
Research Article

Self-Healing Many-Core Architecture: Analysis and Evaluation

Arezoo Kamran and Zainalabedin Navabi

School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran 1439956191, Iran

Correspondence should be addressed to Arezoo Kamran; akamran@ut.ac.ir

Received 27 December 2015; Accepted 30 May 2016

Academic Editor: Maurizio Palesi

Copyright © 2016 A. Kamran and Z. Navabi. 	is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

More pronounced aging e
ects, more frequent early-life failures, and incomplete testing and veri�cation processes due to time-
to-market pressure in new fabrication technologies impose reliability challenges on forthcoming systems. A promising solution to
these reliability challenges is self-test and self-recon�guration with no or limited external control. In this work a scalable self-test
mechanism for periodic online testing of many-core processor has been proposed. 	is test mechanism facilitates autonomous
detection and omission of faulty cores and makes graceful degradation of the many-core architecture possible. Several test
components are incorporated in the many-core architecture that distribute test stimuli, suspend normal operation of individual
processing cores, apply test, and detect faulty cores. Test is performed concurrently with the system normal operation without any
noticeable downtime at the application level. Experimental results show that the proposed test architecture is extensively scalable
in terms of hardware overhead and performance overhead that makes it applicable to many-cores with more than a thousand
processing cores.

1. Introduction

Impressive advances in emerging fabrication technologies
have o
ered the capability of fabricating smaller, faster, and
cheaper transistors andmade integration of tens of billions of
these devices on a single chip feasible.	ese capabilities have
broadened the horizons to produce processors with more
processing power by duplicating a processing core ten or even
hundred times on a single chip. However deep submicron
(DSM) manufacturing techniques face new challenges that
can be categorized as (1) production yield drop, (2) early-
life failure (infant mortality), (3) accelerated aging (wear-
out), (4) so errors (transient faults), (5) process variability,
and (6) veri�cation ine�ciencies [1–3]. Because of all the
challenges encountered in new fabrication technologies a
major paradigm shi in all aspects of these technologies from
design, veri�cation, and fabrication to testing and soware
and application development is required.

Because of inadequate and nonaggressive burn-in test-
ing, more pronounced aging e
ects, and incomplete testing
and veri�cation processes due to increased time-to-market
pressure in new fabrication technologies, systems fabricated
in these technologies may experience faults (including early

defects or latent faults) and fail at any time in the �eld. So
a one-time factory testing is not su�cient in future VLSI
components. In fact success of new fabrication technologies
heavily depends on integrating architectures and mecha-
nisms into the design to deal with low yield and frequent in-
�eld failure of components due to early-life failures or latent
faults and guarantee long-life reliable operation of future
chips.

Reliable operation of VLSI components can be achieved
by redundancy-based techniques or test and recon�guration.
As the defect probability in new fabrication technologies
increases, the overhead imposed by redundancy-based tech-
niques becomes less tolerable. In fact the redundancy-based
techniques in new defective fabrication technologies use
a large amount of additional elements to protect on-chip
components with redundant parts and not for improving
the performance [4]. A possible solution to the reliability
challenges of new fabrication technologies is self-test and self-
recon�guration with no or limited external control [5].

Considering various researches in this area, there is a
need for a test mechanism that is applicable to many-core
processors having a large number of processing cores, with
a minimal hardware and performance overhead.	is is what

Hindawi Publishing Corporation
VLSI Design
Volume 2016, Article ID 9767139, 17 pages
http://dx.doi.org/10.1155/2016/9767139

2 VLSI Design

our research is devoted to. In this work we propose a scalable
test architecture for online detection of permanent and
intermittent faults in a homogeneous many-core processor.
	is architecture is a signi�cant extension of our previous
works [6, 7]. Using this test architecture, we will have a
many-core processor that is autonomous and concurrentwith
the system normal operation, checks the health status of its
processing cores, detects the faulty ones, and removes them
from the system realizing a many-core processor architecture
with self-healing capability.

	e rest of this paper is organized as follows: In Section 2
related works and their pros and cons have been discussed.
Section 3 presents details of the proposed test mechanism.
In Section 4 various test strategies that can be realized in
the proposed test architecture are discussed. Analysis on
detection latency and probability of correct system recovery
is presented in Section 5. Section 6 investigates experimental
results, and �nally Section 7 concludes the paper.

2. Related Works

More frequent in-�eld failures of chips due to silicon defects
in recent extremely dense fabrication technologies have led
to development of mechanisms and techniques to detect
and isolate faulty components and recon�gure the chip
to continue its correct operation. Constantinides et al. [8]
have addressed this issue. 	ey have added several new
instructions to the processor instruction set architecture,
called Access-Control Extensions (ACE), that provides access
and control of the processor internal state via soware.
Special �rmware periodically suspends the processor normal
operation, stores the processor state, and applies the ACE
instruction to the processor core. If the processor passes the
test procedure, its sate is retrieved and the normal operation
is continued. Otherwise, in presence of a permanent fault,
this �rmware can detect and locate the fault and trigger a
recon�guration mechanism. Because of the soware nature
of this mechanism it has a great �exibility to be modi�ed
in the �eld for more reliability or less performance overhead
without need for any hardware changes. However, inclusion
of ACE instructions may lead to performance degradation in
highly optimized processing cores.

Li et al. [9] proposed a central system-level test hardware
called CASPTest Controller for testing a sharedmemory chip
multiprocessor with eight processing cores. 	e processor
test hardware is connected to the processing cores via a
crossbar switch. CASP Test Controller periodically isolates a
processing core and applies stored test patterns to the core,
concurrent with the normal operation of the rest of the
system. Although this test mechanism is a good solution for
chipmultiprocessors with a few numbers of processing cores,
the central nature of CASP Test Controller and the way that
it is connected to the processing cores limit its scalability to
CMPs with large number of processing cores.

Bernardi and Reorda [10] proposed a test architecture
for manufacturing test as well as periodic testing of SoCs
including cores equipped with BIST circuitry and IEEE 1500
wrappers. 	ey have devised an Infrastructure IP named

OTC (Online Test Controller) that is connected to the system
bus andmapped in the address space as a common peripheral
device, so it can be accessed and controlled by a CPU
embedded in the SoC via soware. CPU writes high level
test commands into a RAM attached to OTC and determines
the order and activation mode of the embedded cores. In
response to the issued commands, OTC programs the BIST
circuitry of each core to apply test and retrieve results via a
dedicated test bus. 	is mechanism is properly applicable to
cores that can well be tested by a BIST circuitry but is not
suitable for testing of processing cores embedded in the SoC.

Rodrigues and Kundu [11] suggested a test mechanism
that exploits the natural redundancy existing in a CMP
to dynamically verify operation of the datapath portion of
its processing cores. 	ey have implemented an Inter-Core
Queue (ICQ) as a communication channel between pairs
of cores in the CMP. Whenever an instruction is retired on
a core, it is pushed into the ICQ along with the operands
and the result calculated by the core. 	e core residing on
the other side of the ICQ pulls instructions from the ICQ
whenever there is a vacant slot in its scheduling window.	e
instruction gets executed on the tester core and the result
obtained by the tester core is compared with the previous
result stored in the ICQ with the aid of some hardware
circuitry. A mismatch in results indicates presence of fault.
	is mechanism only checks the datapath portion of the
processing cores. In this mechanism, pairing of cores is static
and whenever one core is detected as faulty, both of the
coupled cores will be unusable.

