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Abstract. Self-indexing is a concept developed for indexing arbitrary
strings. It has been enormously successful to reduce the size of the large
indexes typically used on strings, namely suffix trees and arrays. Self-
indexes represent a string in a space close to its compressed size and
provide indexed searching on it. On natural language, a compressed
inverted index over the compressed text already provides a reasonable
alternative, in space and time, for indexed searching of words and
phrases. In this paper we explore the possibility of regarding natural
language text as a string of words and applying a self-index to it.
There are several challenges involved, such as dealing with a very
large alphabet and detaching searchable content from non-searchable
presentation aspects in the text. As a result, we show that the self-index
requires space very close to that of the best word-based compressors, and
that it obtains better search time than inverted indexes (using the same
overall space) when searching for phrases.

1 Introduction and Related Work

Text indexing has become the only alternative to provide searching capabilities
on the extremely large collections of strings that arise from different fields, such
as bioinformatics (DNA and protein sequences), the Web and other natural
language collections, software development (source code), multimedia databases
and signal processing (music, audio, video and numeric streams), and so on.

For many years, the inverted index and its variants [4] have been a simple and
effective solution to index natural language text, and the base of the success of
Web search engines. We note that “natural language” is used to denote text that
is composed of an alternating sequence of “words” and “separators”, which can
be easily distinguished syntactically; that the set of different words follows some
statistical laws such as growing sublinearly with the text size (Heaps’ law [14]);
and especially that only whole words and sequences thereof (called “phrases”)
can be searched for. These limitations have been widely accepted despite they
exclude many human languages (such as Chinese and Korean).
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On so-called natural language text, the basic inverted index consists of a
vocabulary, that is, the set of different words in the text, and a posting list
recording the text positions of each vocabulary word in increasing order. This
simple data structure immediately answers single-word searches, and can handle
phrase searches by essentially intersecting the corresponding posting lists. The
way to carry out the intersections is still an active area of research [5, 6, 28, 10].

To save space, compression techniques have been applied to inverted indexes.
In general the idea is to differentially encode each posting list (as its numbers are
increasing) and encode those gaps with an encoding that favors small numbers.
Some absolute samples are also inserted to allow fast intersections. The famous
book Managing Gigabytes [32] describes this technology in detail. The text can be
compressed as well, the preferred choice being Huffman coding [15] where source
symbols are words and target symbols are bits (hence called “word-oriented bit-
wise Huffman”). To further save space, the text can be divided into blocks, so
that the postings point to the blocks where the word appears. This is called a
block-addressing inverted index [3, 25]. At search time, the resulting blocks must
be sequentially scanned to find the exact occurrences. The block size provides an
obvious space/time tradeoff. In this tradeoff, it is advantageous to opt for a text
compression method that permits much faster searches than bitwise Huffman [9,
25]. Nowadays, very efficient indexed searching can be obtained by occupying,
with the compressed text plus the compressed index, 30% to 40% of the original
text size (and removing the original text of course).

Other variants of inverted indexes, out of the scope of this paper, are oriented
to document (rather than exact position) retrieval, or to relevance ranking [4].

The situation, up to the last decade, was far less satisfactory with other types
of sequences. Without a concept of word, it is necessary to provide searching
for any text substring. This was accomplished with powerful data structures
called suffix trees [31, 1] and suffix arrays [17]. Those were able to locate the occ
occurrences of a pattern of length m in O(m + occ) time, regardless of the text
size. However, they require 10–20 (suffix trees) or at best 4 (suffix arrays) times
the text size, plus the text, and this rendered them unsuitable in many cases.

This changed drastically with the rise of compressed self-indexes, which
were able to represent the text in space proportional to its empirical entropy
[18], and within that space, offer indexed searching for any text substring
[24]. For example, the smallest compressed self-index [12] offers searching in
O(m⌈ log σ

log logn⌉+occ·log1+ǫ n) time, where n is the collection size, σ is the alphabet
size, and ǫ is any positive constant. Another index, Sadakane’s Compressed Suffix
Array (CSA) [26], performs equally well in practice (despite not in theory) and
has the interest for this paper of smoothly handling very large alphabets.

