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* SELF-INDUCED TRANSPARENCY ,, 
t fV'V'V'l'l. 

S. L. McCall and E. L. Hahn° 
L 

Inorganic Materials Research Division, Lawrence Radiation Laboratory, 
and Department of Physics, 

University of California, Berkeley, California 

ABSTRACT 

Above a critical power threshold for a given pulse width a short 

pulse of coherent traveling wave optical radiation is observed to 

propagate with anomalously low energy loss while at resonance with a 

two quantum level system of absorbers. The line shape of the resonant 

system is determined by inhomogeneous broadening, and the pulse width 

is short compared to dissipative relaxation times. A new mechanism of 

self-induced transparency, which accounm for the low energy loss, is 

analyzed in the ideal limit of a plane wave which excites a resonant 

medium with no damping present. The stable condition of transparency 

results after the traversal of the pulse through a few classical absorp-

tion lengths into the medium. This is signified after the initial pulse 

evolves into a symmetric hyperbolic secant pulse function of time and 

distance, and has a specific area as a "2rr pulse." Ideal transparency 

then persists when coherent induced absorption of pulse energy during 

the first half of the pulse is followed by coherent induced emission of 

the same amount of energy back into the beam direction during the second 

half of the pulse. The effects of dissipative relaxation times upon 

pulse energy, pulse area, and pulse delay titiJ.e are analyzed to first 

order in the ratio of short pulse width to long damping time. Analysis 
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shows that the 2Tf pulse condition can be maintained if losses caused 

by damping are compensated by beam focusing. In an amplifying inhomo­

geneously broadened medium an analytic '"rr pulse area" st;)llition is 

presented in the limit of a sharp rising pulse leading edge. The dynamics 1
,:/ 

of self-induced transparency are studied for the particular effects 

of Doppler velocities upon a resonant gas. The analysis of transparency 

for random orientations of dipole moments associated with degenerate 

rotational states yields modified forms of self-induced transparency 

behavior which indicates finite pulse energy loss in some cases as a 

function of distance. The effect of self-induced transparency on the 

photon echo is considered. Experimental observations of self-induced 

transparency are made in a ruby sample at resonance with a pulsed ruby 

laser beam. Single and multiple 2rr pulse outputs are observed, and pulse 

areas are measured in the range of 2rr. The experimental results are 

compared with the predictions of the ideal plane wave theory. Devia­

tions from the ideal plane wave theory are discussed. An analysis is 

made of the effect of a transverse mode of the propagating beam upon 
• 

the transparency properties of the pulse. 
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I. INTRODUCTION 

The development of sources of pulsed coherent radietlon has 

ini ti~1ted investigationc of the behaviour of coherent traveling \raves 

~s they interact 1-1i th media. which have absorption bonds near or at the 

frequency of the applied pulse. Of particular interest are resonant 

absorbing media characterized by localized two J,.evel transitions which 

1 2 
are excited· by optical and phonon radiation. The absorption of lm-1 

intensity coherent 'or incoherent radiation can usually be interpreted 

in terms of linear dispersion theory, particularly if the 5round state 

energy levels of the absorbing medium (or excited states in the case of 

a·prepumped active amplifying mediwn) are only slightly depopulated by 

the radiation. As the resonant traveling wave radlation intensity is 

increased, the linear problem3 can be perturbed to account for the on­

set of ,.,eak nonlineari'ties4 . If damping is not too severe, transient 

oscillations in state populations can exist during and after the s.ppli­

cation of pulsed radiation5. The transient behaviour of two level 

syste~.:.. interactins with standing waves
6 

in cavities is closely related 

to fundamental aspects of pulsed traveling wave resonance phenomena. 

For very large intensities of pulsed coherent radiation encompassed by 

optical, phonon, and microwave radiation, the pulse width times have a 

critical effect if they a.re comparable to or shorter than the dissipative 

damping times of the resonant mediwn. The state population chanses be-

comEt markedly nonlinear and time dependent: the resonance susceptibility 

of the medium i.;; then a strong function of the drivine field. 

Usual perturbation treatments of strongly driven resonance phenomena 

cannot tractably reveal ma.ny rother tmrprisinc nonlinear propagation 

3 



e:ffects. The mere application of simple rate equations to describe 

the population o:f quantu."ll states is: invalid, and the use of standard ab-

sorption and emission coefficients to examine the pulsed response of 

systems at resonance in the usual manner can be inadequate or incorrect. 

