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operation of silicon microparticle anodes for
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The ability to repair damage spontaneously, which is termed self-healing, is an important survival feature in nature
because it increases the lifetime of most living creatures. This feature is highly desirable for rechargeable batteries
because the lifetime of high-capacity electrodes, such as silicon anodes, is shortened by mechanical fractures generated
during the cycling process. Here, inspired by nature, we apply self-healing chemistry to silicon microparticle (SiMP)
anodes to overcome their short cycle-life. We show that anodes made from low-cost SiMPs (∼3–8 mm), for which stable
deep galvanostatic cycling was previously impossible, can now have an excellent cycle life when coated with a self-healing
polymer. We attain a cycle life ten times longer than state-of-art anodes made from SiMPs and still retain a high capacity
(up to ∼3,000 mA h g21). Cracks and damage in the coating during cycling can be healed spontaneously by the randomly
branched hydrogen-bonding polymer used.

W
hen faced with the dilemma of mechanical fractures in
biological systems, nature offers a smart solution: self-
healing. Soft biomaterials, such as human skin, have the

ability to self-heal or self-repair when damaged1. After wounds
heal, the skin is able to retain sensing functionalities. The ability
to self-heal after mechanical damage has enhanced significantly
the lifetime of biomaterials. In a similar vein, synthetic self-
healing polymers (SHPs) are able to repair themselves and recover
functionalities despite being subjected to mechanical damage2–8.
Recently, self-healing chemistry has been demonstrated to have
exciting applications towards functional surfaces9,10, electrical
conductors11–14 and electronic skin8 with enhanced lifetime
and durability.

The self-healing feature is particularly desirable for energy
storage because the lifetimes of many rechargeable batteries are
limited by the similar dilemma of mechanical fractures over the
cycling process. Electrochemical reactions in battery materials nor-
mally result in structural changes, which may cause degradation and
damage, and ultimately cause the battery to be non-functional with
cycling15–18. Next-generation electrode materials for lithium-ion
batteries are especially susceptible to these failure mechanisms
because they react with greater amounts of lithium and thus
undergo more drastic structural changes16,19–23. For example,
silicon, which has a theoretical specific capacity ten times higher
than that of conventional graphite anodes, usually suffers from
fast capacity decay and short cycle-life. This is mainly because
silicon expands volumetrically by up to three times on full lithium
insertion (lithiation) and contracts significantly on lithium extrac-
tion (delithiation). These extreme volumetric changes can cause
cracking and pulverization in the electrode, which lead to loss of
electrical contact and excessive solid–electrolyte interphase (SEI)
growth15,24,25. Even when incorporating the silicon materials with
metal alloys or high-modulus polymer binders, mechanical fractures
and damages still occur.

One feasible approach to increase the lifetime of silicon anodes is
to use nanoscale silicon materials26–30. However, silicon nanoparti-
cles (SiNPs) are only available in small quantities31,32, but other
nanostructured silicon materials, such as nanowires, nanospheres,
nanotubes and nanocrystals, require chemical vapour deposition
and/or template growth, all of which are difficult and expensive to
scale up26–29,33. Therefore, silicon microparticles (SiMPs) are more
promising as electrode materials towards practical industrial appli-
cations because they are cheap and readily commercially available.
In addition, the use of SiMPs leads to higher volumetric energy
density when compared to SiNPs. Obrovac and Krause demon-
strated an effective approach to achieve high cycling stability of
SiMP electrodes by controlling precisely the lithiation potential.
This is a very promising strategy to achieve a high-energy electrode
for lithium-ion batteries34,35. Recently, Chevrier and co-workers
showed that microsize silicon alloy particles can have excellent
charge–discharge cycling stability at certain conditions36,37.
However, all previously reported pure SiMP anodes have an extre-
mely short cycle-life over deep galvanostatic cycling24: the capacity
rapidly drops to ,80% of the initial value in less than ten cycles
because of the significant fracture and particle detachment in the
electrodes38–41. To overcome this challenge, others have used
nanostructured SiMPs42, but again the issues for scaling up
remain. Here, we use a chemical approach to improve the cycling
lifetime by coating the microparticles with a thin layer of
hydrogen-bond-directed SHP. Compared with traditional polymer
binders, the self-healing chemistry is designed to enable
spontaneous repair of the mechanical damage in the electrode
and thus increase the lifetime of the SiMP anode.

