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§1. Introduction.

In this paper we study the group of homotopy classes of self-homotopy
equivalences, &£(X), for the total space of a S™-bundle over S™ with the condition :

3<m+1<n<2m—2.

J. W. Rutter determined this group for the case of m=3 and »n=7 in [3],
and also some generalizations of Rutter’s result are given in [4] and [6].
Moreover Y. Nomura computed & (X) for real and complex Stiefel manifolds in
[5]. Then our purpose is to obtain a generalization of these results in a some
sense. Let H be the natural representation :

H:&(X) — Aut Hy(X)

which is defined by H(f)=fx and we denote by &.(X) the kernel of H. Then
we have an exact sequence

{1} — £4(X) — &X) —H> Aut Hy(X) .
Hence it is almost sufficient for us to determine &,(X) and H-image.

Let q : X—S™ be the S™-bundle with the characteristic class & (€ r,,-(SO(m-+1))).
James-Whitehead showed in [2] that X has a CW-decomposition :

Xzsmkﬁjenuem+n s
where S=p«(§) for the usual projection p:SO(m-+1)—S™.
Let P7(B) be the subgroup of =,(S™),
{xll:(n, x]€ﬁ°ﬂm+n—1(snﬁl)} s

and we denote by 7 the generator of zy.,(SY). We will prove
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THEOREM 1. Suppose that (¢4, EB1en=0 mod Efcmnin:1(S"). Then there
exists an exact sequence

0} —> H; —> &u(X) —> G; —> {0},
where
Hf '—’T»'m—m(Xv)/[fm’ ﬂn+1(X)]U {ﬂm+1(X)°]<§)}

and
GE::PT(,«Q)[ {,3"77} Cﬂ'n(sm>/ {13077} .

Remark. For example, the assumption is always satisfied if m==2 mod 4
and m=9.

THEOREM 2. Suppose 23-=0.
Hamage=2,XZ, 1f 2J/(&)=0 and [tns+1, £58]=0 mod EBempnir(S™)
H-amage=2Z, 1f either [tnyi, EB1=0, 2J(5)Z0 or [, EBIFO,
2J&)=0 mod ES°mn+a(S™)
Hamage=2Z, 1f [tmes, EF1+2J(6)=0 and 2/(§)70 mod Ef°rmmn(S™),
H-image—= {0} otherwise.

THEOREM 3. Suppose that the order of 3 s odd. Then

H-amage=Z, of [tms, EBI--2](6)=0 mod EBex . ,(S”)
and
H-image=={0} otheruise.

Our method is based on Barcus-Barratt theory [1]. Let 4=S™{Je™ be the
subcomplex of X and consider the fibring g

rat(XF 1y) — (X4 0) (=1x[4)

defined by restricting maps on A. Then we have an exact sequence

> mo(rit@), 1x) = mo(XF, 1x) —> mo( X4, 7).

(X4, 1) -
A, 4
Using an identification of m,(r3'(2), 1x) with 7,+.(X, x,), the above sequence
can be transformed into the exact sequence

{0} —> Gy —> EX) —> &),

where Gy, 4 denotes the group 747 min(A)/ {sxmmein(A)J0x, (7 (X4, D).

Since &(A) can be determined by Barcus-Barratt Theorem our work is to
describe the group Gy, 4 and the image &(X)—&(A). In §2 the operation dy, 4 is
investigated and §3 0y 4 is considered again from the view of Suspension-
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version. §4 contains some homotopy groups, and the image &(X)—&(A) is dis-
cussed in §5. At last, in §6, we give some examples.

§2. Barcus-Barratt Operation.
LEMMA 2.1. 4(Trmin(A)=Tnsa(X), Tmin-1(A)=Z{a} --G(B) and the sequence
{0} — dne{Tmsn-1(S™} —> G(B) —> B51(0) —> {0}
1s exact where By Tmin-2(S" )2 Tmen-1(S™) is induced by B. Especiallly we have
Gx, 4= Tmsn(X)/0x, ami( X4, 7).