The time dependence of the off-diagonal elements that represent the 

induced polarization plays a principle role in the description of coherent 

superpositionBof quantum levels. The simplest two level system is one 

where each: level is. non-degenerate, and it is this case which will be the 

main one to be discussed here. We will speak in terms of optical states 

and electric dipole moments, but our analysis will also apply to cases 

where magnetic or quadrupole moments are involved in the resonance process. 

The pulsed radiation can involve magnetic, electric, magnon, phonon, or 

other classically describable fields. 

A striking manifestation of the nonl.inear resonance response to pu~_£5es 

of coherent light is the photon echo ef:fect7. This phenomenon, the optical 

' 8 
analogue of the spin echo effect , illustrates the collective superradiant 

state described. by Dicke
6, which radiates energy coherently into the 

·electromagnetic field. In the case o:f spin systems, the same e:ffect is 

spoken of in :t;ez:ms o:f :free precession coherence, where spin ensembles 

radiate coherently into a reso~ant cavity. In this work we consider the 

.interaction of a light pulse with a medium which has diJ!lertsions large 

. . 

compared to a wave length, and is not contained in a cavity. The mt:!dium 

-- -dimensions may or may not be large in comparison with the linear ab-

sorption length. The optical resonators are assumed to be distributed 

over a spectrum of :frequencies determined by an internal spread of 

fixed two level splittings. This spread defines the line shape as in-

homogeneously broadened. I:f a weak pulse enters the medium, a fraction 

'· 
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of the pulse energy is absorbed and retained as excitation energy of the 
. 

two level system in the beginning iength of the sample, and after a few 

absorption lengths the pulse intensity has disappeared according tu the 

usual Beer's J._a..J of absorption. Although the dipoles are left excited 

after the pulse has gone b,y, they cannot reradiate power because they 

quickly dephase among themselves, owing to the broad pulse spectrum over 

which they have been excited. While a given gro~p of dipoles is excited 

coherently by the pulse, absorption is induced because of the familiar 

resonance property that the driving electric field is opposed by an electric 

field radiated b,y the dipoles. However, if the initial pulse pmver is suf-

ficient to excite resonant dipoles into a predominately invert~d or "pumped" 

ste.te before the pulse has subsided, some energy of induced emission radia-

tion ~~11 be returned coherently into the remaining portion of the pulse. 

The electric field radiated by the induced polarization will then add to 

the driving field. Once this emission process takes hold to the slightest 

degree, it becomes favored more and more as the pulse propagates into the 

5 

medium until the following eq.uilil:>rium ~ondition is reached. The energy of induced 

emiss~on, transferred to the light beam during the ·last half of the pulse, 

becomes equal to the energy of induced absorption transferred from the 

light beam, during the first half of the light pulse. This constitutes 

the dynamic condition of self-induced transparency
10

, and the final 

pulse is characterized as a "2:n: pulse" in the same way a gyromagnetic 

spin system can be excited to upper states and returned to the ground 

st~te by a pulse of radiofrequency power. Attenuation.caused by damping 

of the resonant dipoles or by background scattering losses is assumed 

to be absent or small, but the transparency effect retains its 

I,; 
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essential description in the presf!n<;e. of re~. damp-ing if the initialJ.:y appl.ied pulse 

has a width short_ compared to~ o~ __ ev~n ·.comparable with the damping time. 

In the simple case of a plnne ,.,ave tile injected pulse evolve~ to a 

final symmetric shape which is a 2:rr hyperbolic secant fun~tion (here­

after denoted as 2r. h.s.) of time and distance. The pulse yelocity 

becomes less than that of non-resonant light in the medium because of 

the continual absorption of energy from the pulse leading edge and-

emission of enerGY into the pulse trailing edge. lJhen the pulse velocity 

is considerebly less than the lia;ht velocity, the pulse ener:;y is des-

cribed c:.s bclon.::;ing predo.11inantly to the resonent medium rather than to 

the electrome,snetic field. 

The transpa.rency effect is not necessarily restricted to the special 

case of single pulse transmission. For example, in an extended mediw~ 

the effect is an aid in predicting some properties of the photon echo 

•1hich evolves as a third pulse follm-ring the application of two previous 

. 
pulses. In another situation a lisht wave of sufficient intensity which 

is turned on and left on will sharpen in its leading edee as it travels 

throu.:;h the mediu_rn. Field oscillations 'vill finally develop follovring · 

the leadin:; edge which vrill decay in a damping time determ:ined by losses 

in the mediu."ll. T.·lhere the damping is small, a single pulse of large area 

may split up into two/or more self propagating individual 2:rr h.s. pulses 
!' 

which ha:ve widths less than the damping time· of the medium. Generally, 

the final pulse may be characterized as a superposition of 2:rr h.s. pulses 

of various uic1ths, phases 1 delay times, and center frequencies. 

