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Numerical simulations of a two-dimensional supersonic flow of an inviscid perfect gas over a
double wedge in the Mach numbers rangeM <09, revealed the existence of self-induced
oscillations in the shock wave flow pattern in a narrow range of geometrical parameté&t80®
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We consider a supersonic flow of an inviscid perfect gasecond-order accuracies both in space and time was used in
over a double wedgéFig. 1) in the range of high Mach the calculations. The stationary solution was determined by
numbers for which the shock waves are attached to the leadettling of the nonstationary solution with time. Since the
ing edges of both the first and the second wedges. The intejinclination of the first shock wave and the induced flow field
action of these two waves results in the formation of a comyehind it could be determined analytically, the size of the
plex shock wave flow pattern. Such flow fields can occurcomputational domain was reduced to include only the re-
during flight of supersonic/hypersonic aircrafts or in thegion of the interaction of the two shock wavésashed line
course of the re-entry of space shuttles. A numerical solutiof, Fig 1), In order to damp the numerical oscillations that
of this problem, in a stationary formulation, was conductedyccr hehind strong shock waves in stationary flows the fol-
elsewhere. o . ) lowing technique was employed. At each time step two in-

Our recent success in discovering the existence of hys(Elependent calculations were performed using standard and

teresis processes in numerous cases of the interaction of Sclj'ihgonal stenciléFig. 2), and their average was used at the
personic flows with various geometrfasotivated us to thor- following time step. This extension of the stencil enabled us

oughly complement these studies and check whether a . . .
ghly comp . . to damp the numerical fluctuations and to avoid the need to
hysteresis phenomenon exists in the case of a supersom%e artificial viscosit
flow over a double wedge. u Th ! '_ ' V;_ i . f d with the followi
Not only did our study reveal that there is a hysteresis, € Investigation was performed wi € foflowing pa-

we also found out that there are self-induced oscillations ifa@Meterski/L2=2,M =9, 6,=15°, andAfwas changed in

the shock wave flow pattern for various angles of inclinationth€ course 20%35°—20°. The goal was to check whether

of the second wedge. there is a hysteresis phenomenon. This was done by chang-
The flow is described by the nonstationary Euler equa-ing the value ofA# while keeping all the other parameters

tions for an inviscid perfect diatomic gag€1.4). The pa- fixed. A@ was continuously changed during one dimension-

rameters in the problem are the free stream flow Mach numless unit of time by 0.2°, and then five units of dimensionless

ber, M, the ratio of the lengths of the surfaces of the doubletime were spent to enable the solution to settle. The time was

wedge,L,/L,, the angle of the first wedged;, and the non-dimensionalized by ,/a (the ratio of the length of the

angle of the second wedgé,, or alternatively the differ- first wedge surfacel.,, to the speed of sound of the free

ence between the two wedge anglagi=6,— 6, . stream flowa).
A W-modification of Godunov’s scherethat has As a criterion for attaining a stationary solution the dis-
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FIG. 3. Constant density contoufsopycnicg for stable wave configura-
tions (mesh 30 125). (a) A §=26.4° and(b) A #=28°.

Frame 0 shows a regular interaction between the shock
wave emanating from the leading edge of the second wedge
and the one emanating from the triple point that was formed
along the shock wave emanating from the leading edge of

FIG. 1. The computational domain. the first wedge(Fig. 1). The refracted shock wave of the
latter one is seen to reflect as a Mach reflection from the
crete analog of the following non-stationary residual wassurface of the second wedgthe Mach stem of this Mach
used: reflection is very shojt Frames 0 to 4 indicate that this
Mach stem grows and moves upstream along the second
(1) wedge surface. A remarkable change in the shock wave flow
pattern is evident in frame 6. As can be seen a triple point
develops along the shock wave emanating from the leading
edge of the second wedge too. The Mach stems of this triple
point (the lower ong¢ and the one that develops along the
shock wave emanating from the leading edge of the first
The results of the numerical calculations of two Wavewedge(the upper _O”bar?’ seen to interact i_n a reQ“'ﬁr man-
ner to result in a jet as is shown schematically in Fig. 1. In

configurations forA 6=26.4° andA #=28° are shown in . ) o
: : . addition, the reflected shock wave of the lower triple point is
Fig. 3. The important difference between these wave con- .
. . . . .seen to reflect as a regular reflection from the surface of the
figurations is the occurrence of a Mach stem with a SUbsomgecond wedae. The Mach stem of the lower triole point is
flow patch(Fig. 1) behind it in Fig. 3b). ge- b€ p