For example, on natural language texts, these indexes take around 60% to
70% of the original text size (and replace it). This is remarkable compared with
the 400% plus text needed by suffix arrays, yet not competitive with the 30% to
40% achieved by compressed inverted indexes over compressed text. However,
the comparison is not fair because self-indexes can search for any text substring
whereas inverted indexes search only for whole words and phrases.



In this paper we explore the idea of applying a compressed self-index (as
developed for general strings) over the sequence of words of a natural language
text, that is, regarding the words as the basic symbols. This is promising
because a self-index achieving high-order entropy should capture the dependence
between consecutive words, which is significant in natural language [7, Chapter
4]. Moreover, even the slower CSA is able to locate the occurrences of a phrase of
m words inO(m log n+occ·log1+ǫ n) time (and know the number of occurrences in
justO(m log n) time). This compares favorably with inverted indexes, which need
to carry out intersections. For example, for a phrase of 2 words appearing occ1
and occ2 times, an inverted index can take time O(occ1+occ2) orO(occ1 log occ2),
where both occ1 and occ2 are (possibly much) larger than occ.

Applying a self-index to natural language words poses some challenges. A first
one is that the alphabet is very large, and this rules out the theoretically best
schemes [13, 12], which achieve k-th order entropy at the price of Ω(σk) extra
space, where σ is the vocabulary size in our case. A text of n words is known
to have a vocabulary of size σ = O(nβ) [14], where β ≈ 0.5 [4]. Thus σk may
become Ω(n) already for k = 2! However, other self-indexes such as Sadakane’s
CSA [26] approach high-order entropy space without such a dependence on σ.
Our first structure, the Word CSA (WCSA), results from regarding the text as
a sequence of word and separator identifiers and representing it with a CSA.

A second challenge is that, in many applications, we wish to have more
flexible searching. For example, inverted indexes often permit to find phrases
regardless of whether the words are separated by a space, two spaces, a tab, a
newline, etc. This complicates the simple WCSA model where the self-index can
reproduce the original text and thus the latter can be discarded. We must store
some information on the separators in order to be able of exactly recreating
the original text. Moreover, it is customary to apply some filtering on the text
words to be searched [4], that is, users normally want to regard "preprocess",
"pre-process", and "PRE-PROCESS" as occurrences of "preprocess", and
even also "preprocessing" and "preprocessed" (the latter is achieved by
stemming, that is, indexing/searching the roots of the words). It is also usual
to disregard stopwords (articles, prepositions, etc.) in the searches. This shows
that there should be a presentation layer, where the text is filtered into the
searchable sequence of (possibly stemmed, lowercase, stopwords removed) bare
words, and the presentation sequence containing the separators and all extra
information on the bare words that permits recreating the original sequence.
The searchable sequence is self-indexed, while the presentation sequence is
just compressed with a technique that permits fast direct access for displaying
purposes. Both sequences are compressed by different means, thus the choice of
what is searchable is not a space/time tradeoff but depends on user’s needs. We
call Flexible WCSA (FWCSA) this second data structure.

Our resulting data structures achieve excellent compression results, close to
many natural language text compressors (that do not provide any indexing).
Texts are usually compressed to around 35-40% of their original size with the
FWCSA (values up to 30% can be obtained depending on the parameters used,



but the resulting index becomes slow). We compare FWCSA with a block
addressing inverted index (II) over compressed text using the same amount of
space and offering the same functionality (a full word-addressing inverted index
requires much more space, around 60-70%). The results show that, with the same
available space requirements, FWCSA overcomes II when we are interested in
compression ratios below 40%. When more space is available, the FWCSA is still
faster for locating occurrences on either single words or phrases, except on words
with many occurrences, where the II becomes superior. Also FWCSA obtains
better results in the extraction of snippets for phrases in most cases.

