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Self-Induced Hysteresis for Nonlinear Acoustic Waves in Cracked Material
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A new phenomenon of self-induced hysteresis has been observed in the interaction of bulk acoustic
waves with a cracked solid. It consists in a hysteretic behavior of material nonlinearity as a function of
the incident pump wave amplitude. Hysteresis manifests itself in the self-action of the monochromatic
pump wave and in the excitation of its superharmonics and of its subharmonics. The proposed
theoretical models attribute the phenomenon to hysteresis in transition of the acoustically forced
oscillation of cracks from a nonclapping regime to a regime of clapping contacts.
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threshold or unstable behavior. The observed effects 20 MHz bandwidth. Because of significant damage of
Hysteresis in elastic behavior of materials is a well-
known (but in many cases much less understood) physical
phenomenon. Similar to the studies in ferromagnetic sys-
tems [1], efficient phenomenologies have already been
proposed [2,3] for some hysteretic phenomena observed
at macroscopic level, but an adequate microscopic theory
is yet to be developed. The hysteresis of a macroscopic
stress/strain relationship in such materials as rocks, mi-
crocrystalline metals, and ceramics, for example, might
be attributed [3] to hysteresis of an unspecified nature in
mechanical behavior of mesoscopic structural two-level
elements. In accordance with theory [2,3] the mesoscopic
mechanical elements contribute to hysteresis of material
nonlinearity. Because of this (in order to identify the
mesoscopic elements), it is tempting to investigate the
nonlinearity of a material stress/strain relationship by
methods of nonlinear acoustics [3,4].

The studies of mechanical systems, which might be
considered as prototypes of the individual hysteretic ele-
ments, constitute the opposite extreme limit of research
activities in nonlinearity hysteresis. Using an atomic
force microscope (AFM) and a friction force microscope,
hysteresis in tip/surface interaction and sliding friction
can be evaluated on a nanoscale (see, for example, Ref. [5]
and references therein). However, there is still a signifi-
cant gap between our understanding of hysteresis of
artificial contacts and those of a crack embedded in a
solid matrix.

Only recently were the methods of nonlinear acoustics
applied for the first time to study the hysteresis phenome-
non of individual crack [6]. A new type of hysteresis
phenomenon was observed in the case of high-amplitude
surface acoustic pulse interaction with surface-breaking
cracks. In the first experiment the amplitude of the ex-
cited 3!=2 subharmonic exhibited hysteresis as a func-
tion of the wave amplitude at fundamental frequency !
(pump wave) incident on the crack. In the second experi-
ment (with different !) the hysteresis in the amplitude of
the second (2!) and the third (3!) harmonic amplitudes
was observed. Neither transmitted nor reflected pump
acoustic wave (at frequency !) showed signs of the
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were attributed [6] to stochastic motion of cracks para-
metrically driven by acoustic wave. In particular, hyste-
resis in the 2! signal was attributed to even parametric
resonance 4�!=2�.

In this Letter we report experimental observation of
self-induced hysteretic behavior for the bulk sinusoidal
acoustic wave interacting with a system of cracks inside a
glass plate. Besides the effect of the self-induced hyste-
resis in the pump wave amplitude (at frequency !), which
have not been reported before, our observations differ
from those reported earlier [6] in the following important
aspect. We observed, for the fixed frequency of the pump
wave in a given (unmodified) experimental configuration,
different thresholds for the hysteresis of superharmonics
(2!, 3!, . . . ) excitation and for the hysteresis of subhar-
monic (!=2) excitation [Fig. 1(a)]. The threshold for
superharmonics excitation was significantly lower. Con-
sequently, neither hysteresis in harmonics excitation nor
self-induced hysteresis can be attributed in our system to
parametric nonlinear phenomena. We interpret the phe-
nomena as a hysteresis of an additional mechanism of
nonlinearity due to clapping contacts between crack lips.
This mechanism ‘‘turns-on’’ and ‘‘turns-off ’’ at different
amplitudes of the pump wave. The nonlinear oscillations
of contacts in our model are forced but not parametric.