Austin [12] used dynamic veri�cation concepts and
introduced a microarchitectural-based technique called
DIVA (Dynamic Implementation Veri�cation Architecture)
enabling a complex processor to dynamically detect
functional and electrical faults. DIVA is formed by splitting
pipeline stages into two parts: DIVA core that fetches,
decodes, and executes instructions and holds the results in
a reorder bu
er (ROB) and DIVA checker that augments
the commit stage of a traditional out-of-order processor
and veri�es all the operations performed by the DIVA core.
If a computation result is correct it is permitted to pass
through the commit stage. Otherwise the DIVA checker �xes
the result, �ushes the pipeline, and restarts DIVA core at
the instruction aer the �xed instruction. Although DIVA
checker that is an in-order pipelined processor with few
interinstruction dependencies is simple compared with the
DIVA core, its hardware overhead is not tolerable in simple
processing cores of emerging many-core processors.

Benabdenbi et al. [13] proposed a soware/hardware
mechanism that is in charge of detection and reaction to
hardware/soware malfunction in a Multi-Processor Sys-
tem on Chip (MPSoC). 	ey have assumed that cores
are provided with status registers and counters measuring
activity level with at least a serial access mechanism to read
these registers. To realize the testing mechanism, they have
proposed embedding of a dedicated hardware component
that is in charge of periodically collecting data stored in
the activity registers of the cores. 	e hardware component
is driven by a soware application that concurrently runs
with the normal application and periodically compares the

VLSI Design 3

Test
bu�er

Cluster
tester

Con�guration
chain

Feedback
path

Broadcast tree

Test
cluster

Cluster
tester

Cluster
tester

Cluster
tester

Cluster
tester

Cluster
tester

Cluster
tester

Cluster
tester

Cluster
tester

Cluster
tester

ACT

Test snippet
bu�er

Figure 1: Test components incorporated into the many-core architecture.

activity counters with the expected values to detect if the
functional application is still normally working. In this work,
the detection mechanism is based on the activity counters,
but the ability of the mechanism to detect hardware faults
is not investigated. In fact, skepticism exists in detecting
hardware faults through use of several high level activity
counters.

Collet et al. [14] suggested an o�ine mechanism realizing
a graceful degradable many-core processor. In this work a
test program is stored in a local memory embedded in each
node and the processing cores are tested by a soware-based
self-test (SBST) approach. Although SBST is a nonintrusive
approach that enables at-speed testing of the processing
cores with no overtesting, the assumption of local storage of
the test program in each node imposes hardware overhead
comparable with the hardware cost of simple processing
cores.

3. Proposed Test Mechanism

In this section we introduce architectural details of a test
distribution and execution mechanism for a homogeneous
many-core processor architecture.We assume that the many-
core processor is composed of several identical nodes each
consisting of a processing core, several cache blocks, and
some hardware facility for communicationswith other nodes.

Although using routers arranged in a mesh topology is
the most common communication structure in many-core
processors, our proposed test architecture does not make any
assumption about the communication infrastructure of the
many-core processor. 	e focus of this work is on the testing
of the processing cores, but it is easily extendable for testing
of the other components of a node such as routers and cache
controllers.

3.1. Proposed Test Mechanism: Hardware View. 	e proposed
test architecture consists of di
erent components. Some of
these parts such as test bu�er, ACT (Autonomous Chip
Tester), and broadcast tree are responsible for saving and
broadcasting test stimuli among di
erent nodes. Some other
parts, namely, cluster testers, are locally situated near nodes
and are responsible for receiving the test, isolating the corre-
sponding cores, applying test to them, and identifying faulty
ones. Figure 1 shows di
erent parts of the test architecture
that have been added to a many-core with mesh topology.
In the following sections, di
erent parts of the proposed test
architecture are discussed in detail.

3.1.1. Test Bu�er. Test bu�er is an on-chip or o
-chip non-
volatile memory that stores test patterns. Since all nodes
are identical, only one copy of the test set is stored in the
test bu�er and is shared among all the nodes. 	e required

4 VLSI Design

Router

NI

Router

NI

Router

NI

Router

NI

Cluster
tester

Processing
core

Processing
core

St
o

re
St

at
e

R
es

to
re

St
at

e

Test
snippet
bu�er

ct
rl

A
d

d
re

ss

D
at

a

Processing
core

ct
rl

A
d

d
re

ss

D
at

a

Sin

ct
rl

A
d

d
re

ss

D
at

a

Processing
core

A
d

d
re

ss

D
at

a

ct
rl

Figure 2: Overview of a test cluster.

nonvolatile memory to store test stimuli in the proposed
architecture is less than 10 kbytes.	is requirement is a small
portion of the available storage in a modern chip.

3.1.2. Autonomous Chip Tester. Responsibility of Autono-
mous Chip Tester (ACT) is fetching test stimuli and test
commands from the test bu�er; broadcasting them among
test clusters through the broadcast tree; and scheduling test
procedures. In fact, ACT is a tiny processor with a limited
ISA. It processes several test commands and implements
the entire test procedure by executing those test commands.
Di
erent test commands that exist in the ISA of ACT are
explained in Section 3.2.

3.1.3. Broadcast Tree. 	e broadcast tree of the proposed test
architecture consists of an array of �ip-�ops arranged in a
pipelined tree. Test commands and test data are injected
into the tree by ACT and delivered to all processing cores
via broadcast tree. 	e pipeline nature of broadcast tree can
overcome the challenge of poor scalability of wire delays
in new fabrication technologies. Compared with a serial
pipeline, arrangement of �ip-�ops in a tree structure gives
high scalability to broadcast tree in terms of latency of
test distribution. As the number of nodes increases, the
latency of delivery of test stimuli to the farthest nodes grows
proportional to the square root of the number of nodes.
In fact, the broadcast tree facilitates distribution of test

data and test commands through the many-core architecture
e�ciently and independent of the functional communication
infrastructure of the many-core architecture.

3.1.4. Test Cluster. A test cluster in a many-core processor
(Figure 1) refers to several neighboring nodes, a cluster tester,
and a small local bu
er called test snippet bu�er. Figure 2
shows an overview of a test cluster that consists of four
processors. 	e responsibility of a cluster tester is to receive
test commands and test data fromACT through the broadcast
tree (see this in Figure 1), isolate the processing cores of the
corresponding test cluster, apply test data to the processing
cores, and identify and remove faulty processing cores in
collaboration with ACT. 	e concept of test cluster provides
better utilization of test hardware through sharing of test
components among several adjacent nodes.

Test clusters are put together in test groups. Contrary to
the nodes in a cluster, clusters in a group are not necessarily
adjacent; that is, clusters in di
erent areas of amany-coremay
be organized in one group. Looking top-down, a many-core
has hierarchically several test groups, each group comprises
several test clusters, and each cluster includes several adjacent
nodes and shared test components. Each cluster has a speci�c
Group-Id and Cluster-Id. In addition, each processing core in
a cluster has its speci�c Core-Id. Consequently, each process-
ing core can uniquely be identi�ed by a (Group-Id,Cluster-Id,
Core-Id) triplet. Upon receiving a test command that contains

VLSI Design 5

the three Ids, a cluster tester executes the command only if
Group-Id and Cluster-Id �elds of that command match those
of its own or if the �elds have a wildcard value. A �eld value
is regarded as wildcard when all its bits are “1.” A wildcard
value in the Group-Id, Cluster Id, or Core Id �elds of a test
command implies that the command should be applied to all
test groups, all test clusters in the activated test groups, and all
the processing cores in the activated test clusters. For example,
“test-command 2, ALL, 5” activates all cluster testers in group
2. Such cluster testers apply test command to the processing
core with Core Id = 5 in their corresponding cluster.

	e main goal of clustering is hardware sharing and the
main goals of grouping are controlling the degree of test con-
currency, providing the possibility of testingmany-cores with
heterogeneous processing cores, and partitioning a many-
core into di
erent regions with di
erent test frequencies.	e
concept of clustering and grouping is discussed in Section 4.2
in more detail.

3.1.5. Feedback Path. Cluster testers use a feedback path (see
Figure 1) in order to announce the completion of test execu-
tion or to report latest health status of their corresponding
clusters to ACT. 	ere is a network of AND gates and �ip-
�ops on this path, which combines feedback of all active
cluster testers together, generates a cumulative result, and
delivers that result to ACT.