Initial computer colculht1ons
11 

indicated specific rules for the 

propagatinG :!,)UlS0 area as a fun·:::tion of distance. These rules implied 

the existence of small pulse eneri!:.f loss durin3 pulse props.3ation,uhici1 

• ,, 
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led to en analytic investiga~ion of the resultant pulse shape. Ac-

co~ding to the assumptions of the ~.deal plane wave model, the pulse 

shape evolves to a 2rc h.s. forr:1 for which the losRes are not merely 

smail, but precisely zero. The transparency effect was demonstro.ted
10 

experimentally in the case of ruby laser pulsed light acting on a passive 

ruby sample tuned to the driving pulse. Subsequently the transparency 

12 . 
effect wcs demonstrated in a gas by Slusher and Patel in the case of 

10.6 micr<;m radiation pulses from a co
2 

laser passing through a gaseous 

medium of resonant SF
6

. 

In vie~.; of the rapid d.evelopment of "Q-switch"
1 

a.nd mode-lock
13 

-8 . 
pulse techniques ••hich produce laser pulses in the range of 10 to 

10- 12 d h 1 . h ld t 1 ly 1 d' secon "' sue pu ses s ou propaga·e over anoma ous . arge ~s-

tances through real systems with electron dipole damping times 

in this range. The onset of attenuation effects are themselves of 

critical interest in the measurement of short lifetimes in resonant atomic 

states, electron band states in solids, and collision damping times and 

cross sections in gases. The shape and area of the self propagating 

pulses are themselves a measure of transition dipole moments, relaxation 

times, and a number of other properties ultimately .connected witp the 

nature of the medium line shape and resonance structure. The analysis 

in this paper applies as ••ell to many situations where the mediwn is 

prepared initially in pumped excj_ted states. This is a condition common 

to all lasers and amplifying media, and the transparency effect appears 

to be an important con.:.ideration for analyzing the nonlinear character 

of lase1· pulse steepening, am:plification, and final output pulse character. 

The analysis of the simple case of a tHo level system interacting 

1t1ith circularly polarized lie;ht is initially presented in this paper. 

Thir. ce.sc is chosen becDusc of the close physical correspondence of it~ 

7 
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vector model to macrozcopic physical quentities, so that \ore may utilize 

ea$ily the concepts of' nuclear magnetic resonance. Some of the resultant 

restrictions are subsequently removed in order to discuss other reJ...'Jted 

cases. 

II. ANALYSIS OF SELF-INDUCED TR!\NSPA.REHCY 

Assumptions 

The several analytic results lihich describe the op't,ice.l self-induced 

"transp<::rency effect can be derived on the basis of e semi-classical 

description Hhich involves E•. nu:nber of assumptions. For sj.npHeity con-

sider a circularly pdlarized traveling plane vrave lieht pulse of optical 

frequency w, given by 

}~!z,t) = {{z,t)[~cos(wt-kz- p(z)) + Jsin(vJt-kz- p(z))]1 (1) 

,.. 
'\-Thich enters and traverses a medium in the direetion k of increasing 

A A 

dif'tance z, uhere the orthogonal unit vectors i a.nd j are transverse to 

the propEJ;:?;ation direction. ,The stre~113th of the electric field moC.u.lus. 

,r 

C :i.. sufficiently la:rE::;e that the electroma.:;;nctic field may be regarded 

as classical; ::c:nd yet it is small enou..:;h so thatl rCI<< nw, 1-rhere p is 

the interacting dipole moment. He may consistently assume the.t 

(2) 

w 21C!) 
where k = ~ = ~ , ~ is the free space wave len5th, !) is the host 

refractive index, c the speed of light in vacuum, and p is an arbitrary 

phase anc;le not dependent on the time t. Eqs. (1) and (2) imply the 

neglect of coherent back scattering. Only coherent fonvard scatterine; 

8 
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II. 

1.' 

~applies in the regime a-l >> 'A., whe.re a -l is the optical absorption 

le~gth attributed to the absorbing dipoles which respond at frequency 

w of weak monochromatic light. The refractive index ~ is assumed to 

be unaffected by the light pulse intensity, and l-Te therefore neglect 

effects which may arise from nonl~near generation of light with fre-

quencies not close to w. Frequency modulation and pulling effects are 

not considered by assuming that there is no time dependence of p. This 

restriction is consistent with all of the assumptions made here. 

