee thermal stability, it at least ensures a
clear distinction between thermal and dynamical perturbations. For
these constant-Q discs, however, the thermal time is shorter by the
ratio of viscous heating to total heating. In view of equation (22) and
the remarks following it, we can write αt th ∼ ε′(r )(4r/RS), and
from equations (23)–(24), it follows that t th 	 −1 at r ∼ 1 pc. In
such circumstances, it is far from clear whether Q = 1 is the correct
stability criterion. Unfortunately, we cannot say much more about
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Self-gravity and QSO discs 943

this without understanding how the auxiliary heat sources respond
to changes in local density and temperature, and with what time
lag.

4 N O N - S TA N DA R D D I S C S
A N D OT H E R A LT E R NAT I V E S

As shown in Section 2, a geometrically thin, optically thick accretion
disc in a typical high-luminosity QSO would be self-gravitating at
radii r � 102–103 RS, or 10−3–10−2 pc, where RS = 2GM/c2 is
the Schwarzschild radius of the central black hole. Large global
radiative efficiency, ε � 0.1, probably requires a thin disc near RS,
but it does not much depend upon the nature of the flow at large
radius. So, in this section, we consider whether the self-gravitating
part of the disc can be replaced by some other form of accretion.

4.1 Hot, quasi-spherical flows

These have been proposed as models for accretion at very low ac-
cretion rate (Ṁ) and low radiative efficiency ε ≡ L/Ṁc2 (Rees
et al. 1982; Ichimaru 1977; Narayan & Yi 1994). At sufficiently low
density, the gas cooling time and ion–electron thermal equilibration
time are longer than the accretion time, so that the ion temperature
(T i) is approximately virial and the thickness of the disc is compa-
rable to its radius. We suppose that angular-momentum transport is
efficient (viscosity parameter α ∼ 1), or that the angular momentum
of the gas is very small to begin with, so that the accretion veloc-
ity (vr) is comparable to the free-fall velocity. The large vr and T i

combine with the low Ṁ to make the density low, as required. It is
unclear just how low Ṁ must be for this mode of accretion to sustain
itself, because angular-momentum transport is not well understood
and collisionless processes may enhance the thermal coupling of
ions and electrons.

A quasi-spherical flow is not viable when the luminosity is close to
the Eddington limit, however, because of inverse-Compton cooling.
For spherical free fall on to a source of luminosity L = lE LEdd, the
inverse-Compton cooling rate of free electrons is

t−1
C ≈ 2σT L

3πr 2mec2
= 8

9

mp

me
lE

(
RS

r

)1/2

t−1
ff . (26)

We have introduced the free-fall time of a radial parabolic orbit from
radius r,

tff ≡ 2

3

(
r 3

2G M

)1/2

≈ 2.2 × 1010 M−1/2
8 r 3/2

pc s, (27)

in which r pc is the distance from the source in parsec and M8 ≡
M/(108 M
). Actually, radiation pressure increases the free-fall
time by (1 − lE)−1/2, but this factor is neglected for simplicity. From
equation (26), tC < t ff at r < 25l2

E M8 pc. Hence the electrons assume
the colour temperature of the central source (or even less, see below):
T C � 105 M−1/4

8 . This is much less than the virial temperature, T vir ≈
107 M8 r−1

pc , at all radii of interest to the present paper.1 The electron
density is

ne =
(

lE

ε

)
1

3cσT tff
, (28)

1 The time-scale for Poynting–Robertson drag is ≈(mp/me)tC, hence �t ff

at r � RS, i.e. the radiation field does not remove angular momentum from
the gas fast enough to prevent it from circularizing.

so that the electron–ion equilibration time due to Coulomb collisions
alone (Spitzer 1978) is much shorter than the flow time:

teq

tff
≈ 2 × 10−5εlE

(
Te

105 K

)3/2

.

Of course, T e ∼ 105 K is the peak of the cooling curve (Spitzer
1978). If ne obeys equation (28), then radiative cooling is actually
faster than inverse-Compton cooling:

trad

tC
≈ 6.ε

(
RS

r

)1/2 (
Te = 105 K

)
.