Figure 1a shows a schematic design of the self-healing electrode.
In a traditional silicon-based anode, the polymer binder surrounds
the silicon particles and binds the active materials to the current
collector to maintain electrical contact (Fig. 1a, Scheme 1). On
cycling, the stress generated by the huge volumetric changes
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during the lithiation/delithiation of SiMPs causes fracture in the
particles and polymer layers, resulting in loss of electrical contact
and subsequent loss of capacity. In our current design (Fig. 1a,
Scheme 2), the silicon electrode is coated with a thin layer of soft
SHP. Different from conventional polymer binders, our SHP is
stretchable and can repair spontaneously the mechanical damage
and cracks in the electrode, which results in more stable mechanical
and electrical connections among the silicon particles.

Results and discussions
Material design and characterizations. There are two major
categories of SHPs: (1) polymers with dynamic bonds1,3,5 and (2)
polymers embedded with microencapsulated healing agents2. For
battery applications, a SHP based on dynamic bonding is more
desirable because of its repeatable healing capability. Particularly,
a hydrogen-bonding-directed43 SHP is most advantageous as the

coating layer as it allows for the cracks to heal autonomously and
repeatedly at room temperature6. In addition, the SHP binder
needs to be have a modest conductivity (.0.1 S cm21). We
therefore designed a conductive composite of SHPs and
conductive carbon black nanoparticles (CB). The SHP is a
randomly branched hydrogen-bonding polymer, synthesized and
fabricated using an approach modified from previous reports5,6,44.
Its molecular structure is shown in Fig. 1b. We designed the
polymer to have an amorphous structure with a low glass-
transition temperature (Tg). If there is a crack or mechanical
damage, the amorphous structure and low Tg of the SHP allow
the polymer chains at the fractured interfaces to rearrange,
approach and intermix. This process is driven by the dynamic
reassociation of hydrogen bonds at room temperature and leads to
spontaneous self-healing. Indeed, the amorphous nature of the
polymer was confirmed by differential scanning calorimetry
(DSC), as evidenced by the lack of a melting-point peak over the
whole temperature range (Fig. 2a). The DSC trace also confirms
that Tg is around 0 8C, much lower than room temperature. The
SHP is made conductive (≏0.25 S cm21) by uniformly dispersing
CB into the polymer. The composite undergoes simultaneous
mechanical and electrical self-healing at room temperature
(Supplementary Figs 2–5). The self-healing capability is
demonstrated in Fig. 2b, which shows that, after an electrical
circuit is broken, when the two pieces of SHP acting as the
conductors are brought together the circuit is completed in about
one minute, and the light-emitting diode (LED) illuminates again.
At the same time, the composite can withstand mechanical
bending at the healed location, which indicates the quick electrical
and mechanical healing at room temperature.

The crosslinked network of our SHP enables good mechanical
stretchability as well, which allows the polymer to accommodate
potential expansion of silicon to avoid non-healable damage, for
example large cracks or delamination. As shown in Fig. 2c, our
SHP can be stretched to three times its initial length without break-
ing (Supplementary Fig. 7). In comparison, traditional binders show
much lower stretchability. Polyvinylidene fluoride (PVDF), sodium
carboxymethyl cellulose (CMC) and alginate samples with similar
sizes can be stretched only by up to 10%, 4% and 2%, respectively.
Moreover, the SHP/CB composite retains its electrical conductivity
during stretching. As shown in Fig. 2d, the resistance of the compo-
site coated on polydimethylsiloxane did not change significantly as
the composite was subjected to a 100% strain. The resistance
remained within the same order of magnitude when subjected to
.120 stretching cycles (Supplementary Fig. 8). This electromecha-
nical durability also exists during expansion and shrinkage. We used
an inflatable balloon coated with SHP/CB composite (Fig. 2e) to
mimic the volumetric changes of silicon particles that took place
during the lithiation/delithiation process. The conductivity of the
composite coating changed from 0.25 S cm21 to 0.14 S cm21 on
a volume expansion of about ten times, and the conductivity
remained at 0.05 S cm21 even at the larger volume expansion of
25 times. On deflation, the conductivity was observed to revert
close to the initial value.