3.1.6. Con
guration Chain. Each cluster tester has a register
for saving Id of the cluster and the group that it belongs to.
Con
guration chain (shown as a chain of registers in Figure 1)
is a chain of Cluster-Id and Group-Id registers in the cluster
testers. 	is chain allows ACT to change the partitioning
scheme of the cluster testers in various groups.

3.2. Proposed Test Mechanism: So�ware View

3.2.1. Test Commands. In the proposed test environment, a
test procedure is realized by executing a proper sequence of
instructions supported by ACT (called test commands) that
is referred to as a test program. 	ese commands are used for
test scheduling, test distribution, test application, checking
the health status of the processing cores, and diagnosing and
disabling processing cores that are found to be faulty. Major
command types are summarized in Table 1.

3.2.2. Test Program. In the proposed test mechanism a test
procedure is realized by ACT which fetches and executes a
proper sequence of test commands, called a test program.	e
processor-nature of ACT and its special working style, which
is reading and executing test commands, o
ers a considerable
�exibility to the proposed test architecture. Considering
speci�c conditions of the many-core in terms of acceptable
level of performance reduction due to test, and the required
reliability level, di
erent test programs may be executed by
ACT. 	at is, it is possible to make major changes in the
test procedure only by modifying the test program, with no
change in hardware parts of the test architecture.

NEW TEST CYCLE

NEW TEST SNIPPET ROUND

TEST SNIPPET DATA 3C019c1a

TEST SNIPPET DATA 34213667

TEST SNIPPET DATA 3c02e2e5

TEST SNIPPET DATA 3442c921

TEST SNIPPET DATA 00220822

TEST SNIPPET DATA ac010000

APPLY TEST ALL, ALL, ALL

END TEST SNIPPET ROUND

NEW TEST SNIPPET ROUND

TEST SNIPPET DATA 3c014485

TEST SNIPPET DATA 34210d84

TEST SNIPPET DATA 3c024196

TEST SNIPPET DATA 3442461b

TEST SNIPPET DATA 00220820

TEST SNIPPET DATA ac010000

APPLY TEST ALL, ALL, ALL

END TEST SNIPPET ROUND

END TEST CYCLE

CHECK AND DIAGNOSE ALL, ALL, ALL

Pseudocode 1: Portion of a test program.

NEW TEST CYCLE

NEW TEST SNIPPET ROUND

TEST SNIPPET DATA 3C019c1a

TEST SNIPPET DATA 34213667

TEST SNIPPET DATA 3c02e2e5

TEST SNIPPET DATA 3442c921

TEST SNIPPET DATA 00220822

TEST SNIPPET DATA ac010000

APPLY TEST 2, 5, 1

END TEST SNIPPET ROUND

CHECK AND DIAGNOSE 2, 5, 1

NEW TEST SNIPPET ROUND

TEST SNIPPET DATA 3c014485

TEST SNIPPET DATA 34210d84

TEST SNIPPET DATA 3c024196

TEST SNIPPET DATA 3442461b

TEST SNIPPET DATA 00220820

TEST SNIPPET DATA ac010000

APPLY TEST 2, 5, 1

END TEST SNIPPET ROUND

END TEST CYCLE

CHECK AND DIAGNOSE 2, 5, 1

Pseudocode 2: Portion of another test program.

Pseudocodes 1 and 2 show portions of two sample test
programs. Both test programs broadcast two portions of test
stimuli. Test program of Pseudocode 1 applies test stimuli to
all processing cores in all test clusters of all test groups, and
checking the test result is performed aer applying both test
portions. In contrast, test program of Pseudocode 2 applies
test stimuli to processing cores withCore Id = 1 situated in test
clusters with Cluster Id = 5, in test groups with Group Id = 2,

6 VLSI Design

Table 1: Major command types of ACT.

Command Description

NEW TEST CYCLE
ACT announces a new test cycle

Cluster testers perform initialization tasks

NEW TEST SNIPPET ROUND
ACT announces a new test round

Cluster testers perform initialization tasks

TEST SNIPPET DATA test data
ACT broadcasts test data

Cluster testers store test data in test snippet bu�ers

APPLY TEST (Group Id,
Cluster Id, Core Id)

ACT broadcasts APPLY TEST command

Cluster testers with matching (Group Id, Cluster Id) apply test to a processing core with matching
Core Id in their corresponding cluster

END TEST SNIPPET ROUND ACT announces the end of the current test round

END TEST CYCLE ACT announces the end of the current test cycle

START DIAGNOSIS ACT announces the start of diagnosis phase

CHECK AND DIAGNOSE
(Group Id, Cluster Id, Core Id)

ACT asks speci�c cluster testers about results of testing. In the case of fault report, ACT broadcasts
hierarchical REPORT STAUS commands to �nd suspicious test group, test cluster, and processing
core

APPLY RETEST
(Group Id, Cluster Id, Core Id)

ACT requests retesting of a suspicious processing core
	e target cluster tester executes retesting command

CHECK SUSPICIOUS CUT
(Group Id, Cluster Id, Core Id)

ACT inquires about health status of a suspicious processing core aer retesting

	e responsible cluster tester reports the status

DISABLE CORE
(Group Id, Cluster Id, Core Id)

ACT announces disabling of a speci�c processing core

	e responsible cluster tester marks that core as disabled

REPORT STATUS
(Group Id, Cluster Id, Core Id)

Targeted cluster tester(s) report the last status of its (their) corresponding cluster(s)

and aer applying each portion of test stimuli the health
status of tested processing cores is checked.

3.2.3. Test Snippets. In the proposed test mechanism, the
entire test stimuli are not applied to a processing core at once.
Instead, it is subdivided into smaller parts which are called
test snippets. A test snippet is small enough that can be stored
in a test snippet bu�er which is a tiny bu
er located in each
test cluster.

3.2.4. Test Timing. Figure 3 shows a simple timing diagram
describing timing details of a sample test procedure in the
proposed test mechanism. As shown, the time line is divided
into epochs. During longer starting portion of an epoch
(the le-hand side), the many-core is performing its normal
operation, but during the smaller portion of time at the end
of an epoch, testing is performed.We call this portion of time
a test cycle. Each test cycle consists of several test rounds. At
the start of a test round, ACT broadcasts a test snippet. Cluster
testers receive this test snippet and store it in their test snippet
bu�ers. Aer that, if a cluster tester receives an APPLY TEST
command with matching Id or a wildcard value, it becomes
active and applies its stored test snippet to all or a speci�c
processing core in the test cluster based on the Core Id �eld
of the issued APPLTY TEST command. In summary, during
each test round one test snippet is broadcasted and applied to
the processing cores.	e whole test stimuli are applied in the

ACT

Cluster
tester

Core 1

Core 2

Test round

Test cycle

Epoch

Core n

Test broadcast

Test reception

Test application

Idle

Test mode

Normal mode

Check and diagnose

Report cluster status

Figure 3: Timing details of a sample test procedure.

form of consecutive test snippets during successive test rounds
and are referred to as a test cycle.

3.3. Cluster Tester and Test Procedure in Detail. 	rough
broadcasting proper test commands, a cluster tester can be
activated to perform various operations including

(i) receiving and storing test stimuli in the local test
bu�er,

VLSI Design 7

First test round?
Initialize
“StaringPartialSig” and
“CumulativePartialSig”

Load “StaringPartialSig”
with “CumulativePartialSig”
of the previous test round

Initialize MISRs with
“StaringPartialSig”

Activate MISRs to capture
bus transactions while a
processing core is under test

First
processing

core tested in
current test

round?

Yes

No

Yes

No

Combine value of
“CulmulativePartialSig” with the
values of MISRs and
update “CulmulativePartialSig”

Load
“CumulativePartialSig”
with the current values
of MISRs

Yes

No

Mark currently and
previously tested
cores as suspicious

Update
“PreviousCorePartialSig”
with values of MISRs

All cores
are tested?