In short, both the ions and the electrons of a quasi-spherical flow
on to a near-Eddington QSO cool in much less than a free-fall time.
A thin disc will form unless the specific angular momentum of the
flow is negligible.

4.2 Collisional stellar cluster

Dense stellar clusters have occasionally been nominated as precur-
sors to QSO black holes, either by relativistic collapse (Zel’dovich &
Podurets 1966; Shapiro & Teukolsky 1985; Ebisuzaki et al. 2001) or
by collisions among non-degenerate stars (Spitzer & Saslaw 1966;
Rees 1978). Our interest, however, is in stellar collisions as the main
source of fuel for an already very massive black hole. This has been
studied by McMillan, Lightman & Cohn (1981) and Illarionov &
Romanova (1988), among others, who show that in order to supply
a 108 M
 black hole at its Eddington rate, the velocity dispersion of
such a cluster must be � 103 km s−1. To demonstrate the robustness
of this conclusion, we make some oversimplified but conservative
estimates here.

In order to provide high radiative efficiency (ε), stars must be
disrupted and their gaseous debris circularized before accretion. If
Mb.h. � 108 M
, main-sequence stars scattered on to loss-cone or-
bits are likely to be tidally disrupted rather than swallowed whole
(Hills 1975). About half of the tidal debris is unbound and promptly
escapes from the black hole (Lacy, Townes & Hollenbach 1982;
Evans & Kochanek 1989), and much of the remainder is likely to
be swallowed at low radiative efficiency before the gas circularizes
(Cannizzo, Lee & Goodman 1990; Ayal, Livio & Piran 2000). We
limit our discussion to Mb.h. � 108 M
, as required for the most
luminous QSOs, and we assume that stars are disrupted by stel-
lar collisions. We ignore loss-cone effects because stars swallowed
whole do not contribute to the QSO luminosity.

The total collision rate among N stars forming a cluster of struc-
tural length a is

Ṅ = C σ̄ 7 N 2(G M)−3 R2
∗, (29)

where C is a dimensionless coefficient, σ̄ is the rms velocity disper-
sion in one dimension averaged over the cluster, N is the number
of stars, and R∗ ∼ R
 is the radius of an individual star. M is the
total mass that determines σ̄ via the virial theorem, so that, if m∗ is
the mass of individual stars and M∗ ≡ Nm∗, then M ≈ Mbh + 1

2 M∗,
the factor of 1/2 being needed to avoid double-counting the gravita-
tional interactions among the stars. We take 4πR∗2 for the collision
cross-section; this allows for grazing collisions that probably would
not disrupt the stars (Spitzer & Saslaw 1966), but it will lead to a
conservative estimate of σ̄ . Gravitational focusing is unimportant at
the high velocity dispersions relevant here.

A second relation for Ṅ follows by requiring the collisional de-
bris to sustain the QSO at a fraction lE ≡ L/LE of its Eddington
luminosity:
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944 J. Goodman

2M∗ Ṅ = lE

ε

4πG Mmp

cσT
. (30)

Eliminating Ṅ between equations (29) and (30) leads to

σ̄ 7 = 2πlE

Cε

G4mp

σTc

m∗
R2∗

(
Mb.h. M3

M2∗

)
.

The term in parentheses achieves its minimum value 27M2
b.h./16 at

M∗ = 4Mb.h..
The coefficient C depends upon the density profile ρ(r) of the

stellar cluster. It can be arbitrarily large if ρ(r) is sufficiently steep,
but then the collision rate is dominated by stars at small radius. These
tightly-bound stars represent only a small fraction of the cluster mass
and would be consumed in much less than the growth time of the
black hole, unless their total mass (M t.b.) is � Mb.h., in which case
the tightly-bound population is substantially self-gravitating and we
redefine M∗ ≡ M t.b.. We might suppose that M t.b. 	 Mb.h. and that
the tightly-bound stars were continuously replenished by two-body
relaxation from a reservoir of more weakly bound stars; but the larger
cluster would then have to expand to conserve energy, reducing the
collision rate and the fueling of the QSO. For these reasons, we
consider clusters for which C is dominated by stars near the half-
mass radius. For example, if the stars have isotropically distributed
orbits with a common semimajor axis a in a Keplerian potential,
then ρ(r ) ∝ √

(2a/r ) − 1, σ̄ 2 = G M/3a, and C ≈ 196. This
leads to

σ̄ ≈ 760

(
lE

10ε

)1/7 (
g∗
g


)1/7

M2/7
8 km s−1, (31)

where g∗ is the stellar surface gravity. Because of the one-seventh
root, the result is not very sensitive to our assumptions. A Plummer
sphere of the same total mass, M∗ = 5 × 108 M
, yields σ̄ ≈
730 km s−1.