The experimental study was carried out on a set of
glass plates with a different quantity of cracks produced
through a thermal shock. Figure 1 illustrates the hyste-
resis phenomena in the acoustic spectra of two different
plates representing two principal cases of in-phase and of
out-of-phase observation. The effect of the hysteresis has
not been observed in the samples without cracks even at
the highest available level of the excitation. The setup
consisted of two piezoelectric wide-band transducers
firmly attached onto the opposite edges of a rectangular
sample plate (230� 190� 18 mm3). The emitter was
driven by a harmonic 111 kHz wave of 150 Vp-p ampli-
tude. The signal induced in the receiver from acoustically
excited cracks together with the transmitted pump wave
was Fourier transformed by a vector signal analyzer (HP
89410A) having a full 100 dB dynamic range within
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FIG. 1. Harmonics hysteresis loops obtained with intense
ultrasonic pump observed in two different samples. Vertical
axis: Spectral amplitude (in dB). Horizontal axis: Exter-
nal driving voltage (in arbitrary units, 1a:u:�30Vp-p).
Insets: As

2! and Ah
2! denote the amplitude of the smoothly

varying second harmonic signal that would occur without
contribution from the activated crack, and of the hysteretic
part due to nonlinear mode of crack vibration, respectively; the
axes are in proportion to those in the basic figure. Figures 1(a)
and 1(b) are obtained in the case of in-phase, and out-of-phase
superposition of the signals, respectively.
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the sample the attenuation length at fundamental fre-
quency (estimated from the additional pulsed-echo ex-
periments) did not exceed the dimensions of the sample,
and the resonance phenomenon did not contribute to our
observations.

The oscillation mode of each individual crack depends
on the local distribution of the acoustical field. Thus the
transition from the linear to nonlinear mode of oscilla-
tion happens first for a single crack. In the nonlinear
mode the crack provides additional localized sources of
superharmonics and modifies the acoustic field at funda-
mental frequency. The localized character of these
sources is of great importance because the signal from
the ‘‘activated’’ crack arrives to the point of observation
with a phase shift depending on the relative position of
the observation point and the crack. It is also important
that the cracks in different positions are driven by the
different superposition of the directly incident acoustic
waves and the waves scattered from the boundaries and
other cracks. The second harmonic curves in Figs. 1(a)
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and 1(b) correspond to two different plates where the
signal from the crack oscillating in nonlinear mode ar-
rives to the receiver in-phase and out-of-phase with the
pump wave, respectively. Pronounced hysteresis is seen
both on the second harmonic curve and on the fundamen-
tal one. The insets provide a qualitative explanation of the
observed shapes for the second harmonic dependence on
the pump amplitude in two limiting cases of the phase
shift.

Hysteresis phenomena have been observed on all re-
corded superharmonics, up to 9!, as well as on subhar-
monics, !=2. Analysis of these data provides two trends.
First, the hysteresis threshold on the superharmonics is
systematically much lower than the pump level for the
appearance of subharmonics, which is illustrated by the
!=2 curve in Fig. 1(a). Second, the threshold in hyste-
resis phenomena on ! and 2! is accompanied by a
very efficient generation of a large number of superhar-
monics. This fact is illustrated in Fig. 1(b) by four straight
lines emerging from the narrow zone of the graph corre-
sponding to the ‘‘jump-up’’ of the 2! hysteresis loop.
Here the experimental points for the third, fourth, fifth,
and sixth harmonics are approximated for clarity by a
linear function; thus the hysteresis loops are not seen
on them.

The qualitative scenario of the observed phenomena
proposed in the following is based also on the results of
the calibration experiment. By optically measuring the
vibration amplitudes at the surface of the plates, it was
estimated that strain amplitudes in our experiments never
exceeded 10�5. This strain is too small to completely
close the crack when the maximum crack length does
not exceed a few centimeters (as it is in our samples).
Because of this we currently attribute the observed phe-
nomenon to the hysteresis turn-on and turn-off in clap-
ping of some intermittent contacts between crack lips.
The distance between the opposite asperities at crack
lips can be much smaller than the average crack opening.
It is well documented in literature that nonlinearity ac-
companying contacts’ clapping is significantly higher
than the elastic nonlinearity of homogeneous materials
[7,8] and is even higher than the nonlinearity of non-
clapping Hertzian contacts [8,9]. In AFM the distortion
of the basic sinusoidal motion of the cantilever due to the
tip hitting the sample was observed [10]. From the physics
point of view this is due to very abrupt changes in the
motion of clapping contacts during the impact.