The WCSA requires even less space, around 1-2 percentage points less than
FWCSA in compression ratio. We compare the WCSA with recent related works
that offer similar functionality: (1) Compressing the text with a word-oriented
bytewise Huffman-like compressor prior to applying a basic (character-oriented)
self-index to the result [11]; (2) reordering the bytes of the output of a word-
oriented dense-code compressor in a wavelet-tree-like [13] shape, to give search
capabilities to the compressed text [8]; and finally (3) a block addressing inverted
index with the same functionality. Again WCSA is the best choice when little
memory is available. By increasing the size of the indexes until around 45% in
compression ratio, the WCSA is still the best choice for dealing with searches on
phrases composed of several words. However, the wavelet-tree-like index performs
better when single-word patterns are searched for.

We note that the (F)WCSA operates in main memory, and therefore requires
that the compressed text does not exceed the available RAM. Because of its
access pattern, the (F)WCSA is not promising on secondary memory, whereas
inverted indexes perform well. Recently, however, there has been much interest
in inverted indexes that operate in RAM [30, 28], motivated by the large main
memories available at reasonable prices (up to 4GB is standard) and the common
distributed architectures where the text collection resides in the RAM of several
computers (then the problem is how to integrate the results of several indexes
across the slow network). Therefore, main memory data structures are of interest
nowadays, unlike what was assumed 10 years ago.

2 Sadakane’s Compressed Suffix Array (CSA)

Let T [1, n] be a sequence over an alphabet Σ of size σ. The suffix array
[17] A[1, n] of T is a permutation of [1, n] of all the suffixes T [i, n] so that
T [A[i], n] ≺ T [A[i+ 1], n] for all 1 ≤ i < n, being ≺ the lexicographic ordering.
Since every substring of T is the prefix of a suffix, and all suffixes prefixed by
a search pattern P [1,m] are contiguous in A, we can binary search A for the
interval A[sp, ep] of the pointers to all the occurrences of (i.e., suffixes starting
with) P in T , in time O(m logn). Each step of the binary search needs to access
T [A[i], A[i] +m− 1] for some i, in order to compare that string with P [1,m].

Let us now define another permutation Ψ [1, n] such that Ψ(i) = A−1[A[i]+1]
(or A−1[1] if A[i] = n). Hence Ψ(i) tells where in A is there the pointer
following T [A[i]]. Assume one has computed C[1, σ], so that C[c] is the number



of occurrences of symbols ≺ c in T . We show how can one obtain the successive
letters of T [A[i]...] (so as to carry out the binary search) with Ψ and C and
without A and T . To extract the first letter, note that all the suffixes starting
with c are in the area A[C[c] + 1, C[c+ 1]], and therefore a binary search on C
for the c such that C[c] < i ≤ C[c+ 1] gives the desired first letter, T [A[i]] = c.
To extract the next letter, we use the identity T [A[i] + 1] = T [A[Ψ(i)]], thus we
simply have to move to i′ ← Ψ(i) and carry out the same process again to obtain
T [A[i′]], and so on. This is sufficent to replace A and T .

The binary search on C can be implemented in constant time as follows. Set
up a string S[1, σ′], σ′ ≤ σ, containing all the different symbols that actually
occur in T , in increasing lexicographical ordering. Also, set up a bitmap D[1, n]
with all zeros except D[C[c] + 1] = 1 for all c ∈ Σ. Now, the c corresponding to
an i value is c = S[rank(D, i)], where rank(D, i) is the number of 1s in D[1, i].
This is (easily) computed in constant time using o(n) bits on top of D [16, 22].