Equation (31) can be compared with recently-discovered empiri-
cal relations between inactive black holes – presumably QSO relics
– and their host bulges. Gebhardt et al. (2000) find

Mb.h. = 1.2(±0.2) × 108

(
σe

200 km s−1

)3.75±0.3

M
, (32)

where σ e is the line-of-sight velocity dispersion at one effective ra-
dius. Merritt & Ferrarese (2001) use the central velocity dispersion,
which is usually little different from σ e:

Mb.h. = 1.30(±0.36) × 108

(
σc

200 km s−1

)4.72±0.36

M
. (33)

The scaling exponent d log M/d log σ = 3.5 implied by equa-
tion (31) is similar to the empirical equations (32) and (33), but
the normalization is very different. Extrapolated to 700 km s−1, the
empirical relations predict Mb.h. � 1010 M
 instead of 108 M
.

Therefore, if QSOs were fuelled by dense stellar clusters, these
clusters must have been an order of magnitude more tightly bound
than the surrounding bulge, and they would have been a dynami-
cally distinct stellar component. There seems to be very little trace
of this tightly-bound stellar population in present-day bulges. How
would such a component form? A likely possibility is gaseous dis-
sipation followed by star formation. As will be seen, accretion in a
thin viscous disc may lead to just such a result. We have discussed
fuelling the QSO by a disc and fuelling it by stellar collisions as
though these were mutually exclusive possibilities, but perhaps the
two occur in concert.

4.3 Wind-driven discs

In principle at least, a magnetized wind can remove angular momen-
tum from a thin disc rather efficiently. Compared to a viscous disc of
the same sound speed (cs) and accretion rate (Ṁ), a wind-driven disc
might have an accretion velocity that is larger by a factor ∼r/cs

= r/h. The surface density would be correspondingly reduced, as
would the tendency toward self-gravity.

If viscous transport can be neglected, the vectorial angular mo-
mentum flux is

F J = r

(
ρvφv − Bφ B

4π

)
.

We integrate this over an annular surface enclosing the disc from its
inner edge at rmin out to an arbitrary radius r > rmin,

(r ′, z′) : rmin � r ′ � r, −h(r ) � z′ � h(r ).

In steady state, the angular momentum enclosed by this surface is
constant, whence the surface integral of F J vanishes:

[Ṁ(r ′)(r ′)r ′ 2]r ′=r
r ′=rmin

=
∫ r

rmin

[
Bz Bφ(r ′, −h) − Bz Bφ(r ′, h)

2
+ dṀ

dr
(r ′)

]
r ′ 2 dr ′.

(34)

The left-hand side is the angular momentum carried through the
side walls of the annulus by the accreting gas (Ṁ > 0 for inflow).
The right-hand side is the angular momentum escaping through the
top and bottom faces by magnetic stresses and mass outflow. The
overbars average over azimuth and time, as the magnetic field is
likely to be complicated on small scales. Mass conservation has
been invoked, so that the mass flux through the top and bottom
faces balances the net flux through the sides. Let us also assume
that Bφ is odd in z while Bz is even; the field lines go through the
disc but bend in the direction opposite to its rotation at both faces.
Furthermore, we take r � rmin so that (r )r 2 � (rmin)r 2

min and
we neglect the angular momentum carried through rmin. Finally, we
assume that the wind is magnetically dominated so that the term
involving Ṁ on the right-hand side can be neglected compared to
the magnetic stresses. Then the radial accretion speed

vacc ∼ Bz Bφ/4π�.