To gain a further insight into the physical nature of the
observed phenomenon we model the local place of pos-
sible clapping as an oscillator embedded in the elastic
solid matrix (Fig. 2). In this lumped element model the ef-
fective masses of the interacting asperities are separated
by the local crack opening width 2l0. The spring stiffness
k models the rigidity of the crack (which is much less than
the rigidity of the elastic matrix), and u denotes the local
mechanical displacement of the crack surface. The re-
gime of the interaction between the acoustic field and the
124301-2



FIG. 2. Lumped element model for the clapping contacts
between crack lips. The two dotted curves in the top inset
present the result of a numerical simulation of Eq. (1).
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crack depends on the ratio of the acoustic wavelength 
 to
the characteristic crack length L.

In the case �
=L� � 1, the acoustic field action can
be modeled by local sinusoidal forces fac applied to
the interacting asperities. Only the part of these forces,
which is symmetric relative to the plane x � 0 and
which may cause clapping of the contacts, is presented
in Fig. 2. In the limiting case �
=L� � 1 our model is
mathematically equivalent to that of a forced impact
oscillator (see [11–15] and the references therein). Our
problem has also evident similarity to the phenomena
occurring with a ball bouncing on a vibrating table
[15,16]. Fortunately the theory of impact oscillations is
sufficiently developed to be useful for the interpretation
of our experimental observations. Both the simplest
model using an instantaneous impact rule [13] and a
more realistic model [14] of the impact process, the
Hertz contact law, demonstrate that sinusoidal nonim-
pacting oscillation becomes unstable (with increasing
force amplitude) when the oscillating masses contact for
the first time. The numerical solution [14] demonstrates
that a subsequent increase of the force may cause restabi-
lization of the oscillator onto one impact motion with the
same period (period one) but nonsinusoidal (nonlinear).
If the amplitude of the acoustic pump wave later dimin-
ishes, the system exhibits hysteresis in returning to non-
impacting period-one oscillation. The existence of a
hysteretic zone where (depending on the excitation pro-
cedure) nonlinear impacting or linear nonimpacting mo-
tion occurs is confirmed by experiments [17]. The
described scenario provides a possible explanation for
the clapping onset in our experiments, which takes place
at higher acoustic amplitudes than those necessary to stop
clapping. As clapping provides the additional strong
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mechanism of acoustic nonlinearity [7–10], this scenario
explains both the threshold increase in superharmonics
excitation and the observed hysteresis in superharmonic
amplitudes. The hysteresis at fundamental frequency
(self-induced hysteresis) may be due to hysteresis in the
amplitude of contact vibration at fundamental frequency
and/or due to hysteresis in fundamental wave energy
losses for superharmonics excitation and intermittent
contact heating (pump depletion).

If the amplitude of the acoustic pump wave continues
to increase (after the clapping threshold) then at some
higher excitation the transition evolves first to a period-
two and then to a period-four solution, as numerically
predicted [14]. This is the beginning of a period doubling
cascade. It is important to note that theoretically, the
hysteresis in returning from period-two (subharmonic) to
period-one oscillations may take place [12]. Recently
the hysteresis in subharmonic excitation was reported
for a nanoscale contact [15]. The above-described sce-
nario provides a possible physical explanation for the
behavior of the subharmonic (!=2) signal in our experi-
ment (Fig. 1).

In the forced impact systems the chaotic oscillations
are possible theoretically [12,18,19] and are observed
experimentally [19]. Thus a scenario of parametric ex-
citation hypothesized in [6] is not the only possible route
to chaos in crack oscillations. The acoustic turbulence in
the interaction of high-power sound with liquids was
attributed to forced (and not to parametric) excitation
of gas bubbles [20]. In our experiments with cracked glass
the threshold conditions for chaotic vibrations have not
been achieved.