Proof. The proof follows from the homotopy exact sequence and the

homotopy excision theorem.
Let rgm : (X4, ©)—(X5™, 1,,) be the fibring (i,=:]S™:S™—>X) and let A, y be

the fibre »3h(in), i.e.
' Ag xy= {1 A—> X|[|S"=1,} .

Consider the exact sequence
71'1(/1A, x, 1) —> mi(X4, §) —> n.l(Xsm) 1) —> oA, x, 1)
and identifications

(X5, i) <> (X, %) and Tfl(AA.X, 1) <> (X, x)

1 2

given by
S

and
S'WA— X, dy(g)=d(g, 1pr),
g

where d denotes the separation elemen (see Appendix).
LEMMA 2.2. By the composition

> Tm (X, X0)

Tasr(X, %0) <> m( Ay, x, 1) —> (X4, 1)
2 X, 4

any element z is mapped to Whitehead product [¢n, z].

For the proof we need some preparations. Let ¢ be a map A—AVS”
(A=S™Ue"—~(S™Ue™)\/S™") which is obtained from shrinking the equator of e"
to a point.

LEMMA 2.3. ¢ul@)=a+[tn, tn] (ETpin-1(AVS™)
Proof. From the assumption on m, n we have the decomposition

7fm+n—1(AVS">:7’~'m+n—1(A)@7Tm+n—1(sn)@2[lmy 6],
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Clearly the first factor of ¢s(a) is a and the second factor is zero by the
existence of the projection X—S”. Since the third factor is determined by the
cohomology ring of X we may think that it is just [¢m, ¢,]. These complete
the proof.

Let us define three spaces X, (=0, 1, 2) as follows:

Xo=(AVS™) U ™", X;=XVS" and X,=S™XSMU(AVS").

Oxla)

Then three Barcus-Barratt operations are obtained from fibrings:
(X%, 0) —> (X%, 0V (xo)) (=0, 1, 2),

where (x,) denotes the constant map S"—x,(<X) and v, is an appropriate exten-
sion of 7V (x,) over X. We denote them by

ai:aXl,A\/S"v : KI(XAvsn) Z\/(xl))) i ﬂm+n(Xy xﬂ) b} (ZZO) 1; 2) .
Now, applying the additive theorem of Barcus-Barratt we have

LEMMA 2.4. 0,=0,+0,
Since 7,(X4VS" 1V (x,)) has a decomposition
T (XAVS® i (mo)) =11 (XA, DD (X5", (%))
we may regard m;(X5", (x,)) as a subgroup of = (X4VS", 1V (x,)).
LEMMA 2.5. The restriction 0;]7,(X5", (x,))=0.

Proof. 1t is sufficient from definitions to show that the image of the
homomorphism

(X1, v) —> 7T1(XAvsn’ 1V (%))

contains 7,(X5", (x,)) for the map v,: X;=XVS"—X, (1yV(x,)), and then this
means that any map: S*X(AVS*)—X is exteNndable over S'X(X\VS™)if fIS'X A
=7eproj4 and f|*XS®=(x,). Since the map f:S'X(XVS*)—X defined by

FIS'x X=1ygoprojy and f|S'xS*=f|S'xS"
satisfies the conditions the proof is completed.

LEMMA 2.6. The restriction 0, m(X5", (xo)) can be identified with the homo-
morphism

ﬂl(XSn, (X)) =7 p1(X, x4) —> Tm+n(X, Xo)

defined by Whitehead product [¢,, 7.

Proof. Consider the commutative diagram
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/ ‘/“EI(XSR, (x0)) \

(XSS (x0) — T (X457 0V (x0)),
restriction
Tmen(X, Xo)

where 0 on the left hand is the boundary operator derived from the fibring
XS™8T_, XS™S™ - Then by Barcus-Barratt formula (p. 66 of [1]) the proof is
completed.

Now, using the following diagram, the proof of lemma 2.2 is completed from
lemma 2.3, 2.4, 2.5 and 2.6.

fx(Xsny («\'0)) —— 7T1(XA‘/SR, V()

e
d(, (xo)proj) M“ A,8n
e

3771+1(X; Xo) Lem, ] 7:7n+n(X; Xo)

N | A

EI(AA,X) Z) —— /‘tl(XAy Z)

here we identify the space A4 with 4vS*/S"” and the map :: A—X with the
map A—>AVS" X.
¢

1V (x0)

§3. Suspension of Barcus-Barratt Operation.