: _— een to attain its maximum length in frame 7. The subsonic
The main result of the present study was the finding thaﬁow atch behind the Mach stem is bounded by two contact
there is a wedge angle range, 278 #<<28°, inside which a P y

, . . §urfaces, one that emanates from the lower triple point and
stationary flow was not established. Instead, our numerlcaOne that bounds the above mentioned (Blg. 1). After
study revealed the excitation of self oscillations inside thisr aching its maximal lenath the Mach stem .is éeen o de-
range of wedge angles. These oscillations are demonstrat&d 9 9

S . e . Crease in its length until it reaches its minimal length at
in Fig. 4 where the time variation of the non-stationary re_frame 10. The fast shift in the position of the triple points
sidual,R,,, is shown. In the time intervalQt<6, whereA# ' P pe p

is augmented 26.6%26.8° at 0<t<1, and A 6=26.8° at generates an instability of the contact surfaces that is clearly

1<t<86, the residual is sharply decreased. This in turn asy's'bIe in frame 8. Follovv_mg frame 1.2 the Mach stem Stafts
) . to grow slowly again until it attains its second maximum in
sured that a stationary solution was reached.

A further increase of the magnitude AP resulted in an frame 16. The second process of the decrease of the Mach

almost periodic fluctuations iR, , i.e., excitation of the os- stem lengthframes 16-20is accompanied with a transition

cillations. During one period of oscillations the wave patternj[0 a regular interaction, and the wave pattern retums to the

alternated between the wave patterns shown in Figs ahd initial one that was shown in frame @ote that frames 20
3(b). For A 6=28° the oscillations disappeared and a station- .
ary solution was obtained. The evolution of the wave con-
figuration during one period of oscillations is shown in Fig. 5
where successive frames with constant density contours
(isopycnic$ with a time step equal to 1/20 of the period are
showed. Frames 1, 3, 5, 9, 11 and 13 are not shown since th
changes of the flow in these frames are insignificant.

I
“S(@) Jap

whereS(Q) is the area of the domaif? whereR, is calcu-
lated. We used one thirdrom the lefy of the computational
domain as(}, i.e., the region inside a control volume with
interacting shock waved-ig. 1).
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FIG. 4. Time variation of the non-stationary residél during the change
FIG. 2. Standard and diagonal stencils. in the angleAé.
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. . . . FIG. 6. Time variation of the maximum pressure along the wedge surface
FIG. 5. Successive frames with constant density contours of the time &Qiop plop and its location(bottom ploi.

lution of the wave pattern in the regime with self oscillations #
=27°. . I .
The foregoing presented oscillations in the shock wave

40 identical Then th i s itself flow pattern result in a time variation of the pressure along
an are identical Then the entire process repeats itse ‘the second wedge surface. The time variation of the maxi-

The computational time step in these calculations Wahum non-dimensional pressure and its non-dimensional lo-

7-10 °-8.10 *. cation along the second wedge surface for two periods of
. . ) ) %scillations in the flow regime are shown in Fig. 6. The pres-
in the ”_‘0“0” .Of the upper and the lower ”'P'_e pplnts. Thesure is normalized by the free stream flow pressure and the
upper triple point reaches its extreme left position in frame 6Iocation along the second wedge surface is hormalized by the
while the lower triple point reaches its extreme left positionﬁrst wedge length. The range of the variation in the maxi-
in frame 7 when the upper triple point already moves in th um pressure is quite large, from 700 to 1000. Note that the

right d|re_ct|on. Thus the mot|_on of the lower triple po_lnt pressure maximum is located immediately behind the re-
occurs with a small delay relatively to that of the upper triple