The mediu.m contains N particles per cm3 initially j_n the ground state 

of two energy eigenstates between which electric dipole transitions can 

occur. The induced electric dipole polarization can be accurately repre-

sented as a continuum {see Appendix A); and the resultant optical resonanc'e 

line is inhomogeneously broadened. In solids such a broadening could 

be caused by a distribution of static crystalline electric and magnetic 

fields, and in optically rescnant gases the distribution -of Doppler 

frequencies serves as the inhomogeneous broadening mechanism. The effect 

of other linewidth contributions is neglected, such as lifetime or 

collision broade~ing caused by phonon interactions,or by any other 

homogeneous contribution to the linewidth. The resultant distribution 

.. 
of natural frequencies w ot a given ion, atom) or molecu_ le (hereafter 

. 0 

designated as a "dipole") is described by the symmetrical spectral 

density function g(w), where 1 cog(w)d(~) = 1 .and tJJJ = w - w. The 
-co 0 

applied frequency w is tuned to the center of the spectral function 

g(.6w). The dipoles are coupled onlyby their interaction with the 

plane wave electromagnetic field, an_?. the direct dipole-dipole coupling 

is assumed to be negligib}.y small. 

9 



Resonance Dynamics of a Two LeveLSystem 

At the entr,y face z = 0 of the medium, let p(O) = 0, and define 

(:(o,t) in Eq. (1) as an arbitrary input pulse envelope shape, perhaps 

generated by a laser source. In the medium the interaction Hamiltonian 

of the two level system with no damping ienns jncluded is expressed as 

(3) 

where ~ is the main interaction, internal to the two level system, which · 
0 

determines the splitting tiw • The electric dipole moment operator is 
0 

defined as 

A A 

p = p(ia + J_ay), 
0 - X -

(4) 

where p = p = p aremagnitudes of the respective components of electric 
X y 

dipole moments
14 . The Pauli operator a has transformation properties -,. 

identical to the spin operator I which occurs in magnetic resonance pyob--
1 

lems, ,.,here 3' J!, • a is tne identity matrix. ,.., 

--p+ = p( a + ia ) , 
_: X- y 

Eq. (3) beco:nes 

Jt =:lt - ~(p E (z,t) + p E (z,t)]~ 
0 + - - + 

With the definitions that 

(5) 

(6) 

10 
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The two qu~ntum level solutions for the expectation value of the 

source electric dipole moment per cm3 have been sho·.m
15 to be of the 

. . 

same fonn as those obtained for the magn~tic moment in nuclear induction16 . . . 

We review briefly a popular density matrix method which provides a concise 

method to obtain macroscopic equations of motion of the dipole system, 

needed in our ana~sis. The reader informed on this point may skip this 

review and proceed with the analysis immediately fo~low1ng Eq. (17). The 

density matrix method may ultimately embrace treatment of relaxation 

damping, or of cases .where an arbitra17 mixture of a+ and n optical 

polarizations may occur, which indicate respectively polarizations 

transverse and parallel to a defined axis in the medium. 

Considering only its time dependence, let the dipole two-level wave 

function be given by 

(7) 

with population coefficients a
1
(t), a

2
(t) and stats fUnctions t

1
,*

2 

assigned respectively to excited (1) and ground (2) states. The dependence 

of v upon z and the phase of traveling wave excitation must eventually be 

included. In our particular experiment the ground state is completely 

populated before dipole transitions are induced, and therefore 

la2(o)j
2 = 1, ja

1
(o)l

2 = 0 at timet= ..;co. The initial density matrix 

is given by 

p(O)=(~ ~). (8) 
"/ 

11 
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The operators in Eqs. (5) and (6) are expressed in matrix form as 

. . 

p_ = pa_ = 2p (~ ~), and 

l'iwo (1 0\ 
J{o = 2 \o -1}" 

The time dependent equation 

il1P ( t ) = [ll' p ( t) J 

for the density matrix is conveniently examined in a representation in 

which}( and p(t) transform as follm-1s: 

* . 1 
p (t) = Tp(t)T- ; 

where T = ei(az/2)[(wt-kz - ~(z)], K = ~~ and 6W = w
0

- w. 

In developing the time dependent behaviour of p it is understood that 

p = p(t;6W,z), although the notation is restricted to writing p = p(t). 

In the case of the simple t~ 0 matrix given in Eq. (9), the T trans-:­

formation allovrs one to view }I as the intera.ction Hamiltonian in a 
0 

.frame of reference rotating about the laboratory z axis at 

frequency w. Eq. (10) therefore transforms to 

* * * ifiP (t) = [ll ,p (t)]. 