In this section our purpose is to describe the group E{0y (X% i)} as a
subgroup of mn4n:(EX, x,) with other terms. First we consider the general
case. For any spaces Y and K, the map 2 :YX—EYZX which assigns each
map /:K—Y to the map Ef: EK—FEY induces the homomorphism

% n(VE, u) —> = (EYFE Eu),  (u:K—7Y),

i.e. for [:S'X K=Y, T*(f)s, @, x)={, /s, x)) (xEK).
Since, for a map h:L—K, it holds

SERX(f)(s, (1, v)=(t, f(s, h(v)
and

i
\p

(ER*Z*(f)(s, (¢, y)=(Z[)s, (¢, hyD=11, Jis, h(v) v

we have the following commutative diagram :
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=(YE w) > 7 (EY*X, Eu)
| - 2’* %
| lEh 3.1)
YL, uh) >t (EYE*Eu Eh)

X
Now, applying the diagram 3.1 to our case Y=X, K=: and h=3, we have

LEMMA 3.2. There exists a commutative diagram

l’rl(XA; 2’) S 7Z'm+n(X, xO)

l 2\ Ox,4
7

;T](E.XEA, E) —a—'——> 7rm+n+l(EX; Xo)
EX,EA

Zg:ﬂl(Xsm: Zm)

l 2\ T Op4,sm+1

{0} 7f1(EXSm+l; Im1) =2,

Sm+1

In the above diagram if we identify z,(EX , Ime1) With m,..(EX, x,) we

have

LEMMA 3.3. 0z sm+1 may be considered as the composition -EJ(E), where &
denotes the characieristic class of the bundle.

Proof. We note that there exists a map: T(§)=S™*'\e™ """ >EX of degree
J ()

+1. Then the proof completed by applying the sphere theorem of [1] to the
diagram

fl(EXSmH, Ime1) — x> Tnint1(EX, x0)

:T aEA,smH/

aT(s).Smﬂ

T(TES™, ips1)
which is obtained from using lemma 3.2.
LEMMA 3.4, Eoy ({7(X4 )} =7, (EX)-EJ(£).

Proof. Consider the sequence associated with the fibring » : X1 X5"

Ay D > m(XA 0) > T (X5, 1) > ma(X, x0)
Vx ~ A4, 8m W
Zy =T 41 (S™) ——> fm°7}°E,3

Since 0. 7,+.(S")—7,(S™) is given by d(y)=pf-% and we have Ben=n-E3, by
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the assumption n<2m—2 ry is onto. Thus the proof follows from Ilemma 3.2
and 3.3.

§4. The suspension 7,(X)— 7, (EX)

Now we are interested in the kernel of the suspension

Ep 7y X) — 7p(EX) (k=m-+n, m--n—11.

Let v be the attaching map for a cell of a CW-complex, then we denote by
o the characteristic map for the cell. By the homotopy excision we know

LEMMA 4.1. For 1=1, 2 there exists a decomposion

Tirl(EX, ST =J(E) oy (D™, Sm’")*[‘E@_"TI/—HD"“- S
+[‘m+1y Fﬁ°ﬂn%—2(0"+1; Sn)]r;
where [, 1, denotes relative Whitehead product.

Consider the following ladder :

Trea(S") === 7 (X, S™) —a>

T(S™) > m(X) > m(X, 5™
| Lns Ek l J l
Y Y 3
ﬂk+2(EX, SmH) ? Tpi(S™) —> mp(EX) —> = (EX, S™TY)

Ix ] s
First we note that the homomorphism

Trei(X, S™) —> Tprn(EX, S™)

=0, =1)
is mjective because we have a commutative diagram
Trri(X, S™) —> Tpes(S™)
l E T =~ l E
Threr(BX, ST ————> T (S™H).