Yes

No

Announce test
completion on
feedback path

APPLY_TEST

Note:
“StartingPartialSig”,
“PreviousCorePartialSig”, and
“CumulativePartialSig” are three registers
inside each cluster tester

“PreviousCorePartialSig”?
Values of MISRs =

Figure 4: Flow of operations that a cluster tester performs when it is activated by an APPLY TEST command.

(ii) application of test stimuli to one or all of the process-
ing cores in the corresponding test cluster,

(iii) checking and reporting the health status of a speci�c
processing core or all the processing cores in the
cluster through feedback path,

(iv) marking a speci�c processing core as faulty.

A cluster tester issues proper signals to the processing
cores of the corresponding test cluster to isolate them from
the rest of the system and to push them to store or restore
their architectural states before starting or aer completion
of testing, respectively. In addition, it consists of MISRs that
generate signature of bus transactions when a processing core
is under test. Figure 4 summarizes �ow of operations that a
cluster tester performswhen it is activated by anAPPLY TEST
command.

It should be mentioned when a processing core is iso-
lated, all the other components of the corresponding cluster
including cache blocks, scratchpad memories, switches, and
routers remain in the normal mode and perform their
normal operation. Consequently, only the state of the isolated
processing core (and not the other components in a cluster)
must be saved and retrieved before and aer testing, respec-
tively. 	erefore not only do the overheads imposed by state
storage and retrieval remain limited but also system correct
operation during a test phase is guaranteed. Another point
that should be considered is that test snippets are generated
in a way that they are very short and can be executed in

the order of 10 cycles. So each processing core is interrupted
in a few cycles before it can switch back to normal mode,
and the performance overhead due to irresponsiveness of a
processing core that is being tested is negligible.

Our experimental results show that keeping separate
signatures for each processing core imposes a large hardware
overhead to the test cluster. So we have implemented a cluster
tester in a way that it generates a cumulative signature of
all bus transactions of all its tested processing cores. 	e
idea of cumulative signature removes the burden of hardware
overhead of distinct signatures but makes identi�cation of
faulty processing core(s) impossible. In the diagnosis phase
when a faulty test cluster is retested to ensure that the reported
fault has not been a transient one, all the processing cores
in the cluster must be retested and this will a
ect diagnosis
time. To copewith this problem, we have added a comparison
logic to cluster testers. In each test round while testing of a
processing core is completed, values of MISRs are compared
with the partial signature generated by the previously tested
processing core and any mismatch is captured as a sign of
probable fault in the currently or previously tested processing
cores. 	ese processing cores are marked as suspicious and
just suspicious cores will be retested in diagnosis phase.
It should be mentioned that the comparison logic in fact
realizes a Dynamic Dual Modular Redundant (DDMR)
con�guration between the processing cores of a test cluster.
We call thisDMR con�guration a dynamic one because cores
being compared are not �xed and are decided dynamically

8 VLSI Design

Check and diagnose

Broadcast REPORT_STATUS

Fault is reported on
feedback path?

No

Fetch and execute
the next test
command Yes

Broadcast REPORT_STATUS

Fault is reported onNo

Yes

Decrement
DiagnosisCnt

DisagnosisCnt

Yes

No

Fetch and execute
the next test
command

Group_Id is
wildcard?

Yes

Cluster_Id is
wildcard?

Broadcast REPORT_STATUS

Fault is reported onNo

Decrement
DiagnosisCnt

Yes

No

Fetch and execute
the next
test command

No

DisagnosisCnt

Yes Core_Id is
wildcard?

Fault is reported on

Decrement
DiagnosisCnt

Fetch and execute
the next test
command

No

DisagnosisCnt

Yes

is suspicious

Jump to retesting routine

Broadcast REPORT_STATUS
(FaultyGroup, FaultyCluster,
DiagnosisCnt)Yes

No

Yes

No

Yes

No

DiagnosisCnt
FaultyCore =

Core_Id
FaultyCore =

Group_Id

FaultyGroup =number of groups
DiagnosisCnt =

DiagnosisCnt
FaultyGroup =

DiagnosisCnt
FaultyCluster =

number of clusters in
the faulty group

DiagnosisCnt =

Cluster_Id
FaultyCluster = number of cores

in a test cluster

DiagnosisCnt =

Core (FaultyGroup, FaultyCluster, FaultyCore)

> 0?

> 0?

> 0?

feedback path?

feedback path?

feedback path?

(FaultyGroup, DiagnosisCnt, Core_Id)

(DiagnosisCnt, Cluster_Id, Core_Id)

(Group_Id, Cluster_Id, Core_Id)

(Group_Id, Cluster_Id, Core_Id)

Figure 5: Order of operations that ACT performs when it starts a diagnosis procedure.

at run time. In fact, in this mechanism dual processors are
constructed dynamically based on the sequence at which
processing cores are tested. So, when a processing core is
marked as faulty and removed from the system, since it has
no static pair, only that processing core is removed from the
system and its couple is dynamically and automatically paired
with another processing core in the test cluster without any
external control. 	is is unlike static DMR scheme in which
both cores should be made inactive.

3.4. ACT and Diagnosis Procedure in Detail. Figure 5 sum-
marizes the order of operations that ACT performs when it
starts a diagnosis procedure aer receiving a fault report from
the test structure’s feedback path. In summary, ACT sends
hierarchical REPORT STATUS commands to �nd a probable
faulty group (�rst column of Figure 5 �owchart), a faulty
cluster in the faulty group (middle column), and a faulty
processing core in the faulty cluster (rightmost column). In
the �rst column only the Group Id is being checked and
the other �elds are ignored. 	e middle column is reached
when a group containing a faulty core is identi�ed, and thus,
the Cluster Id is being checked. 	e last column is reached

when a cluster containing a faulty core is identi�ed, and the
faulty core is being looked for. Aer �nding the suspicious
processing core, ACT jumps to the retesting routine (dotted
box in Figure 5), issues APPLY RETEST command to the
suspicious cluster, and aer retesting checks the result of
retesting. If a fault is reported again, the suspicious processing
core is assumed to have a permanent fault and ACT issues a
proper DISABLE CORE command. 	e target cluster tester
marks this processing core as disabled aer receiving this
command. Otherwise if no fault is reported aer retesting,
the initial reported fault is assumed a transient one and ACT
halts until the next test cycle.

4. Test Strategy

	e proposed test architecture can adapt to various test
strategies without changing the hardware. 	e processing
nature of ACT as well as the �exible grouping mechanism
gives this opportunity to a test engineer to decide on a suitable
test procedure based on various considerations, which simply
translate to various test programs with no need for any
hardware change. Several considerations that must be taken

VLSI Design 9

Broadcast
test-snippet(i)

APPLY_TEST g, ALL, ALL

Yes

No

Yes

No

Broadcast
REPORT_STATUS ALL, ALL, ALL

Yes No

Suspend until
the next

test cycle

Start diagnosis phase
Test round

Test cycle

Fault is reported on
feedback path?

i = 1

g = 1

i ≤ number of
test snippets?

number of groups?
g ≤

i = i + 1

g = g + 1

Figure 6: Ordinary testing method.

into account while a test strategy is to be designed are listed
below:

(i) 	ere may be a need to classify processing cores into
several groups with di
erent testing requirements.
Based on tasks that a group is running, the group
may be more critical and needs to be tested more
frequently or in more precision.

(ii) Many-core processors may contain heterogeneous
processing cores. 	ese processing cores may be
categorized in di
erent groups based on their type,
and a proper test procedure can be designed for each
group.

(iii) 	ere are various degrees of performance degradation
due to testing that a many-core can tolerate. Because
of this, we can form di
erent number of test groups,
and at each instance of time only one test group
is activated for testing (not performing its normal
operation).