The main point to notice about equation (34) is that the area of the
top and bottom faces is much larger than that of the sides. This means
that, for the same field strength, a magnetized wind can be much
more effective at removing angular momentum from the accreting
gas than a field confined to the gas layer. The accretion speed driven
by a magnetic ‘viscosity’,

vacc = 1

4π�r

∫ h

−h

Br Bφ dz,

is smaller than the rate implied by equation (34) by a factor
∼(h/r )(Br/Bz).

Viscous stresses are normally presumed to be smaller than thermal
pressure, i.e. α < 1. For a magnetic viscosity, α ≈ −Br Bφ/4πp,
where α < 1 if the field strength is less than the equipartition value.
A superequipartition field would shut off the crucial MRI (Balbus &
Hawley 1998), and would probably escape the disc by interchange
or Parker instabilities. We now give two arguments to show that,
even in a wind-driven accretion disc, the field must be at or below
equipartition.
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Vertical hydrostatic equilibrium entails

−
[

B2
r + B2

φ − B2
z

8π
+ p

]z=h

z=0

≈
∫ h

0

ρ2z dz.

For dipolar symmetry, Bz is approximately constant with z on the
scale h 	 r , whereas the horizontal components vanish at the mid-
plane. Because the right-hand side above is positive, and because
p(z = h) 	 p(z = 0), it follows that

B2
r + B2

φ

8π
(z = ±h) � p(z = 0). (35)

Henceforth Br and Bφ are evaluated at z = h, and p at z = 0. As
pointed out by Blandford & Payne (1982), in order that centrifugal
force should drive the wind outward, the poloidal field lines must
make an angle of at most 60◦ with the surface of the disc, so that
Br/Bz �

√
3. Therefore

B2

8π
�

4B2
r + B2

φ

8π
� 4p.

The stress on the faces of the disc is therefore bounded by∣∣∣∣ Bz Bφ

4π

∣∣∣∣ �
√

3

∣∣∣∣ Br Bφ

4π

∣∣∣∣ �
√

3
B2

r + B2
φ

8π
<

√
3 p.

Using equation (34), we have

|vacc| �
√

3

r 3�

∫ r

rmin

�cs
2

h
(r ′) r ′ 2 dr ′ ∼

√
3

c2
s

h
. (36)

So the inflow could be marginally supersonic. For a viscous disc,
on the other hand, |vacc| ≈ αc2

s /r , which is strongly subsonic as
long as α 	 r/h.

The angular momentum extracted from the face of the disc by the
field must be carried off by the wind. It is problematic whether a
strong wind can be launched from the disc (Ogilvie & Livio 2001),
and whether rapid wind-driven accretion is stable (Cao & Spruit
2002). Apart from these difficulties, the consideration of the mag-
netic flux,

�(r ) ≡
∫ r

rmin

Bz(r
′, 0) 2πr ′ dr ′,

leads to important constraints on the field strength and accretion rate.
Presumably�(r) should not change secularly. If Bz is predominantly
of one sign, then the increase of |�| by advection must be balanced
by diffusion of the lines through the inflowing gas. The drift velocity
of the lines vdrift =−vacc ∼ηeff/r if Bz varies on scales ∼r , where ηeff

is the effective diffusivity of the gas. In significantly ionized discs,
the microscopic diffusivity is negligible, so ηeff is due to turbulence,
and we expect ηeff ∼ α′cs h with α′ � 1. Hence, for a steady wind-
driven disc threaded by net magnetic flux, |vacc| � (α′h/r ) cs, which
is probably very much less than the upper limit (36) and comparable
to the accretion velocity of a viscous disc. Alternatively, the net flux
could be essentially zero if Bz changes sign on scales 	r . In the
latter case, the higher flow speed (36) may be achievable. But so
irregular a field would probably have to be sustained by dynamo
action within the disc rather than inherited from whatever region
supplies the accreting gas. This probably requires MRI and gives
another argument for a subequipartition field.

To summarize this subsection, accretion driven by magnetized
winds is even less well understood than viscous accretion but might
allow substantially higher accretion velocities and lower surface
densities, perhaps by factors up to ∼r/αh.