point. This delay allows elucidating the mechanism of the
observed oscillations. When the upper and the lower triple
points move they affect each other. The motion of the lower
triple point changes the angles of inclination of the contact | _
surfaceqframes 7 and 12 The latter results in a shift of the
main reflected shock wave frorisee Fig. 5, and, conse-
quently, a shift of the upper triple point. The shift of the
upper triple point changes the location of the intermediate
triple point and the size of the subsonic domain behind the
Mach stem. The latter results in a shift in the position of the
Mach stem since its size is determined by the $@ea of
the critical cross section. The lower triple point moves to-
gether with the Mach stem. In the case when these interact
tions are balanced, the stationary flow shown in Figp) 3
formed.

Such a situation occurs wheénd=28°. However, if the
delay in these interactions exceeds some critical value, the
stable equilibrium is violated and the flow becomes oscilla-

tory. The transition to the oscillatory flow regime occurs ingig. 7. constant density contours with mesh refineniét(c)], and the
the range 275 A §<28°. grid used for shock trackingg).

a) Grid 125%250 b) Grid 200x400

¢) Grid 400x120, shock tracking d) Grid 400x120, shock tracking
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flected shock wave at the second wedge surface, and that thased on an ideal fluid flow model. Viscous and thermal
small oscillations in the figure are caused by the fluctuationgonduction effects could modify the flow topology, mainly
of the numerical solution behind the strong shock wavesinside the boundary layers. However, since the observed phe-
These fluctuations are local and their influence on entire flommomenon is a result of the shock wave interactions outside
pattern is small. An inspection of these plots shows that théhe boundary layers and the shock wave reflections from the
largest maximum pressure is associated with the minimum ofvedge surface, the findings of the present study will most
X AL these moments the length of the Mach stem islikely prevail in real fluids.
maximal (frames 7 and 16 in Fig.)5 Finally, it is possible that the large fluctuations and fast
Additional investigations showed that mesh refinemenshifts of the location of the maximal pressure along the
did not change the above-described oscillations of the shockedge surface can cause high-frequency vibrations and me-
waves pattern and only slightly changed the period of thehanical damage to supersonic aircraft/re-entry vehicles that
oscillations. The results of the calculations fhg=27.4°,  have double-wedge like geometries.
using three different grids at the time when the Mach stem
height is close to its minimal value, are shown in Fig&),7
7(b) and 7c). In the case shown in Fig.(c?) we emp|0yed a lJ: OIejnicz_ak, M.J_. Wright, and C.V. Candler, “Nu_merical stgdy of invis-
completely different movinggrid with capturing of the main (ilc(ilzg(%ck interactions on double-wedge geometries,” J. Fluid M888,
shock wave$:® This mesh is shown in Fig.(@ where each 2G. Ben-bor, M. Ivanov, E.l. Vasilev, and T. Elperin, “Hysteresis processes
third grid line is plotted. Notably, in all these calculations we in the regular reflection-Mach reflection transition in steady flows,”

observed self-oscillations of the shock waves pattern with Prog. Aerosp. Scid8, 347(2002.

periods 0.64, 0.62 and 0.61, correspondingly. The OSCiIIa-SE'I' Vasiliev, “W-modification of Godunov’s method and its application to
e U ) two-dimensional non-stationary flows of a dusty gas,” USSR Comput.

tions ob;ta_rved for this value gﬁa are not accompanied by wath. Math. Phys36, 122 (1996.
the transition to regular reflection, i.e., the Mach stem always*L.F. Henderson, E.I. Vasilev, G. Ben-Dor, and T. Elperin, “The wall-
existed and as a consequence, the amplitude of the maximunigtting effect in Mach reflection: Theoretical consideration and numerical

: investigation,” J. Fluid Mech479, 259 (2003.
pressure at the wall was lower than that on Flg' 6 by a faCtorsE.l. Vasiliev and A.N. Kraiko, “Numerical simulation of weak shock dif-

of two. fraction over a wedge under the von Neumann paradox conditions,” USSR
It should be noted that the above-presented results areComput. Math. Math. Phys39, 1335(1999.
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