So based on di
erent system conditions, suitable test pro-
cedures can be designed. In the next section we present a
straightforward test strategy for a many-core with identical
processing cores. 	is test strategy will be referred to as ordi-
nary testing since it is our least sophisticated test strategy for
identical processing cores with the same test requirements.

4.1. Ordinary Testing. We have the following assumptions in
ordinary testing:

(i) 	e many-core processor consists of identical pro-
cessing cores.

(ii) Processing cores should be tested with the same test
frequency and test precision.

(iii) A limited percent of processing cores can be tested
simultaneously. We call this parameter TCP (test
concurrency percent).

We form several test groups each consisting of several
test clusters in such a way that the number of test clusters
belonging to each group is less than TCP × (total number
of processing cores). 	e number of processing cores in each
test cluster, number of test groups, and method of assigning
test clusters to test groups are important issues that will be
discussed in Section 4.2. At this point we assume that we have
a goodmethod for con�guring the test architecture to achieve
aminimum test time. Figure 6 presents details of our ordinary
testing method.

	e procedure begins by ACT broadcasting a test snippet.
Aer that, it issues an APPLY TEST command activating
all test clusters of a speci�c test group and waits until the
completion of test application.ACT repeats this procedure for
all of the test groups one by one, until a test round is completed.
	is procedure is performed for all test snippets in successive
test rounds. At the end of the �nal test round, ACT issues
a REPORT STATUS command targeting all cluster testers in
all test groups. If all cluster testers report healthy status, ACT
hibernates until the next test cycle is triggered; otherwise if
a fault is reported, ACT starts the diagnosis procedure. Test
time of ordinary testing can be calculated using

Test-timeordinary = �TS × (�TS-Delivery
+ �∑
�=1

(�APPLY TEST + � (�) + �TS-Exe × 	Cluster + � (�)))
+ �REPORT STATUS + 2 × �max.

(1)

10 VLSI Design

Parameters of (1) are described as follows:

�TS: number of test snippets.

�TS-Delivery: number of cycles to deliver a test snippet.

�: number of test groups.

�APPLY TEST: number of cycles required to issue an
APPLY TEST command.

�(�): number of cycles it takes a command to reach to
the farthest test cluster in test group �.
�TS-Exe: number of cycles required to apply a test
snippet to a processing core.

	Cluster: number of processing cores in a test cluster.

�REPORT STATUS: number of cycles required to issue a
REPORT STATUS command.

�max: number of cycles it takes a command to reach
to the furthest test cluster.

Aer some simpli�cations, (2) is obtained. In the next
section we use this equation to �nd a good clustering and
grouping scheme with the purpose of reducing test time:

Test-timeordinary = �TS × (�TS-Delivery + �

× (�APPLY TEST + 	Cluster × �TS-Exe) + 2 × �∑
�=1

� (�))
+ �REPORT STATUS + 2 × �max.

(2)

4.2. Clustering and Grouping. Test time of an ordinary testing
mechanism can be achieved using (2). 	e values of many
parameters in this equation directly depend on the physical
dimensions of the many-core and cannot be changed. By
ignoring these constant parameters, in order to minimize the
test time of ordinary testing procedure, we have the following
rules:

(1) 	e number of groups (G) should be minimized.

(2) 	e number of test clusters in each test group (group)
must be equal to TCP × �PC where �PC is the total
number of processing cores in the many-core. 	is
allows test groups to execute the test procedure with
the maximum acceptable concurrency.

(3) Clusters with similar �(�) must be assigned to the
same test group. 	is guarantees minimization of

term ∑��=1 �(�) in (2).

According to the above rules, algorithm of Figure 7
is proposed to �nd a test con�guration with a minimum
test time. Using this algorithm, G, 	Cluster, and 	group are
determined.

As shown in �ow diagram of Figure 7, we should �nd
the minimum possible cluster size that keeps the number
of test groups as low as possible in order to keep test cycle
duration as short as possible. 	is is due to the sequential
nature of test application in each test cluster and also in test

Yes

Yes

No

No

G = G + 1
nc = nc − 1

nc > nc,min?
as the best con�guration

nc = nc,max

G = 1

nPC: total number of processing cores

TCP: test concurrency percent

G: number of test groups

nc: total number of test clusters

nc,max: maximum number of test clusters assuming G groups

nc,min: minimum number of test clusters assuming G groups

Scluster is acceptable?

Scluster = nPC/nc

Scluster : number of processing cores in each test cluster

Sgroup : maximum number of clusters in each group

nc,max = G × Sgroup

nc,min = (G − 1) × Sgroup + 1

Sgroup = TCP × nPC

Report G, Sgroup , Scluster

Figure 7: Proposed algorithm to �nd a test con�guration with a
minimum test time.

groups. In other words, lower cluster sizes result in lower
test cycles as long as the number of test groups does not
grow. As shown in Figure 7, we start with the number of
test groups (�) = 1 and �nd the minimum possible cluster
size (cluster) that keeps the number of groups equal to �. As
shown in Figure 13, with smaller cluster sizes, test hardware
overhead increases. So we should determine the minimum
cluster size that keeps the number of groups equal to �
and at the same time, its test hardware overhead can be
tolerated considering the maximum hardware budget. In the
�ow diagram of Figure 7, “	cluster is acceptable?” means that
can the test hardware overhead be tolerated assuming cluster
sizes are equal to 	cluster? If so, the best con�guration has been
found; otherwise larger cluster sizes and then larger number
of test groups must be considered.

Another problem is assigning test clusters to proper test
groups. According to rule 3, test clusterswith similar latencies
should be assigned to the same test group. 	is is because
latency of a test group is equal to the maximum latency

VLSI Design 11

c(1, 1) c(1, 2) c(1, 3) c(1, 4)

c(2, 1) c(2, 2) c(2, 3) c(2, 4)

c(3, 1) c(3, 2) c(3, 3) c(3, 4)

c(4, 1) c(4, 2) c(4, 3) c(4, 4)

Figure 8: Assigning test clusters to test groups.

of its clusters. Figure 8 shows grouping of clusters of a
many-core with 16 test clusters assuming that 	group = 4.
Clusters located on the same diagonal line (see dotted lines in
Figure 8) have the same latency. Assigning clusters to groups
is started from �(1, 1) that is assigned to Group 1. Other
clusters located on the nearest diagonal lines are added to
Group 1 until 	group number of clusters is included in the
group. 	is procedure continues for the next group until
all test clusters are assigned. Several experiments have been
performed to verify e
ectiveness of the proposed grouping
and clustering scheme. Results of these experiments are
presented in Section 6.

5. Fault Detection Latency and Probability of
Correct System Recovery

In our proposed test mechanism, testing is performed at
regular time intervals called epochs. Epoch duration can be
adjusted to make a balance between performance overhead
of the testing mechanism on the one hand and test e�ciency,
in terms of fault detection latency and probability of correct
system recovery, on the other hand. In the next subsections,
the system has been analyzed and fault detection latency and
probability of correct system recovery are formulized. A test
engineer can use these formulas to adjust epoch duration
according to the intended values for fault detection latency
and probability of correct system recovery.

5.1. Average Detection Latency of Permanent Faults. Figure 9
shows a simple timing model for a many-core augmented
with the proposed test mechanism. As shown in the �gure,
an epoch consists of two phases. In the �rst phase, the many-
core is performing its normal operation. At the end of an
epoch, testing mechanism is activated and processing cores

Epoch

Normal operation Test cycle

iΔt T0

Figure 9: Timing model for a many-core augmented with the
proposed test mechanism.

FH

H: health state

F: fault state

�

1 − �

Figure 10: Markov chain of a system with permanent fault.

are tested. Let� be the epoch duration and�test the test phase
duration. Suppose that, at time �, many-core encounters a
permanent fault. Latency of detecting this fault is (� − �).
	e problem is �nding the average value of detection latency
(ADL).