The description above is the essential idea of Sadakane’s CSA [26], where
we have removed several possible optimizations that are not promising for
our particular application (backward searching, compressed bitmaps, etc.). One
important remaining point is how to compress Ψ , as in principle it is as large as
the suffix array A it replaces. Sadakane shows that Ψ is formed by σ increasing
subsequences, and thus it can be compressed to around the zero-order entropy
of T , more precisely nH0(T ) + O(n log log σ), by gap encoding its differential
values. Furthermore, as shown later [24], Ψ contains at most nHk + σk (for any
k) runs of values, so that consecutive differences equal 1 within each run. Thus,
by enriching the gap encoding with run-length compression of those runs one
achieves higher-order compression. Absolute Ψ values at regular intervals d are
retained to permit fast random access to Ψ (yielding constant time in theory).

Note that, since we do not have A anymore, determining the interval A[sp, ep]
is not sufficient to locate the occurrences, that is, to output the values A[i] in
the interval. For this sake, the text is sampled at regular intervals l, and the
suffix array positions pointing to sampled text positions are recorded, in suffix
array order, into an array AS [1, n/l]. Those sampled positions in A are marked
in a bitmap BA[1, n], thus if BA[i] = 1 we know that A[i] = AS [rank(BA, i)].
Otherwise, we try i ← Ψ(i) successively, as we are virtually moving forward in
T by one position at each iteration. Hence, if we determine A[i] = j after k
applications of Ψ , then our original value was j−k. Due to the regular sampling
in T we carry out at most l iterations until finding a sampled position in A.

Finally, in order to discard T , we need to be able to extract any substring
T [a, b]. For the same sampled text positions j ·l sampled above, we store A−1[j ·l]
in text position order into an array A−1

S [1, n/l]. Thus, we find the latest sampled
position j ·l preceding a, j = ⌊a/l⌋, and know that j ·l is pointed from i = A−1

S [j].
From that i we use the mechanism we have described to extract a string using
C and Ψ , to find out the substring T [j · l, b] which covers the one of interest to
us. (This is not the way Sadakane’s theoretical description handles this [26], but
the way he implemented it in practice.)



3 A Word-Based CSA

In this section we present the simple word-based self-index (WCSA). It can be
seen as the adaptation of Sadakane’s CSA [26] to a large word-based alphabet.

To create the WCSA we first map each different word or separator1 (let
us call both “words”) from the source text to an integer id. Then, an integer
sequence Sid is formed with the identifiers of the consecutive text words and
a vocabulary array V is created to store the word corresponding to each id.
Finally, Sid is self-indexed by building an integer-based CSA (iCSA) on it. The
algorithm to create iCSA first builds the suffix array A of Sid, as well as D, and
can discard Sid. Then, arrays A−1 and ψ are created, as well as BA, AS and
A−1
S . Then A and A−1 can be discarded. Assuming that there are σ different

words, the vocabulary used by the iCSA is {1, 2, . . . , σ}, so it remains implicit
and there is no need to store it (nor S[1, σ′]). Finally, ψ is compressed by storing
some absolute samples and Huffman-encoding the consecutive gaps, including a
special encoding for the runs.2 To sum up, WCSA consists of the vector of words
V (sorted alphabetically) and a bottom layer composed of an iCSA built on Sid.

As any typical self-index, iCSA provides the following basic functions
using the CSA algorithms described: countiCSA(P’) counts the number of
occurrences of pattern P ′ in Sid; locateiCSA(P’) locates P ′s positions in Sid;
and extractiCSA(l,r) retrieves the integers Sid[l] . . . Sid[r].

Searches for a pattern P = {w1, w2, . . . wm} on the WCSA start by
binary searching V for each word wi of P to obtain its corresponding idi
(its position in V ), hence obtaining a new pattern P ′ = {id1, id2, . . . idm}
to be searched in the iCSA. Operation countWordsWCSA(P ) is directly
translated into countiCSA(P ′), and locateWordsWCSA(P ) to locateiCSA(P ′)
(note this gives word offsets, not byte offsets, of the occurrences). Finally,
extractWordsWCSA(s, e) recovers the original text from the sth to the eth

word: We obtain the word ids with extractiCSA(s, e) and then retrieve the
original words stored at those positions (ids) in array V . Notice that snippets
composed of k words around the occurrences of P ′ can be obtained by applying
occs = locateWordsWCSA(P ′) followed by extractWordsWCSA(occs[i −
k], occs[i+ k]) for each i ∈ [1..|occs|].