Eqx
Hence we have

E0)=in(E0m e n(EX, S™)) 4.2)
On the other hand, from lemma 4.1, we have

0z o EX, ST =J(E)empss(STUEBo 74 11(SM)ULtmss, ES7e-na(SM] (4.3)

LEMMA 4.4. For x=n(S™ ) (sZ2m—2), J(&)E™ 'x s contained in the FE-
unage if and only if Box=0.

Proof. Take Hopf invariant of the element, i.e.
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H(J(§-Em" ' x)=+HJ(§) - EM ' x=+E™* 1 BE™ 'y =+ E™"(Box) .

Then the proof follows from s=<2m—2.

Now, suppose that Bex=0. Then there exists o.=x,.,(X) such that ¢.(v,)
—=Fx. Lemma 4.4 is more exactly stated as follows:

LEMMA 4.5. There exists an element &y <=y (SO(m)) satisfying

(1) EJEx)=J&-Em"'x

@) in(JEx ) =tn, 02]

Proof. Let &' be the induced bundle over S**' by the map Ex. Since
(&) =px(&)ex=[-x=0 there exists an element &y of ©,(SO(n)) which is mapped
to & by the inclusion SO(m)—SO(m+1). Then we have

EJEx)=—J@E)=—J(Ex)=2J()E""'x.

Next, consider the commutative diagram

then By [2] we have, in 7, ,(Y),
In(J(Ex))FLem, t5::1=0

for a cross-section 7,_; of ¢’. Clearly this shows (2).
Now, we know that there exists an element w: of =, .,..(S™) such that

if 28=0 then Ew:=[tm+1, tms1]°E™*fS
if m is odd"” and 28=0 then Ew:=/(28)=[tn=1, 2us11°E3.

Then from (4.2), 4.3), and lemma 4.5 we obtain
LEMMA 4.6. £5,(0)=[ts, Tar:(X)IU {tp(wson)}
Eln0)=len, mo(X)JU {{ndwst .
LEMMA 4.7, Suppose that [tpns1, Eflenp=0 mod Ef°z +n+:1(S"). Then we have
0x 47X D= A{ltm, Tor(X) N U7 nsa(S™)JE} .
Proof. By lemma 3.4 there exists an element y; of =,(X4, 7) satisfying

(1) Edx,a7e)=lusa(n)EJ(E)
(2) 7:is mapped to the generator of 7, (X", i,)=Z, by ry.
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Since (X4, 7) is the sum of {yr.} and the image r,(/Ax, 4 7)—m (X4, 7) the
proof is completed by lemma 2.6 and 4.6.

§5. Proof of theorems.
Recall the sequence in §1
0—>Gx,4a—> EX)—> EA),
and imbed this one in a diagram as follows :

AutHW(X) —> AutHy(A)
b
{0} —> Gx,u—> EX) >E(A)
o] T
{0} —> H: —> £:(X) —> G:CE(A)
T |
{1} {1}
Then, if [tme1, EBen]E€EBemmsn+1(S™), we have from lemma 2.1 and 4.7

LEMMA 5.1, H:=mnin(X)/ {{tm, Tpeo X)W U AT mea(X)JE)}

Next, consider the exact sequence

m(S™) HOY > ZyXZ,
¢ d

which is defined by

Hf): A AvSn AvS™ — A (fer,(S™)
1) 1vf 1Viy

and d(h)=(degree on ¢™ of h, degree on e of h).
Clearly d is equivalent to the representation H and moreover the kernel of
¢t is determined by the sphere theorem of [1] as follows:

T 1x)={n-EB} ={B-n}.
Since the definition of ¢ and lemma 2.3 imply

t)l)=atlen, /1 (X=Ae™™)

the element #(f) is contained in the image ¢(X)—e(A) if and only if [¢n, fl=
0T m4n(S™) =BT m4n-1(S").
Thus, noting »rHy=H,», we have

LEMMA 5.2. G:=P7(B)/{Ben} if ltmir, EB-n]EEBenmini:(S™

Now we proced to study of the representation Hy. First we note
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LEMMA 5.3. The kernel (q|A)x: mmin-1(A) =T msn-1(S™) 15 generated by «
and the 1 y-image (i, :S™—A).