Battery testing. Next, we proceeded to fabricate the self-healing
silicon electrodes by sealing SiMPs inside a SHP/CB composite
coating (see Methods for the detailed fabrication process). Coin cells
with metallic lithium counter electrodes were employed to evaluate
the electrochemical performance of the electrodes. On deep
galvanostatic cycling between 0.01 and 1 V, the discharge
(delithiation) capacity reached 2,617 mA h g21 for the first cycle at
a current density of 0.4 A g21 (Fig. 3a,b), which is about six times
higher than the theoretical capacity of graphite. The electrode shows
good cycling stability: the discharge capacity retention was 100%,
95% and 80% after 20, 50 and 90 cycles, respectively. This is in
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Figure 1 | Design and structure of the self-healing electrode. a, Scheme 1:

schematic illustration of the design and behaviour of a conventional silicon

electrode that shows failure of the electrode because of cracking in particles

and polymer binder, which results in loss of electrical contact. Scheme 2:

schematic illustration of the design and behaviour of our stretchable self-

healing electrode that shows the maintaining of electrical contact between

the broken particles and no cracks in the polymer binder because of the

stretchability and incorporation of self-healing chemistry. b, Chemical

structure of the SHP. Magenta lines, polymer backbones; light-blue and

dark-blue boxes, hydrogen-bonding sites.
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drastic contrast to SiMP anodes with PVDF, CMC and alginate, which
demonstrated poor stability and retained only 14%, 27% and 47%,
respectively, of their initial capacities after 20 cycles at the same
current density (0.4 A g21). The performances of SiMP electrodes
with these conventional binders are consistent with those in many
previous reports41,45–47. When defining the cycle life as the number
of cycles to reach 80% of the initial capacity, the cycling lifetime of
our self-healing SiMP electrode (90 cycles) is more than ten times
longer than those of all the other SiMP electrodes (,9 cycles). The
superior cycling stability and the high capacity of the SiMP/SHP/CB

electrode are highly repeatable. We monitored the electrochemical
cycling performance of six different batches of SiMP/SHP/CB
electrodes and all of them showed a similar high capacity as
well as a negligible capacity loss after 20 cycles of deep
charge/discharge cycling (Fig. 3c). Furthermore, a control sample
with the same electrode structure but without SHP (Supplementary
Fig. 13) also showed poor cycling stability, which confirms that the
good cycling performance arises because of the SHP.

Rate-capability tests showed that the SiMP/SHP/CB electrodes
retain their stable cycling stability at various rates, as shown
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in Fig. 4b,c. In addition, a high capacity of 3,200 mA h g21 was
achieved at the charge/discharge current density of 0.2 A g21

(which corresponds to a cycling rate of C/20, where the rate was
based on the theoretical capacity of silicon). The silicon mass

loading was 0.5–0.7 mg cm22 and the areal capacity was about
1.5–2.1 mA h cm22 (Supplementary Fig. 14). Although further
work is needed to meet the commercial requirement of lithium-
ion batteries (3 mA h cm22), our areal capacity is much higher
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than that of many other previous reports25,26,28,29. Even at a higher
current density of 2.0 A g21 (or C/2 rate), the electrode was able
to maintain a capacity of ≏1,400 mA h g21 (Fig. 3f,g). Finally, the
superior cycling stability of the SiMP/SHP/CB electrode was also
observed in constant-capacity cycling experiments in which the
lithium insertion capacity was limited to 1,000 mA h g21, with
.500 electrode cycles (Supplementary Fig. 15).

Coulombic efficiency (CE) is also important for practical silicon-
based electrodes17,25. For our SiMP/SHP/CB electrodes, the CE of
the first cycle was more than 80%. In later cycles, the CE of the
SiMP/SHP/CB electrode was about 98.5% at a cycling rate of C/10,
and it reached 99.2% at a C/2 cycling rate. The CE of our SiMP elec-
trode is comparable to those in previous reports on SiNPs and nano-
wires26,27,29,33. Our CE value indicates a relatively stable SEI formation
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and minimal side reactions from the SHP in the electrode. In
addition, no observable impedance increase occurred, even after
100 cycles, which indicates limited growth of the SEI during the
cycling processes. However, our CE was still lower than the require-
ment for commercial lithium-ion batteries, but may be improved
by surface treatments, electrolyte modifications38 and using a micro-
size silicon alloy35,37 with less volume expansion.

Mechanism studies. The improved cycling stability of the electrode
can be attributed to two major features associated with the SHP/CB
composite coating: (1) stretchability and (2) spontaneous self-healing
capabilities. Owing to its superior mechanical stretchability as well as
its strong interactions with the silicon surface (Supplementary
Fig. 16), the SHP/CB coating can better withstand the large
volumetric changes of SiMPs during lithiation/delithiation to
bring the shrunk and silicon particles into contact with the
polymer binder and at the same time avoid large non-healable
cracks in the polymer binder. When the SHP/CB composite
coating does undergo fracture, it can proceed to self-heal. These
two unique features of our SHP allow the electrode structure to be
maintained over repeatable cycling processes. To provide further
evidence, the morphology of the electrode with cycling was
monitored using scanning electron microscopy (SEM). Before
cycling, the SiMP layer (≏3 mm) was covered with a thin layer
(≏200 nm) of the conductive SHP/CB composite, which displayed
a flat and smooth morphology (Fig. 5a,b). After electrochemical
cycling (20 cycles at a rate of C/10), the SHP/CB layer became
rough and had a continuous wave-like morphology (Fig. 5c,d).
This is caused by the underlying SiMPs being deformed when
subjected to repeated volume expansion and contraction
processes. No significant cracks or delaminations were observed.
Cross-sectional SEM imaging of the electrode after cycling showed
that a clear boundary still exists between the SHP/CB and SiMP
layers, which indicates that the electrode structure is highly stable
over the repeated cycling processes (Supplementary Fig. 18).