4 Flexible Word-Based CSA

We show how a more flexible index can be obtained based on WCSA. Our
Flexible WCSA (FWCSA) can deal with many typical requirements of natural
language searching, such as case-insensitive search, stemming, disregarding
stopwords and/or separators, etc. The FWCSA does not index the original

1 We parse the text using the spaceless model: If a word is followed by a single blank,
that separator is not encoded but implicitly regenerated at snippet extraction time.
This saves 70% of the separators [21].

2 Further details were omitted for lack of space.



text as such, but rather a normalized version of it. Normalization is a user-
defined function from (original) words and separators to (normalized) words or
a null word. It can be used to express the requirements above3. We map the set
of different normalized words to integer ids, then replace each word from the
original text by the id of its normalized version (or ignore it if the normalization
gives the null word), and finally build an iCSA on the resulting sequence of ids.

As we want FWCSA to be able to recover any part of the original text, some
additional information has to be stored in what we call the presentation layer.
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Fig. 1. General Structure of FWCSA.

Fig. 1 shows the general structure of WCSA. A first pass over the original text
is needed to gather some statistics from the source text. We split the original
text into “valid words” and “separators”. A “valid word” is a text word or
separator4 that normalization does not map to the null word. A “separator” in
this context is all the text between valid words, that is, a maximal sequence of
text words and separators mapped to the null word by normalization. Hence
valid words and separators strictly alternate in the text5. A vocabulary of
canonical (i.e., normalized) words is built, and kept sorted alphabetically. For
each canonical word, a list with all the variants that the normalization process
maps to it is stored (sorted by frequency). Similarly, a vocabulary containing all
the “separators” in the source text is created and sorted by frequency.

A second pass over the original text permits to fill the structures from the
presentation layer shown in Fig. 1, as well as array Sid. Notice that Sid[1] = 2
because the first valid word from the text, “Blue” is mapped via normalization

3 For example, if one wishes a case-insensitive search ignoring stopwords and
separators, a proper normalization could map all words to their lowercase version,
and stopwords and separators to the null word.

4 What is a text word can also be user-defined, being the typical definition a maximal
sequence of letters and digits.

5 If normalization wishes to keep separators as valid words, we insert dummy
“separators” between valid words.



to the second canonical word, “blue”. Once the presentation layer is built, the
iCSA structure is constructed over the sequence Sid.

In the presentation layer, bitmap CT keeps a compressed representation of
the presentation aspect of the text. Based on the alternation between words
and separators, CT will have a codeword belonging to a word, followed by
the codeword of a separator, and so on. As an example, in Fig. 1, we can
observe that CT [1..3] =‘001’ is the codeword associated to the separator “The ”
and CT [4] =‘1’ is the codeword of the variant “Blue” of the canonical word
“blue”. Those codewords are obtained as follows. On the one hand, separators
are assigned a codeword using a word-based Huffman’s algorithm [19, 15] over
the whole vocabulary of separators (storing the shape of that tree requires little
overhead using canonical Huffman [20]). On the other hand, the variants of each
canonical word (that are also kept sorted by frequency) are also encoded with
the same method. Therefore, along with the variants of each canonical word,
the shape of the Huffman tree used to encode them has also to be known for
decoding. In practice, when a canonical word has a unique variant it is actually
not encoded in CT (however, in the example in Fig. 1 we used 1 bit for clarity).
Together with the information on canonical words provided by Sid (which is not
explicitly stored but obtained via iCSA), we can recreate the original text, as
Sid indicates which Huffman tree to access when decoding words from CT .