Proof. This is easily obtained from the diagram (k=m+n—1)

Ti(S™) ——> mi(A) <0 — mpi(X, A)=Z,

Tone \
l (gl A)s
N\

7X) —g> T(S™ .
Let f be a map: A—A satisfying

Jx(e™)=ae™ and fi(e™)=be"
which we call a map of type (q, b) and denote by f%. Then the following lemma
is easy.
LEMMA 5.4. There exists a map of type (a, b) 1f and only if (b—a)B=0.

Let g% be another map. Clearly there exists a map g:S™—S™ by which g%
1s represented as the composition of maps

gh=(foVg)egp: A >AVS™T — A

> AV S*
five

Now we are interested in the element f%.(@). Then lemma 2.3 gives
ga(@)=fo(a)+alen, g].
On the other hand, since we have
(g1 A f (@)= (ben)x(q] A)s()=0
lemma 5.3 gives, for some 64 Em,4,-1(S™),
flla)=aba+tin,(c}).

Thus we have from these lemmas

LEMMA. 5.5. There exists a map f: X—X whose restriction f|A is of type
(a, b) 1f and only if there exists a map f5 such that

Z‘(a):aba"lr‘lm‘(UIc)c) » GZEG[!m, nn(Sm)]U,B"ﬂﬂHn—l(Sn_l) .
Especially if a==+1 the condition 1s equivalent to E@¢bEEBempnin(S™).

Next, for the reason of our dimensional assumption, the space A is desuspend-
able, so there exists a co-H-map v: A—AV A and the addition of two maps is
defined as usal. Then we want to get some formula on (f4+f%)«(a). For the
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purpose we must investigate the group n,(AVA) for k=m-+n—1. First, by the
well-known decomposition of this group it holds

vela)=a-+a-+X AE0mp1(AXA, AVA).

Next- since the order of 3 1s finite there exists a map z:S"—A of degree
o(f) and we have the element [¢y, v*] of 7,(AV A) where each upper index
denotes the order of A imbedded in AV A and o(p) is the order of the element.
Let Q: A=S™Ue"—>S"=A/S™ be the collapsing map, then for maps QV1,: AV A
—S*"VA and 1,VQ:AVA->AVS" we have

LemMMA 5.6. (1.VQ):=[cn, tn], (@VID«N)=(=D""[tn, ¢}],

AV Qullem, T2 D=0B)tm, cn] and (QV 1)}, 3 1)=0(B)tn, (2] .

Proof. The third and fourth are clear and the others follows from the
diagram

Tp(A) ——> m(A\/A):m(zfl)Jrfrk(A)+37Tk+1(z4><A, AV A)

Vi i‘

LvQs 1 Qs

oo

T(AVS™) =7, (A)+ 71 (S™)+07 41 (AXS", AVS™H)
LEMMA 5.7. There exists an isomorphism
AV A)=a, (A4, (A)+Z U +Z07, ]+ Len, cnlom (S

Proof. Noting the assumption m--1<n<2m—1, consider the following dia-
gram which is naturally obtained :

ﬂk(A\/Sn) €< ?Z'k(A\/A) _— ﬂk(S”VA)

] i d

Tr(AXS?, AVS™) €<— Tpi(AXA, AVA) —> 1441,(SPX A, SPVA)

| | l

Z:nk+l(-ABKSTL) < 7rk+1(A>X(A) —_—> 7fk+1(sn%A):Z

I T TN

Tre(AXA, AXS™)  7pa(AXS") — 7 (AXS™, S™XS™)

T :

Tpa(STRS™)  m(STXS™)

, where % denotes the reduced join operator.
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Then the proof follows from lemma 5.6.
Now, consider the map f4V f¢: AVA—AV A, then we prove

LEMMA 5.8. (f4V fH«(l7, (R )=bcl7!, 2] mod [ehoma(S™), ¢2]
and
(foV fH«0=ad 1} + {(—=1)""(bc—ad)/0(B)} [, ] mod [eh, chlem (S*™ )

Remark. bc—ad is divisible by o(jB) because we have b—c=0=d—a mod o(S)
(lemma 5.4).