Using Markov modeling and supposing that the average
rate of occurrence of permanent faults in the system is �, we
can model the system with the Markov chain of Figure 10.

Using Markov analysis method, the probability of system
being healthy or faulty is given by (3) and (4), respectively:

�ℎ (�) = �−��, (3)

�� (�) = 1 − �−��. (4)

Based on this, the average detection latency of a perma-
nent fault is given by (5). 	is equation shows how epoch
duration can be decided based on desired average detection
latency and existing rate of permanent fault occurrence (�):

ADLper = lim�→∞

�∑
�=0

(� − �Δ�) �ℎ (�Δ�) (�Δ�)

= ∫�
0

(� − �) �ℎ (�) � �� = ∫�
0

� (� − �) �−����
= � − 1 − �−��� .

(5)

5.2. Average Detection Latency of Intermittent Faults. A
many-core similar to other digital systems may have inter-
mittent faults. Intermittent faults may be active or inactive.
Figure 11 shows Markov chain of a system with intermittent
faults. Suppose that inactivation rate of an active intermittent
fault is � and activation rate of an inactive intermittent fault
is �.

12 VLSI Design

ActiveInactive

�

� 1 − �1 − �

Figure 11: Markov chain of a system with intermittent fault.

Supposing that the system is at inactive state initially, the
probability of system being at inactive state or active state at
time � is given by (6) and (7), respectively:

��,� (�) = �� + ��−(�+�)� + �� + � , (6)

��, (�) = �� + � [1 − �−(�+�)�] . (7)

In contrast, if the initial state of the system is supposed to
be active state, then (8) are obtained:

�,� (�) = �� + � [1 − �−(�+�)�] ,
�, (�) = �� + ��−(�+�)� + �� + � .

(8)

An intermittent fault is detected in the �th epoch if it is
inactive at the end of all previous epochs and is active at the
end of the �th epoch during the testing phase. Supposing that
epoch duration is much greater than the test duration, the
average detection latency of an intermittent fault is given by

ADLint = 0.5 × [∞∑
�=1

��,� (�)�−1 × ��, (�) × ��] + 0.5

× [�, (�) × �

+ ∞∑
�=2

�,� (�) ⋅ ��,� (�)�−2 × ��, (�) × ��] .

(9)

According to Taylor series we have the following relation:

∞∑
�=1

��(�−1) = 1
(1 − �)2 . (10)

Using (10), the following relations are obtained:

∞∑
�=1

��,� (�)�−1 × ��, (�) × ��
= � × ��, (�) × 1

(1 − ��,� (�))2 = ���, (�) ,
∞∑
�=2

�,� (�) ⋅ ��,� (�)�−2 × ��, (�) × ��

= � × �,� (�) ⋅ (1 + ��, (�))
��, (�) .

(11)

Using (9) and (11) and aer simpli�cations, the average
detection latency of an intermittent fault is given by

ADLint

= 0.5
× �[1��, (�) + �, (�) + �,� (�) ⋅ (1 + ��, (�))

��, (�)]
= � × 1��, (�) = � × � + �

� (1 − �−(�+�)�) .

(12)

According to (5) and (12), one can decide on a proper
epoch duration (�) to obtain a desired average detection
latency for permanent and intermittent faults.

5.3. Probability of Correct System Recovery. If our proposed
fault detection technique is accompanied by a proper check-
point mechanism, the many-core can recover from per-
manent and intermittent faults. Recovery from permanent
faults is deterministic whereas for intermittent faults it is an
inde�nite process.

As shown in Figure 9, a systemmay encounter permanent
or intermittent faults at any time �. If a fault is detected
during a testing phase and if the system is equipped with
a proper checkpoint mechanism, the system is rolled back
using the checkpoint captured at the start of the current
epoch. If the occurring fault is a permanent fault, the system
recovers completely. In contrast, if the system encounters
an active intermittent fault during the testing phase of an
epoch, rolling back the system to the previous checkpoint
will not guarantee proper system recovery. Suppose that the
intermittent fault is active during normal operation phases
of epochs 1 to � but remains inactive during testing phases
of all these epochs. If the intermittent fault becomes active
in the testing phase of (� + 1)th epoch, it will be detected at
the end of this epoch. But, if the system is rolled back using
the checkpoint captured at the end of the �th epoch, system
cannot recover from intermittent fault activities properly.	e
probability of proper system recovery from intermittent faults
directly depends on epoch duration (�), activation rate of
intermittent faults (�), and inactivation rate of intermittent

VLSI Design 13

faults (�). 	is can be calculated using (13). In the following
equations we have used these notations:

��(�): probability that intermittent faults remain inactive
from time 0 to time �.

�(�): probability that an intermittent fault is active at time�.

Consider probability of correct system recovery

= ∞∑
�=0

[�� (��) × [� ((� + 1) �) | (intermittent faults are inactive from time 0 to time ��)]] = ∞∑
�=0

�� (��) × � (�) . (13)

To calculate the �rst contributing term in (13), the system
should be modeled using the Markov chain of Figure 10. So,
according to (3) we have the following relation:

�� (��) = �−�(��). (14)

To calculate the second contributing term in (13), the
system should bemodeledwith theMarkov chain of Figure 11.
So using (6) and (7), the following relation is obtained:

� (�) = �� + � [1 − �−(�+�)�] . (15)

Using (13), (14), and (15), (16) is obtained:

probability of correct system recovery

= ∞∑
�=0

�−�(��) × �� + � [1 − �−(�+�)�]

= �� + � [1 − �−(�+�)�] × ∞∑
�=0

(�−��)� .
(16)

Using (16) and Taylor series of (17), (18) is obtained:

∞∑
�=0

�� = 11 − � , (17)

probability of correct system recovery

= �� + � [1 − �−(�+�)�] × 11 − �−�� .
(18)

So, given speci�c values for � and �, and using (18), one
can obtain a proper value for � (epoch duration), in a way
that the many-core can recover from intermittent faults with
a desired probability.

6. Experimental Results

We have developed a generic HDL model for a con�gurable
homogeneous many-core architecture. 	is many-core can
be con�gured in terms of the total number of processing
cores, the number of processing cores in each test cluster, and
the way in which di
erent test clusters are grouped.

In our implementation platform we have chosen Plasma
MIPS as the processing core [15]. 	is is consistent with
the trend of using simpler processing cores in emerging
many-core architectures. Plasma is a 32-bit RISC processor
supporting a subset of MIPS instructions. It has three stages
of pipeline with a forwarding logic, a complex memory
controller, and a serial multiplier/divider module that makes
its testing di�cult. In the next sections, results of test
generation, hardware overhead, test time, and performance
overhead will be presented.

6.1. Test Snippet Generation. Although our proposed test
mechanism can be con�gured for any sort of test stimuli, we
have decided to test the processing cores by a soware-based
self-test (SBST) technique that tests a processor by a sequence
of its native instructions. 	e SBST techniques are nonin-
trusive in nature and facilitate at-speed testing that is very
important in the new fabrication technologies. Additionally,
SBST techniques remove the overtesting problem associated
with nonfunctional testing techniques. We have devised a
snippet-oriented soware-based self-test generation method
to generate soware-based test snippets for processing cores.
Details of our proposed SBST technique are out of scope of
this paper and are presented in another work [16].

Table 2 shows results of fault coverage of the generated test
snippets on various components of Plasma MIPS processor.
Table 3 compares some characteristics of soware-based test
generated for Plasma MIPS processor using our proposed
method with two other works. As shown, the total fault
coverage of our proposed method is slightly more than those
reported by [17, 18]. In addition, we have generated a smaller
test set with less execution time.

6.2. HardwareOverhead of the Proposed Test Architecture. We
have synthesized di
erent con�gurations of the proposed test
architecture with di
erent total number of processing cores
and test cluster sizes.	e hardware overhead of each instance
has been calculated according to

Hardware overhead

= Hardware cost of test components

Hardware cost of all the processing cores
. (19)

Figure 12 shows hardware overhead of ACT for di
erent
cluster sizes assuming that the many-core has 32 processing

14 VLSI Design

Table 2: Fault coverage of our proposed test snippet generation
method on plasma MIPS.