4.4 Thin discs with strongly magnetized coronae

This is a variant of Section 4.3 in which most of the field lines are
not open but re-attach to the disc at large distances �r � h (Galeev
et al. 1979; Heyvaerts & Priest 1989). The vertical magnetic scale
height is then H ∼ �r � h. The angular momentum flux carried
through the corona,

J̇ cor(r ) = −2

∫ z=∞

z=h

dr

∫ 2π

0

dφ
Br Bφ

4π
∼ H

Br Bφ

4π
(r, h),

can be larger than the flux within the gas layer by a factor ∼H/h,
so that the effective value of α might be as large as r/h (for H ∼ r )
without fields exceeding equipartition.

The evidence for magnetized coronae that dominate angular-
momentum transport is suggestive but inconclusive. Local simu-
lations of MRI generally find that the scale height of the field ex-
ceeds that of the gas, but only by factors of order unity; they also
find α ∼ 10−2–10−1 rather than ∼r/h (Brandenburg et al. 1995;
Stone et al. 1996; Miller & Stone 2000). Possibly, H/h is limited
by the fact that the smallest dimension of the computational domain
is �h. Global simulations of MRI have been performed for rela-
tively thick discs only, so that it is difficult to distinguish scalings
with h from scalings with r (Matsumoto & Shibata 1997; Hawley
2000). Global simulations of thin discs in three dimensions may not
be available for some time because of the very large numbers of
grid cells needed to resolve both the disc and the corona. Merloni
& Fabian (2001) argue that X-ray observations of accreting black
holes – active galactic nuclei (AGN) and X-ray binaries – demand
a strongly magnetized corona, at least in the innermost part of the
disc. On the other hand, observations of eclipsing cataclysmic vari-
ables indicate that X-rays are emitted from the disc–star boundary
layer rather than an extended corona (Mukai et al. 1997; Ramsay
et al. 2001).

4.5 Global spiral waves

As is well known, a trailing m-armed spiral density wave

�(r, φ) = �0(r ) + �m(r ) cos (mφ + µ ln r ) (37)

exerts an outward (positive) gravitational angular-momentum flux

� ≈ π2G�2
mr 3 mµ

|µ|3
(Lynden-Bell & Kalnajs 1972). The above approximation is good
for tightly-wrapped waves, µ � m �= 0, which carry relatively lit-
tle flux for a given density contrast �m/�0. An exact formula for
logarithmic spirals with �m ∝ r−3/2 is

� = −π2G�2
mr 3m

∂

∂µ
K (µ, m), (38)

where K (µ, m) is the Kalnajs function (Kalnajs 1971):

K (µ, m) = 1

2

∣∣∣∣∣
�

[
1
2

(
m + iµ + 1

2

)]
�

[
1
2

(
m + iµ + 3

2

)]
∣∣∣∣∣

2

(real µ). (39)

With �m/�0 = 1, the largest ratio for which the surface density is
everywhere positive, we find that the torque is maximized at m = 1
and a pitch angle tan−1(m/µ) ≈ 48.◦2, so that

�max ≈ 0.961πG�2
0r 3. (40)

Suppose that the gravitational torque is balanced by the advec-
tion of angular momentum with the accreting gas. In other words,
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946 J. Goodman

� ≈ Ṁr 2, so that there is no secular change in the angular mo-
mentum within radius r. The gravitationally-driven accretion speed
is then

|vr | � �max

2πr 3�0
≈ 0.15Q−1 cs (41)

in which Q has been calculated from the azimuthal average of the
surface density, �0. In principle therefore, accretion may occur at a
significant fraction of the sound speed. But the existence of a self-
consistent wave-driven flow has been assumed rather than proved.
Non-linear single-armed spirals in Keplerian discs have been found
by Lee & Goodman (1999), but only for weak self-gravity (Q � 1)
and without dissipation or accretion.

In steady accretion on to a central mass that dominates the rotation
curve, the advected angular-momentum flux � = Ṁr 2 ∝ r 1/2, so
� ∝ r−5/4 rather than r−3/2. Presumably the slight change in power-
law index does not change the results (40) and (41) much.