Proof. By lemma 5.7 we can put
(foV O« =r X} +slz', (2] mod [eg, ¢q]eme(S*™)

for some integers » and s. Then from lemma 5.6 it follows that r=ad and
o(B)s=(—1)""(bc—r)=(—1)""(bc—ad). Hence the proof is completed.

Let p be the folding map AVA—A. We note that there exists an element
A=m,-:(S00m)) such that

o(B)a=1mn(J(A)+Ltm, 7]
where /.(2)=0(p)& for ¢ :SO(m)—>SO(m+1).
LEMMA 5.9. pu()=2a+1m(0}) and px([z', (i D)=(=1""{o(B)a—1m(J(AN}
Proof. By definition vy(a)=a+a+X, then we have
tvs(a)=(2-1)x(e) i.e. 4datin(of)=2a+pX).
Since px([7, ¢z 1)=[r, ¢x] the second follows from the above note.
LEMMA 5.10. o%¢=0%+0f+ad(e})+ {(ad—bc)/o(B)} J(A)
mod [¢m, Ta(S™IUA{Bmsn-1(S* 1}
Proof. Apply above lemmas to the identity
(fEOx@=(fot+ O @=p[4V [xvx(a) .

Then the proof easily follows.
Now, let % be the suspension of ¢%, then lemma 5.10 gives rise

8% 8=05+0¢1ad(85)—(ab—cd)J(&) mod Efem pnen(S™).
LEMMA 5.11. §%={a(a--1)/2} (32D)+alb—a)J() mod EB°mpnsn(S™)
Proof. By lemma 5.4 b=a--ko(B) for some integer k. Hence we have

BL=ai Pt e=al P +8-tko(B)J(E) =382 +ab—a)J(€) mod EB: T pin(S™)
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On the other hand, lemma 5.10 implies 6211=6%-+a(43), i.e. we have
6i={a(a—1)/2}(62)).

Thus the proof is completed.
Since lemma 5.11 shows that it is important for our purpose to determine

471 so here we recall the definition of ¢Zi, which is given by
(—1lx(@)=a+in(071).
Then, applying the suspension operator, we have
(—lgax(E@)=Ea+in{(621), i.e. ipe(6-)=—2Fa.

On the other hand, since we may regard the mapping cone of the projection
¢ : X—S™ as the Thom space of the vector bundle characterized by & we can put

Ea:lm+1*(2§j<5)> s /2;-’:1 or —1.
Hence, using 174 +«(0)={{tm+1, EBN} VEBTn+,(S™), we know that
3:15—'225.[(5)"}_05[['”&1; Eﬁ] mod E.3°7Z'm+n(sn) <512)

for some integer c.. For example, if & has a cross-section then we may take
A:=—1 ([2]), but, in general, it is not easy to determine A

LEMMA 5.13. o(B)(1+22)](6)=0

Proof. Consider the following diagrams (¢==0(3)):

X ——> X
7| 7|
Sn A > S:z
deg. a
and
Smily Sn+1 U emtntl— [P X/ _ge_g;i;.EX
~J(E)
deg. 2: Tdeg. 1 Tdeg. 1\deg. 2;
(&’=aé&) Clg"y ——> C(q) \
S'm+1 U e7n+71+1 Sm+1 Uem+n+l
JE) O)

Then we can obtain
a=aldy modo(J(§) and —i:JEN=J(E), ie —AzafJ@=0aJ(3).

Clearly these give the proof. Now we prove
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LEMMA 5.14 In (5.12) we can take
(1) Z:=—1 and c:=1 1f 28=0
(2) c;=—2: or —2:+0(B)/2 otherwise

Proof. (1) the case: 25=0.
By lemma 5.13 and 5.11 we have

2J(&)=—22:J(6) and &3=521—-4]J(&). On the other hand, fi(a)=¢?
implies that
Go=(EfDu(Ea)=22:J&)+tmsr, tmer JH](E)=22J(E)+tmss, EB]
Hence we obtain
G2 =4JQ)+22:JE) A Lemnr, EFI=2]E) A [emer, ES] .