The self-healing capability of the electrode was also captured by
SEM (Fig. 5f). Small cracks were, indeed, observed in the polymer
coating on the lithiated and expanded silicon immediately after
charging. However, when the sample was subsequently left for five
hours, we observed that the initial smaller cracks were completely
healed (indicated by the arrows). In addition, the larger cracks also
showed partial healing, and they were able to heal more completely
during the delithiation process because the shrinking process
brought the fractured surfaces into closer contact.

The contribution of the self-healing effect to the battery perform-
ance was further confirmed by replacing SHP with control polymer
A, which is also highly stretchable, but has significantly less self-
healing capability than SHP (Supplementary Scheme 1 and
Supplementary Fig. 16). Batteries made with control polymer A
showed much lower cycling stability compared to those made
with the SHP (Fig. 4d). Previous reports of fabricated silicon
anodes with highly stretchable synthetic rubbers (for example,
styrene–butadiene–rubber or PVDF–tetrafluoroethylene–propylene),
but without self-healing ability, only show limited improvement
in their cycling stability48,49.

Conclusion
In summary, we present here a successful demonstration of self-
healing chemistry in battery application. Other alloy-type anode
materials with large volume changes during cycling, such as tin
and germanium, could potentially benefit from this approach, and
it could possibly be advantageous for certain cathode materials,
such as sulfur. Specifically, by modifying SiMPs into porous
SiMPs or taking silicon alloys, which have higher structural stability,
and combining these with the self-healing approach, we may be able
to achieve stable silicon electrodes with an areal capacity that meets

the requirement of commercial lithium-ion batteries. This new
concept of a self-healing electrode may also be useful for other
materials that suffer from mechanical issues during electrochemical
reactions, including electrode materials for fuel cells, water splitting
and catalysis.

Methods
We synthesized SHP through a condensation reaction. The conductivity on
stretching was tested using a home-made precision mechanical stretching
system integrated with Keithley 4200. The stretching and releasing speed
were both at 5 mm min21.

Battery fabrication. SHP (100 mg) was dissolved in chloroform (1 ml) and then
mixed with CB material (15 mg (TIMCAL)) using a Dual Asymmetric Centrifugal
Mixer (3,500 r.p.m., 135 seconds; Flacktek DAC 150.1 FVZ) to obtain a
homogeneous suspension. The suspension was then drop-cast onto a glass slide and
dried overnight to form the self-healing conductive composite. SiMP (0.1 g, ABCR)
was dispersed in ethanol (10 ml) by sonication. Working electrodes were prepared
by drop-casting the silicon suspension onto Cu foil (Fukuda). After drying at room
temperature followed by calendaring, uniform electrodes with a SiMP loading of 0.5–
0.7 mg cm22 were prepared. The weight ratio between silicon-active materials and
polymer composite was 1:1. The area specific capacity was 1.5–2.1 mA h cm22. The
silicon electrode was heated to 100 8C on a hot plate. The self-healing conductive
composite was then melted at 100 8C and coated on the silicon electrode with a
sharp blade. The electrodes were degassed in vacuum at room temperature overnight
and transferred to an argon glove box for battery assembly. The electrochemical
properties were examined by galvanostatic cycling of 2,032 stainless-steel coin
cells with the SiMP/SHP/CB electrode as the working electrode. Lithium metal
foil (1 mm thick) was used as a counter electrode. The electrolyte for all tests was
1 M LiPF6 in ethylene carbonate/diethyl carbonate/fluoroethylene carbonate
(1:1:0.04 vol/vol/vol (Ferro Corporation)), and separators (25 mm) from Asahi Kasei
were used. All electrochemical measurements were carried out at room temperature
in two-electrode 2,032 coin-type half-cells. The charge and discharge rates were
calculated assuming theoretical capacities for silicon. The CE was calculated as
(Cdealloy/Calloy)× 100%, where Calloy and Cdealloy are the capacity of the anodes for
lithium insertion and extraction.
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