4.6 Clumpy discs

Can QSO discs persist at Q 	 1 without fragmenting entirely into
stars? Lin & Pringle (1987) have suggested that complete fragmen-
tation does not necessarily result from such a low Q. Numerical sim-
ulations suggest that it does (Monaghan & Lattanzio 1991; Gammie
2001).

The question is all the more urgent because of rather direct evi-
dence for parsec-scale accretion discs in nearby AGN, if not QSOs,
from VLBI observations of maser emission. If the nuclear disc of
NGC 1068 is in a steady state, then the nuclear luminosity implies
Q ∼ 10−3 at r ∼ 1 pc (Kumar 1999). NGC 4258 is much less lu-
minous, and estimates of Ṁ range from 7 × 10−5α0.1 Ṁ
 based on
modeling the maser emission itself (Neufeld & Maloney 1995), to
10−2 Ṁ
 (Gammie, Narayan & Blandford 1999; Kumar 1999) for
an assumed central advection dominated accretion flow (ADAF); at
the former rate, Q ∼ 1 at the outer edge of the masering region,
∼0.2 pc (Maoz 1995), while in the latter, Q ∼ 10−2.

Kumar (1999) has suggested a clumpy rather than smooth disc,
in which accretion occurs by gravitational scattering and physical
collisions among clumps rather than an α viscosity. These clumps
are supposed to be gas clouds rather than fully formed stars, in
order to provide appropriate conditions for maser amplification. Al-
though the model deals with the stability and accretion rate of the
clumpy disc as a whole, it does not ask what prevents the individual
clumps from collapsing. In the application to NGC 1068, the masses,
radii and surface temperatures of the clumps are quoted as Mc ∼
103 M
, Rc ∼ 0.1 pc and T eff,c ≈ 500 K; the virial temperature im-
plied by this mass and radius is ∼2000 K. These clumps would be
moderately optically thick at the wavelength corresponding to T eff,c.
Their characteristic thermal time – the time required to radiate their
binding energy – is

tth,c ≈ G M2
c

/
Rc

4πR2
c σ T 4

eff,c

∼ 105s,

hence many orders of magnitude less than the orbital time
(−1 ∼ 1011 s at r ∼ 1 pc) or interclump collision time. Of course, the
surface temperatures of these objects are assumed to be maintained
by irradiation from the central source, but without a fast-responding
feedback mechanism, the thermal equilibrium is unstable. If a clump
starts to contract, its surface temperature will rise, and collapse will
proceed on the clump’s internal free-fall time-scale (as this is larger
than t th,c).

To answer the question raised above, we therefore believe that
no QSO accretion disc, whether smooth or clumpy, can persist at
Q 	 1.

5 D I S C U S S I O N

Although the accretion velocity of a thin viscous disc is very strongly
subsonic, with a Mach number M ≡ vr/cs ≈ αh/r , the discussion
of Section 4 suggests that M might approach ∼0.1 if accretion is
driven by large-scale magnetic or gravitational fields rather than a
local effective viscosity. Self-consistent solutions that achieve this
bound would be very interesting to pursue.

Even at near-sonic accretion speeds, QSO discs become self-
gravitating at radii less than a parsec if there is no important source
of heating other than dissipation of orbital energy. Combining equa-
tions (3) and (5) with Ṁ = 2πr�Mcs instead of the viscous relation
(2), and assuming that gas pressure dominates (β ≈ 1), we find that

Q = 2−25/18π−1M7/9κ̂2/9κ7/9
e.s. G−1

(
ckB

σ 1/4m

)8/9

RS
−11/9

(
r

RS

)−25/18

≈ 0.8

(
r

104 RS

)−25/18(M7
0.1ε

5
0.1κ̂

2

lE
5 M11

8

)1/9

≈ 0.8

(
r

0.1 pc

)−25/18(M7
0.1ε

5
0.1κ̂

2

lE
5

)1/9

M1/6
8 . (42)

On the other hand, we have seen (Section 3.2) that, when angular-
momentum transport is viscous, then it is unlikely that stars can
supply enough additional heat to stabilize the disc beyond 1 pc, es-
pecially if viscosity is proportional to gas pressure rather than total
pressure as viscous stability probably demands. In the latter case,
even low-mass black holes embedded in the disc are probably inad-
equate. These statements assume that enough free gas remains in the
disc to supply the central black hole at its Eddington rate. If all the
gas converts to stars, stability may result, but the quasar is quenched.
Perhaps a combination of stellar (or embedded-black-hole) heating
and a superviscous accretion speed may allow an extended gravita-
tionally stable disc; we hope to explore this possibility in a future
paper.