To enable decoding from any random word position in the text we provide
synchronism the codewords of CT , by using a vector B. Given a position i in
Sid, B[i] = p tells the offset in CT from which the corresponding variant of the
canonical word j = Sid[i] can be decoded (using the Huffman tree associated to
the jth canonical word). After decoding one symbol from that point p in CT, we
will find the beginning of the codeword of a separator, and after it the codeword
of the variant of the canonical word in Sid[i + 1], and so on. In our example,
we can see that B[5] = 16 is the beginning in CT of the codeword ‘01’ that
corresponds to the third (Sid[5] = 3) canonical word (‘01’ → “COLOR”). Then,
CT [18, 19] =‘01’ is the codeword of the separator “ of the ”.

A second array, Z, is needed for locate and display operations. It maps any
position i from vector Sid to its actual byte offset in the original text T : Z[i] = j
means that T [j] is the first character of the word represented by Sid[i].

To save space, both B and Z are sampled at regular positions i · kb and i · kz,
respectively, and only those positions are stored. A non-sampled value p from B
(ikb < p < i(kb + 1)) is obtained by moving to position B[i · kb] in CT and then
decoding alternatively p − (ikb) words and separators. The number of decoded
bits from CT added to the value B[i · kb] tells us the value of B[p]. A non-
sampled value p from Z is obtained similarly by adding to the previous sampled
value Z[ikz] the number of characters decoded after processing p − ikz words
and p− ikz separators. In this case decoding starts at position B[ikz] of CT .

For lack of space we omit the detailed structures of the presentation layer
and the details of the search operations on FWCSA: countWords, locateWords,
and extractSnippet.



5 Experimental results

We used a large text collection with 1023MiB, obtained by aggregating several
corpora from trec-2: AP Newswire 1988 (AP) and Ziff Data 1989-1990 (ZIFF),
as well as from trec-4: Congressional Record 1993 (CR) and Financial Times
1991 to 1994, and finally Calgary corpus6. An isolated Intel R©Pentium R©-IV 3.00
GHz, with 4 GB RAM was used. It ran Debian (kernel 2.4.27), using gcc version
3.3.5 with -O9 optimizations. Time results measure cpu user time.

We compared our self-indexes WCSA and FWCSA against two in-memory
block-addressing inverted indexes (II and FII) with similar features7. II is
the same index from authors in [8] and FII is its Flexible counterpart.
Therefore, the text is compressed with ETDC [9]; whereas postings are encoded
differentially with ETDC and absolute samples are kept every k values to speed-
up intersections. This approach differs only slightly from that in [10], and
obtains similar results in practice. The normalization process of FWCSA and
FII consisted of: (1) choosing as valid words maximal alphanumeric sequences,
(2) skipping separators and stopwords, (3) folding to lowercase.

We measured locateWords time and also the time needed to extract a snippet
containing 20-words around all the occurrences of a given pattern. We used
100 test patterns from 4 different groups of single-word patterns (with different
frequency ranges) and also 4 groups of phrase-patterns composed of 2, 4, 6, and
8 words. Results for both locateWords and for snippet extraction refer to average
time per occurrence (in msec/occurrence).

WCSA vs II. We consider two configurations varying the memory usage of
the indexes. We used two setups of WCSA depending on the parameters of its
iCSA layer; that is, on the sampling periods for its structures: {tψ, tA, tA−1}.
One, named WCSA1, used {tψ, tA, tA−1} = {16, 16, 64}; the other, WCSA2, was
set to {32, 32, 64}. For II, two parameters are needed, {k, b}, that refer to the
sampling period to index its compressed postings lists, and the block size (in
Kbytes). We call II1 the setup {k, b} = {8, 16}, and II2 to {k, b} = {32, 256}.

Table 1 shows that WCSA2 overcomes II2 in all aspects. In practice, when
little memory is available the WCSA is clearly the best choice. Only when we
use more memory, II1 can compete with WCSA1 in the extraction of snippets
for either single-word patterns or short phrases. However, WCSA1 is still faster
than II1 for locating. When we search for phrase patterns, the performance gaps
between WCSA and II increase with the number of words in the phrase.