Module # faults FC (%)

ALU 2095 99.9

Multiplier/divider (sequential) 5818 96.8

Shier 2248 99.9

Register �le 18504 98.4

Control logic 824 92.3

Memory controller 2982 93.9

Bus multiplexer 1579 78.7

Program counter logic 1142 67.2

Pipeline 2242 98.3

Total 37434 96.1

Table 3: Comparison of SBST techniques.

Test characteristic
Proposed
method

Method of
[18]

Method of
[17]

Total test volume (words) 2025 2329 2374

Total fault coverage (%) 96.1 95.6 95.3

Total execution time (cycles) 5150 11000 14427

cores. As shown in this �gure, as the cluster size increases,
ACT hardware overhead grows slightly. It should be men-
tioned that since ACT is shared among all the processing
cores, hardware overhead of ACT decreases with the same
rate that the number of processing cores increases.

Figure 13 shows total hardware overhead of all test com-
ponents except ACT, for di
erent con�gurations. It should
be mentioned that for each cluster size we have investigated
several con�gurations with di
erent number of processing
cores varying from a few processing cores to more than
1500. Our experiments show that the hardware overhead is
almost independent of the total number of processing cores
and cluster size is the dominating parameter determining
hardware overhead of test architecture. Figure 13 reports
average hardware overhead of di
erent con�gurations for
each cluster size.

6.3. E�ectiveness of the Proposed Clustering and Grouping
Scheme. We proposed a method for clustering and grouping
in Section 4.2 that would be used for test time reduction. In
order to show the e
ectiveness of our proposed method we
have generated di
erent many-core instances with random
con�gurations regarding cluster size and grouping scheme.
Figure 14 compares test time of these con�gurations with
the con�guration determined by the proposed grouping and
clustering scheme. As shown in the diagrams, in all cases the
proposed scheme leads to the best con�guration in terms of
test time.

6.4. Test Time. Figure 15 shows test time of many-cores
with di
erent number of processing cores. Clustering and
grouping of all many-cores have been performed using the
proposed method. For each many-core test time has been

0.31% 0.31%
0.32%

0.34%

0.35%

0.37%

Hardware overhead (%)

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

(%
)

4 8 16 24 322

Cluster size

Figure 12: Hardware overhead of ACT for di
erent cluster sizes.

7.24%

3.93%

2.30%

1.42%
1.10% 0.99%

Total hardware overhead (%)

0

1

2

3

4

5

6

7

8

(%
)

4 8 16 24 322

Cluster size

Figure 13: Total hardware overhead of all test components except
ACT.

Table 4: Comparison of test time of our proposedmethodwith [19].

Con�guration Test time (103 cycles)

4 processing cores
Quad 2 [19] ∼93
Proposed 157.232

8 processing cores
Octo 2 [19] ∼166
Proposed 158.324

achieved for three di
erent cases of TCP = 5%, TCP = 10%,
and TCP = 50%, meaning that 5%, 10%, and 50% of the pro-
cessing cores of the many-core can be tested simultaneously.
Graphs of Figure 15 show that our proposed test mechanism
is very scalable in terms of the number of processing cores.
As the number of processing cores increases, test time grows
with a little slope. Graphs show that when the number of
processing cores increases more than 16 times (1600%), test
time grows about 8.4%, 8.6%, and 12.8% for TCP = 5%, TCP
= 10%, and TCP = 50%, respectively.

In [19] a soware-based self-test technique has been
proposed for shared memory chip multiprocessors (CMPs).
In this work, processing cores are connected to memory
banks using a crossbar switch.	e largest CMP experimented
in this work has eight processing cores. Table 4 compares test
time of this technique with our proposed method. As shown,
test time of our proposed test mechanism is more than that
achieved in [19] when the number of processing cores is 4. But
as the number of processing cores increases to 8, test time of
our proposed test mechanism is better than that reported by

VLSI Design 15

0

0.5

1

1.5

2

N
o

rm
al

iz
ed

 t
es

t
ti

m
e

5 10 15 200

Cluster size

0

0.5

1

1.5

2

2.5

N
o

rm
al

iz
ed

 t
es

t
ti

m
e

5 10 15 200

Cluster size

0

2

4

6

8

10

N
o

rm
al

iz
ed

 t
es

t
ti

m
e

5 10 15 200

Cluster size

5 10 15 200

Cluster size

0

2

4

6

N
o

rm
al

iz
ed

 t
es

t
ti

m
e

0

5

10

15

20

N
o

rm
al

iz
ed

 t
es

t
ti

m
e

0

5

10

15

20

N
o

rm
al

iz
ed

 t
es

t
ti

m
e

5 10 15 200

Cluster size

5 10 15 200

Cluster size

Number of processing cores = 288 TCP = 5% Number of processing cores = 288 TCP = 10%

Number of processing cores = 144 TCP = 5% Number of processing cores = 144 TCP = 10%

Number of processing cores = 36 TCP = 5% Number of processing cores = 36 TCP = 10%

Proposed con�guration

Random con�guration

Proposed con�guration

Random con�guration

Figure 14: Comparison of test time of several random con�gurations with the con�guration determined by the proposed grouping and
clustering scheme.

0

50

100

150

200

250

T
es

t
ti

m
e

(k
C

yc
le

s)

108 144 192 288 324 420 480 60036

Total number of processing cores

TCP = 5%

TCP = 10%

TCP = 50%

Figure 15: Test time of many-cores with di
erent number of
processing cores.

[19].	is is because of the scalability of our proposedmethod.
Compared with [19], our proposed method can test larger
number of processing cores with a slight increase in test time.

In a later work [20], a test programparallelizationmethod
has been proposed to accelerate online permanent fault
detection in many-core architectures. Table 5 compares test
time of this method with our proposed technique. As shown,
our proposed test mechanism has a much shorter test time
than [20]. Additionally, as the number of processing cores
increases from 12 to 48, test time of our proposed test
mechanism increases about 1.9% while it increases about
18.7% in [20]. 	is shows that our proposed method scales
better for a larger number of processing cores. It should be
mentioned that this test time reduction and better scalability

16 VLSI Design

Table 5: Comparison of test time of our proposedmethodwith [20].

Con�guration Test time (106 cycles)

12 processing cores
[20] 3.2

Proposed 0.109844

48 processing cores
[20] 3.8

Proposed 0.111896

Table 6: Comparison of performance overhead of our proposed
method with [19].

Con�guration
Peak

performance
overhead (%)

Average
performance
overhead (%)

4 processing cores
Quad 2 [19] — 1.58

Proposed 5.36 0.02

8 processing cores
Octo 2 [19] — 7.8

Proposed 5.16 0.02

Table 7: Comparison of performance overhead of our proposed
method with [20].

Con�guration
Peak

performance
overhead (%)

Average
performance
overhead (%)

12 processing cores
[20] — 13.33

Proposed 4.81 0.46

48 processing cores
[20] — 15.83

Proposed 4.72 0.47

are achieved at the cost of about 4% hardware overhead. Since
our original test size is less than the test data of [19, 20], in
order to have a fair compression, test times of our proposed
mechanism presented in Tables 4 and 5 have been reported
for test data with the same size as those of [19, 20].

6.5. Performance Overhead. According to Figure 9, testing is
performed at the end of each epoch during a test cycle. Before
the start of a test cycle, test components are inactive and
the whole system is performing normal operation. So during
this interval performance overhead is 0%. During a test cycle,
test components become active and perform testing of the
processing cores. So a slight decrease in performance occurs.
It should be noticed that, during test broadcast phases of a
test cycle, all the processing cores are performing their normal
operation and performance of the system is not a
ected at all.
Only when a processing core is isolated for testing, its normal
operation is interrupted.