(2) the other case. Note that this occurs only in the case of m=odd.
Take Hopf-invariant on the both side of (5.12), then we have, from the
formula H(J(§)=—E""(¢) and H([¢m+1, ER])=2E™'B,

22 Em+14-20,En 1 8=0 |

Then, 1in our dimensional restriction, this means 2(l;+c¢)=0 and then the proof

is completed.
Now the proof of theorem 2 and 3 are completed by the following lemma

which 1s a conseqeuence of lemma 5.11 and 5.14.

LEMMA 5.15. If 23=0 we have
621=2)@)+[rm s, EB]
T1=-2J8)
G 1=[tns, EF] mod EBemmpyin(S™)
and 1f the order of 8 1s odd
—2:61=2](&)+[mer, EB].

Remark. Since the second case of lemma 5.15 can be shown to be true in
the case o(8)=2-odd Theorem 3 also holds in this case.

§$6. Some Examples
(1) The case of having a cross section.
He=rmen(S™)/ 7€) Iltm, Tnea(S™ I+ T msn(S™)
G:={x|xez,(S™), [tm, x]=0}
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EX)—>2Z, is onto 1if 2J(&)+0,
and
EX) —> Z,X7Z, is onto if 2J(£)=0.
(1) Complex Stiefel manifolds W, , (n=5).
Let &, be the standard sphere bundle

Szn-3 > W, > St Bn=n7.
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Since [tzn-s, 7en]=%°[ton-1, tzn-1] the assumption is satisfied. If n 1s even

the case reduces to (I) and for odd n we have
if n=1 mod4, then H. =r,,-(W,.), G:=1{0} and &W,.) —>Z,
and
if n=3 mod4, then H; =m0 (Wa o)/t Alczn-s, mealS™ 9]},
G:, = {0}, &(W,.) -——Z, is onto.

() Quaternion Stiefel manifolds X, .
Let 7, be the standard bundle

St —— X, —> Sttt TaNY.
Since [¢4n-4, voy]=0 the assumption is satisfied. Then if n=3 we have
H. . =asn-(Xn, )/ [tun-s, Tia( Xy, )i {neJ(za)}, and G-, ={0}.

The image ¢(X, ,)—Z,XZ, is more complicated, so we omit it.

APPENDIX: Separation elements
KueZ "I TTX, [IK=g K= d(f, 9ema(X).

KUet=KUe", K=etn UK\ e,
kK —> KUe", k| K\Ue™=identity.
1. The sequence: 07z, (K)-»n,(K, K)X=,(KUe") is exact.

For, 3 A
Ta(K) —> 7,(K) —> (K, K)

A
kx ' ’ 123
Y
T (K\Ue™)
where 1 : KUe" e UKCK.

E:Sn=ErUEr o DrT BT,

—, —>

> ke(§)=0, XL-Ncm. K K).

is onto.
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Then d(f, g)=h«(€), where h:K—X, hle?UK=f, h|KUet=g.

n n n/F\
2. K\Ue —-H>e1}f’L\Je2\G/,X,

A2
HK)CL, He®=et+e?,  F|L=G|L.
Then d(FH, GH)=d(f,, g.)+d(f,, g.), where f,=F|e"UL and g,=G|eMUL.

Proof.
/leH'_ 99711,1U Ue:,l Ll\F
K = MUK Ue? A L= L = + X
t ) /G

\ H2:H _—> (3?,2 (AW, ef_)‘,g

And consider the diagram :
0—— 7,(K) oK, K)X 7 (KUe®)
fe l ﬁ* l ﬁ* l H,
0 —> an(L) ——— mu(L, L) X7, (e?\JLe?)

P

0— —Ln(21> > T (zu L) Xﬁn(LUe7) 5
23

where

Z“L:e?’lju L U e?_«_) > z .

1,1 1,2 71

Then
Hy (&) —> (A, 1T A2, 1— 41,2 45,2) X0

Tl +72.(62) —> (A1, 121,27 e 17— 22, 5) X0
Hence Hy(&)=7.(5)-7..(&) (from the injectivity). And then we have
d(FH, FG)=(F\UG)xHx(&)
=(FUG)x(71EN+(FUG)x(]2,(E)
=d(fy, g)+d(fs, go) -
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