FWCSA vs FII. We used three setups of FWCSA using fixed values B =
32 and Z = 512 (presentation layer) and depending on the three sampling

6 ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus
7 Some freely available inverted indexes were checked, but they either: i)

used a different retrieval model than that of (F)WCSA, for example Zettair
(retrieves passages, http://www.seg.rmit.edu.au/zettair/), Wumpus (needs the
text separately, http://www.wumpus-search.org), and Lemur (ranked document
retrieval, http://www.lemurproject.org); or ii) were not ready, or not public, or we
could not install them, such as Galago (http://www.galagosearch.org/ [30]), those
in [10] and [29], and Terrier (http://ir.dcs.gla.ac.uk/terrier/).



Table 1. Results comparing WCSA against II and FWCSA against FII.

WCSAi IIi FWCSAi FIIi

i=1 i=2 i=1 i=2 i=1 i=2 i=3 i=1 i=2 i=3
Ratio (%) 45.03 38.08 45.54 39.07 41.42 38.84 37.54 41.32 38.93 37.50

Locate Locate

Words 1-100 0.009 0.018 0.018 0.246 0.030 0.058 0.070 0.042 0.161 0.503
(freq 101-1000 0.007 0.019 0.019 0.237 0.030 0.059 0.070 0.019 0.074 0.200
range) 1001-10000 0.006 0.019 0.023 0.163 0.030 0.058 0.069 0.021 0.089 0.171

10000+ 0.006 0.019 0.014 0.029 0.028 0.057 0.067 0.011 0.020 0.022
phrases 2 0.005 0.014 0.028 0.113 0.027 0.054 0.063 0.044 0.118 0.159

4 0.005 0.009 1.128 3.737 0.030 0.058 0.069 0.026 0.064 0.089
#words 6 0.069 0.069 14.028 76.319 0.032 0.062 0.074 0.077 0.304 0.485

8 0.059 0.059 7.396 50.118 0.044 0.059 0.074 3.086 15.551 27.795
Snippet Snippet

Words 1-100 0.055 0.091 0.027 0.255 0.086 0.148 0.160 0.041 0.161 0.512
(freq 101-1000 0.053 0.083 0.021 0.238 0.087 0.151 0.161 0.022 0.078 0.204
range) 1001-10000 0.054 0.084 0.024 0.164 0.085 0.149 0.159 0.024 0.093 0.174

10000+ 0.054 0.084 0.015 0.030 0.083 0.145 0.155 0.014 0.023 0.025
phrases 2 0.046 0.070 0.028 0.114 0.078 0.139 0.148 0.047 0.121 0.163

4 0.029 0.043 1.130 3.737 0.085 0.148 0.158 0.029 0.067 0.092
#words 6 0.069 0.139 14.028 76.389 0.092 0.159 0.170 0.080 0.307 0.486

8 0.118 0.118 7.396 50.059 0.084 0.153 0.162 3.110 15.463 27.717

parameters of its iCSA. The first, named FWCSA1, used the values {16, 16, 32};
FWCSA2 was obtained by setting {32, 16, 64}; and FWCSA3 used the values
{32, 32, 64}. For FII, {k, b} were set to {64,16} to obtain FII1; FII2 was created
with the values {64, 128}, and finally, II3 used values {64, 1024}.

The results show that, when compression ratio is around 40% there is not a
clear winner. FWCSA is better than FII for dealing with long phrases, but FII
obtains the best results on high frequency words. However, as the amount of
memory decreases, the results of FII worsen much faster than those of FWCSA.

Moreover, it is noticeable that II and FII versions are lower bounded in size
by around 35%. However, with that amount of available memory (F)WCSA
performs much better. Furthermore, we can always set (F)WCSA space to
around 30%, yet with a clear loss in performance.

Non-II Alternatives. Other competitors to the inverted index, in a spirit
similar to our WCSA, have recently appeared in the literature. We briefly
compare with these in this section.