Given the serious theoretical difficulties of all proposed mech-
anisms for keeping Q � 1 at large radii, we are forced to take
seriously the only remaining possibility: that QSO discs do not ex-
ist much beyond Rsg ∼ 10−2 pc (equation 10) – at least not in a state
of centrifugal support, vertical hydrostatic equilibrium, and steady
accretion. Yet the mass within this radius is smaller than that of the
central black hole by a factor ∼(h/r ) ∼ 10−2 (since the midplane
density ≈ M/2πr 3 at Q = 1). Hence, in order to grow the black
hole, the disc must be replenished, either steadily or intermittently,
by infall of low-angular-momentum material. In order that the gas
not circularize outside 10−2r pc, its specific angular momentum must
be � 70 M1/2

8 km s−1 pc, or some three orders of magnitude smaller
than that of most stars in ellipticals and bulges (Binney & Merrifield
1998). Such a small ratio may seem unlikely, but on the other hand,
Mbh/Mbulge ≈ 10−3 (McLure & Dunlop 2002). So perhaps the QSO
is fuelled by the low-angular-momentum tail of gas that forms the
bulge. This gas would arrive at the outer edge of the disc in a verti-
cally broad infall, perhaps already carrying dust formed from metals
injected by outflows from the bulge or QSO disc itself, and hence
taking the place of a warped outer disc as the source of reprocessed
infrared light. The picture this calls to mind is similar, except in
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scale, to the standard scenario for the formation of a protostar (Shu,
Adams & Lizano 1987).
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A P P E N D I X A : V I S C O U S LY H E AT E D D I S C S

For completeness, in this appendix we give formulae for the mid-
plane temperature (T) and other characteristics of a steady optically
thick disc heated by viscous dissipation only.

Combining equations (2), (3) and (5), and writing βc2
s = kBT /m,

where m ≈ mH is the mean mass per gas particle, we have the radial
dependence of � and T:

T =
(

κm

16π2αβb−1kBσ

)1/5

Ṁ2/53/5

≈ 1.0 × 105

(
l2
Eκ̂

ε2
0.1α0.01βb−1

)1/5

M−1/5
8

(
103 RS

r

)9/10

K, (A1)

� = 24/5

3π3/5

(
m4σ

k4
B

)1/5

(αβb−1)−4/5κ−1/5 Ṁ3/52/5

≈ 3.9 × 106(α0.01β
b−1)−4/5lE

3/5ε
−3/5
0.1 κ̂−1/5 M1/5

8

×
(

103 RS

r

)3/5

g cm−2. (A2)

If viscosity scales with gas pressure (b = 1) then equations (A1) and
(A2) do not depend on β, which in any case is a known function of
density and temperature:
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β

1 − β
= pgas

prad
= 3ckB

4σm

ρ

T 3
= 3c

8σ

(
kB

m

)1/2

β1/2 �

T 7/2
;

using equations (A1) and (A2),

β (1/2)+(b−1)/10

1 − β
= (23π4)1/5α−1/10c(kB/m)2/5σ−1/10

× κ−9/10−7/10 Ṁ−4/5

≈ 0.44 α
−1/10
0.01 ε

4/5
0.1 lE

−4/5κ̂−9/10 M−1/10
8

(
r

103 RS

)21/20

.

(A3)

Using equation (A1) to eliminate cs from equation (7) yields the
gravitational stability parameter

Q = 3(4π)−3/5α7/10β (7b−12)/10(kB/m)6/5σ−3/10G−1

× κ3/10 Ṁ−2/59/10

≈ 0.094 α
7/10
0.01 β (7b−12)/10ε

2/5
0.1 lE

−2/5κ̂3/10 M−13/10
8

(
103 RS

r

)27/20

.

(A4)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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