In the opposite limiting case of the acoustically small
crack �
=L� � 1 the scenario of forced motion of the
crack explains observed hysteresis phenomenon as well.
In this regime the crack lips oscillation precisely follows
the displacement uac in the acoustic field (in Fig. 2 the
force fac can be omitted while u � uac). The nonlinear
interaction between the crack lips in this regime causes
the variation in the local crack opening depending on the
amplitude of the acoustic wave. This regime of the inter-
action of sound with crack resembles the ultrasonic force
mode in the operation of AFM [21]. The clapping acts
as a mechanical diode, demodulating the vibrations of
crack lips. A process of this type was also observed in
sound reflection from the solid-solid interface [8]. In the
considered regime the distance between opposite asper-
ities in the presence of the acoustic wave 2lac differs from
2l0 and is found from the condition of equilibrium
hf�lac 	 uac�i � 0, where f is the total force acting on
each of the masses in Fig. 2, h� � �i denotes averaging over
wave period T, and only the symmetric part of the
acoustic displacement should be substituted. In general,
the impact can be described rather precisely by including
in the total force one or another model of single-valued
(or modified by adhesion hysteresis) atomic interaction
forces between the asperities [5]. These additional forces
124301-3
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are represented qualitatively in Fig. 2 by the springs with
the length limp. For sufficiently soft cracks the force f
contains an attractive region (see the part x < 0 of the
inset of Fig. 2). To get a solution in a compact form we
approximate f by a piecewise linear function [f�x� �
�k0�x� l0� if x > limp, f�x� � �kc�x� lc� if x < limp;
see the part x > 0 of the inset of Fig. 2]. Here 2lc denotes
124301-4
the local separation of the asperities in the second pos-
sible equilibrium position (2lc � 2l0), kc and k0 denote
the stiffness of locally closed and locally open crack,
respectively (kc > k0). We approximate sinusoidal acous-
tic motion also by a piecewise linear function (uac �
4uAt=T if �T=4 � t � T=4, uac � �4uA�t=T � 1=2� if
T=4 � t � 3T=4). The result of our evaluation of average
local crack width is
lac � l0 	
1

F2 � E

2
4�F2 	 E�uA � F�F	 E� 

��������������������������������������������������������������������������������
E2�F� 1�2 	 4EF2�uA � 1�

�
uA �

E
F

�s 3
5: (1)
Here all displacements are normalized to the distance
l0 � limp, the parameter F � kc�limp � lc�=k0�l0 � limp� �
jf�limp � 0�=f�limp 	 0�j characterizes the relative mag-
nitude of attractive and repulsive forces in the im-
pact plane, and the parameter E � kc�limp � lc�

2=
k0�l0 � limp�

2 characterizes the relative position of
potential energy minima in closed and open contact
states. It is the lower branch of the solution in Eq. (1),
which is stable. The analysis demonstrates that if F > 1
then the initial nonimpacting regime lac � l0 becomes
unstable when crack lips just start kissing (uA � 1) and
local crack width diminishes by a jump. If simul-
taneously E< 1 (that is, if the crack in the open state
has lower energy than in the closed state), then the return
to open position takes place at smaller amplitudes uA of
acoustic wave. A typical hysteresis loop (ABCDEDFBA)
for the crack width is presented [based on Eq. (1)] on the
inset of Fig. 2. Note that even the sinusoidal motion of the
crack lips provides (due to the nonlinearity of the inter-
action force in the regime of clapping contacts) the source
of acoustic superharmonics. So the behavior predicted
theoretically qualitatively reproduces hysteresis observed
in our experiment.

Thermoelastic strain (induced by acoustic heating of
clapping contacts [6,22]) may also bring hysteresis in the
clapping process if local width of the crack diminishes
due to inhomogeneous heating. In general, this mecha-
nism should operate in parallel with the mechanism as-
sociated with nonlinearity of forced crack motion, which
was proposed above.

In conclusion, our experimental results and qualitative
models indicate prospects for future applications of non-
linear acoustic methods in nondestructive characteriza-
tion of material damage. Acoustic monitoring of cracks is
an important motivation for future research. The develop-
ment of a quantitative theory for crack probing by strong
acoustic waves is challenging.
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