We first compare WCSA1 and WCSA2 with the wavelet-tree index on words
(WT) [8]. We used two configurations of WT with different memory usage.
WT1 occupies 44.37% of the original text, whereas WT2 uses 38.61%. Results
in Table 2 show that, to search for single-word patterns, WT1 is faster than
WCSA1. However, WCSA1 overcomes WT1 when locating phrases. Similar
results are obtained for WT2 versus WCSA2.

We also briefly compared our WCSA against the approach called TH+AFFM
in recent work [11] (word-based compression followed by character-wise self-
indexing). We consider locating of phrases composed of 4 words (other choices
give similar results). We adjust WCSA to work with the same memory of
TH+AFFM, for different parameter combinations of both methods. It turns
out that WCSA searches around 5 times faster in all cases.



Table 2. Results comparing WCSA against WT.

WCSAi WTi WCSAi WTi

i = 1 i = 2 i = 1 i = 2 i = 1 i = 2 i = 1 i = 2
Ratio (%) 45.03 38.08 44.37 38.61 45.03 38.08 44.37 38.61

Locate Snippet

Words 1-100 0.009 0.018 0.005 0.007 0.055 0.091 0.026 0.058
(freq 101-1000 0.007 0.019 0.004 0.044 0.053 0.083 0.025 0.093
range) 1001-10000 0.006 0.019 0.002 0.007 0.054 0.084 0.021 0.051

10000+ 0.006 0.019 0.002 0.003 0.054 0.084 0.019 0.045
phrases 2 0.005 0.014 0.010 0.021 0.046 0.070 0.025 0.058

4 0.005 0.009 0.458 0.926 0.029 0.043 0.476 0.958
#words 6 0.069 0.069 9.028 21.181 0.069 0.139 9.028 21.250

8 0.059 0.059 5.562 15.562 0.118 0.118 5.621 15.562

6 Conclusions and Future Work

We have shown that a self-index applied to natural language text, seen as a
sequence of words rather than symbols, offers a very relevant alternative to the
traditional inverted indexes. With sizes around 40% the inverted indexes can
still compete with our (F)WCSA in some operations (extraction of snippets),
but when we aim at using less space, our proposal performs much better.

In this work we have focused on one self-index, Sadakane’s CSA. We plan to
try out others that have mild dependence on the alphabet size. In particular,
adapting the LZ-index [23, 2] should offer fast locating of occurrences.

Inverted indexes are also used for other purposes, as explained [4]. For
example they are used to implement the tf-idf model by recording the number
of occurrences of each word in each document, in decreasing order of frequency.
Only a short prefix of the posting list is fetched to solve queries. Can we provide
similar functionalities with a self-index? Some initial advances have been made
by Sadakane [27], but we are far from a definitive answer.
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12. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed
representations of sequences and full-text indexes. ACM Transactions on
Algorithms (TALG), 3(2):article 20, 2007.

13. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. 14th ACM-SIAM SODA, pages 841–850, 2003.

14. H. Heaps. Information Retrieval - Computational and Theoretical Aspects.
Academic Press, NY, 1978.

15. D. Huffman. A method for the construction of minimum-redundancy codes. Proc.
of the I.R.E., 40(9):1090–1101, 1952.

16. G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th FOCS, pages
549–554, 1989.

17. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993.

18. G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

19. A. Moffat. Word-based text compression. Software Practice and Experience,
19(2):185–198, 1989.

20. A. Moffat and J. Katajainen. In-place calculation of minimum-redundancy codes.
In Proc. 4th WADS, LNCS 955, pages 393–402, 1995.

21. E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible word
searching on compressed text. ACM Transactions on Information Systems (TOIS),
18(2):113–139, 2000.

22. I. Munro. Tables. In Proc. 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), LNCS v. 1180, pages 37–42, 1996.

23. G. Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete
Algorithms, 2(1):87–114, 2004.
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