Tables 6 and 7 compare performance overhead of our
proposed method with [19, 20], respectively. Epoch duration
is assumed to be about 24 MCycles to be comparable with
the results reported in [19]. In our proposed method, peak
performance overhead is less than 5.4% and decreases when
the total number of processing cores increases. Average
performance overhead of our proposed method is much less
than [19, 20] and increases slightly as the total number of
processing cores increases. On the other hand, performance

overhead of testing method proposed in [19, 20] increases
considerably when the number of processing cores increases.
	erefore, at the cost of about 4% hardware overhead,
compared with [19, 20], our proposed method has a very low
performance overhead and can scale considerably better for
large number of processing cores.

7. Discussion and Conclusion

In this work we have proposed a scalable test architecture
that is periodical and concurrent with the system normal
operation, tests processing cores of a many-core, and detects
faulty cores without any perceptible system-level downtime.
	is procedure is performed autonomously without any need
for an external control facilitating self-healing of many-cores
in cooperationwith a proper checkpointmechanism. Because
of the processing nature of the central test controller and the
�exible grouping and clustering scheme, the proposed test
architecture is easily con�gurable to tune hardware overhead,
availability, and reliability. Although in this work we have
focused on test of processing cores, this test architecture can
easily be extended to test the other parts of a many-core
such as communication infrastructure as well as the memory
subsystem. 	e main advantages of this work are as follows:

(1) Low hardware overhead: hardware overhead of all
test components for cluster size of 4 is about 4%.
By increasing the cluster size the hardware overhead
reduces.

(2) Limited performance overhead: peak performance
overhead during a test cycle is less than 5.4% whereas
average performance overhead for epochs longer than
500 kCycles (that are very short epochs compared
with a quantum time cycle) is less than 1%.

(3) Scalability with respect to test time and hardware
overhead: experimental results show that when the
number of processing cores is increased bymore than
16 times (1600%), test time only grows about 8.4%,
8.6%, and 12.8% for TCP= 5%, TCP= 10%, andTCP=
50%, respectively. Additionally, hardware overhead is
almost independent of the total number of processing
cores, and cluster size is the dominant factor a
ecting
hardware overhead. 	is provides the ability to test
many-cores with more than a thousand processing
cores.

(4) Tunability for desired reliability and availability: the
proposed method can easily be tuned to make a bal-
ance between reliability (more test frequency or test
precision), performance overhead, and availability.

(5) Extendibility to other components of a many-core
architecture: the proposed test architecture can be
extended for testing of other components such as
routers. In addition BIST-mechanisms can be incor-
porated into test clusters and can be triggered under
control of ACT to facilitate testing of memory seg-
ments and interconnections.

VLSI Design 17

(6) Supporting independent test regions: the proposed
test mechanism provides the capability of construct-
ing various reliability domains or regions with di
er-
ent test frequencies or test precision using the concept
of test groups.

Competing Interests

	e authors declare that they have no competing interests.

References

[1] S. Borkar, “Designing reliable systems from unreliable compo-
nents: the challenges of transistor variability and degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005.

[2] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “	e impact of
technology scaling on lifetime reliability,” in Proceedings of the
International Conference on Dependable Systems and Networks,
pp. 177–186, IEEE, Florence, Italy, July 2004.

[3] S.-H. Huang, W.-P. Tu, C.-M. Chang, and S.-B. Pan, “Low-
power anti-aging zero skew clock gating,”ACMTransactions on
Design Automation of Electronic Systems, vol. 18, no. 2, article 27,
2013.

[4] J. H. Collet, M. Psarakis, P. Zajac, D. Gizopoulos, andA. Napier-
alski, “Comparison of fault-tolerance techniques for massively
defective �ne- and coarse-grained nanochips,” in Proceedings of
the 16th International Conference on Mixed Design of Integrated
Circuits & Systems (MIXDES ’09), pp. 23–30, Lodz, Poland, June
2009.

[5] P. Zajac and J. H. Collet, “Production yield and self-con�g-
uration in the future massively defective nanochips,” in Pro-
ceedings of the 22nd IEEE International Symposium on Defect
and Fault-Tolerance in VLSI Systems (DFT ’07), pp. 197–205,
September 2007.

[6] A. Kamran andZ.Navabi, “Homogeneousmany-core processor
system test distribution and execution mechanism,” in Proceed-
ings of the 19th IEEE EuropeanTest Symposium (ETS ’14), pp. 1–2,
Paderborn, Germany, May 2014.

[7] A. Kamran and Z. Navabi, “Online periodic test mechanism
for homogeneous many-core processors,” in Proceedings of the
IFIP/IEEE 21st International Conference on Very Large Scale
Integration (VLSI-SoC ’13), pp. 256–259, IEEE, Istanbul, Turkey,
October 2013.

[8] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco,
“A �exible soware-based framework for online detection of
hardware defects,” IEEE Transactions on Computers, vol. 58, no.
8, pp. 1063–1079, 2009.

[9] Y. Li, S. Makar, and S. Mitra, “CASP: concurrent autonomous
chip self-test using stored test patterns,” in Proceedings of the
Design, Automation andTest in Europe (DATE ’08), pp. 885–890,
March 2008.

[10] P. Bernardi and M. S. Reorda, “A new architecture to cross-
fertilize on-line and manufacturing testing,” in Proceedings of
the 20th Asian Test Symposium (ATS ’11), pp. 142–147, IEEE, New
Delhi, India, November 2011.

[11] R. Rodrigues and S. Kundu, “An online mechanism to verify
datapath execution using existing resources in chip multipro-
cessors,” in Proceedings of the 20th Asian Test Symposium (ATS
’11), pp. 161–166, IEEE, New Delhi, India, November 2011.

[12] T. M. Austin, “DIVA: a reliable substrate for deep submi-
cron microarchitecture design,” in Proceedings of the 32nd

Annual ACM/IEEE International Symposium on Microarchitec-
ture (MICRO ’32), pp. 196–207, November 1999.

[13] M. Benabdenbi, F. Pecheux, and E. Faure, “On-line test
and monitoring of multi-processor SoCs: a soware-based
approach,” in Proceedings of the 10th Latin American Test
Workshop (LATW ’09), pp. 1–6, Rio de Janeiro, Brazil, March
2009.

[14] J. H. Collet, P. Zajac, M. Psarakis, and D. Gizopoulos, “Chip
self-organization and fault tolerance in massively defective
multicore arrays,” IEEE Transactions on Dependable and Secure
Computing, vol. 8, no. 2, pp. 207–217, 2011.

[15] Plasma CPUModel, http://opencores.org/project,plasma.

[16] A. Kamran and Z. Navabi, “Hardware acceleration of online
error detection in many-core processors,” Canadian Journal of
Electrical and Computer Engineering, vol. 38, no. 2, pp. 143–153,
2015.

[17] N. Kranitis, A. Paschallis, D. Gizopoulos, and G. Xenoulis,
“Soware-based self-testing of embedded processors,” IEEE
Transactions on Computers, vol. 54, no. 4, pp. 461–475, 2005.

[18] A. Paschalis and D. Gizopoulos, “E
ective soware-based
self-test strategies for on-line periodic testing of embedded
processors,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 24, no. 1, pp. 88–98, 2005.

[19] A. Apostolakis, D. Gizopoulos, M. Psarakis, and A. Paschalis,
“Soware-based self-testing of symmetric shared-memory
multiprocessors,” IEEE Transactions on Computers, vol. 58, no.
12, pp. 1682–1694, 2009.

[20] M. Kaliorakis, M. Psarakis, N. Foutris, and D. Gizopoulos,
“Accelerated online error detection in many-core microproces-
sor architectures,” in Proceedings of the IEEE 32nd VLSI Test
Symposium (VTS ’14), pp. 1–6, April 2014.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