(10) 

(11) 

(12) 

(13} 

12 
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In this representation the time derivative of the expectation value of any 

* operator F is 

* The operators F' of interest here are given ·by az,ax' and ay' where 

the spectral energy density is defined as 

NtiW 

'·' . o ( a·z. ) ' il =~ 

and the transverse electric polarization density :1.s 

u+iv = N
2
P(a +ia ). 

X y 

The ten:1s u and v can be identified as the electric dipole dispersion ... 

(14) 

(15) 

(16) 

and absorption components respectively, in accord with the undamped Bloch 

equation notation
16. These components combine with a pseudo polarization 

- ~w, which plays the role of transverse megnetization Mz in the original 

Bloch notation, t.o define a vector pplarization P z. A real electric 

polarization P may in fact exist, but wo~ld not be involved in 
z 

our treatment here. The three components together define a fictitious 

vector polarization 

A 

P=u 
- .o 

A 

u + v _o 
A Wit 

- w -
.0 W·' 

in the · frame of reference rotatin~ at frequency w about 
A 

unit vector "':' 
0

, d.efined in this case alone the.laboratory z 

axis parallel to the direction of light propagation. The unit vectors 

(17) 

13 
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u , v , w fonn a· mutually orthogonal set. From Eqs. ( 14), ( 15), and 
-0 0 .o . 
(16) the time dependence of £ abov~ is obtained in a form of the 

familiar torque equation 

dP ,.. " ,.. 

d
-t = Px[u ttC(z,t) + w ~]. 

- -0 _o 

Coupling to Maxwell's Equati~ 

The final ste~ b~fore presenting an analysis of the pulse 

propagation is to couple Eq. (18) to Maxwell's equations for propaga-

(18) 

tion of a circularly polarized plane wave. From Eq. (5) let the traveling 

wave 

·E·· ( t) _ .C.( . t) ~[wt-kz + p(z)] .. + z, - {..1 z, e . , (19) 

With parameters defined in Eq. {1), be the complex solution of the 

wave equation 

(20) 

'r1 ~,i. r-e •, :,·.\(<,;f. 

The ~esg§enee ind~eed net complex polarization ~z,t) is given by 

p+ (z, t){
00 

g(w)[u(t:JA,z, t) + iv(tl.ll,z, t) ]ei[wt-kz-p(z) ]d(w). (21) 
-oo 

Any symmetric distribution function g(6w} centered about the applied 

f~equency w is acceptable; end in the particular case where g(6W} is a 

bell s~aped function, (1/~)sec-l is proportional to g(0)-1, and is an 

approximate measure of the 

14 



line width. The assumed relations of Eq. (2), which ~>tate that 

C(z,t) is ::_;Jo•rJy va.rying, also assures a similar behaviour for P+(z,t) 

After substituting Eqs. (19) and (21) into Eq. (20), the relati.:·::1s of 

Eq. (2) perrr<it slowly varying terms to be dropped, and the following 

equations result: 

. 2 (X) 

()~f z) .r 2n:w J 
K ~~ ~ ~ ~ u(6w,z,t)g(6w)d(6w). 

c -o:> 

To complete the array of required scalar equations, Eq. (18) is re-

writ ten as follm.Ts 1 but with the addition of phenomenalog5 cal dampine; 

terms accordin3 to the Bloch notation
16

: 

du 
v6w - u/T' 

dt = 2' 

dv 
2 

dt = - ul:-W - ~{w - v/T2, w 

dH v{w 
(W-H

0
) 

dt --T-. 
1 

Any incoherent damping effects, such as spontaneous emission or life-

time broedenin~ mechanismsassociated with collisions, are included in 

the relaxation time T2· 1~e time T
1 

defines the energy damping tim~ 

constant 2SSc.ciBted with r·elaxation vhich restores the energy of the 

(22) 

{23) 

(24) 

(25) 

(26) 

<t12w). optical system to the ground state value H = The total optical 
0 

Unewidth is defined approximately as 

15 



1 1 1 
"" T' + T!f' 

T2 2 2 
(27) 

In turn, 
1 1 1 

T' -- + T''' 
2 Tl 2 

mechanism which does not 

where T2' pertains to any lifetime broadeninB 

significant~ alter the population distribution 

between the two levels of the system connected with the resonance. In-

stead T2' accounts for the broadening of either or both levels by relaxa­

tion processes that do not cause transitions between the tvro levels. Such 

broadening is produced, for example, by electric Stark or magnetic Zeema~ 

frequency modulation of the level eigenvalues because of incoherent local 

field fluctuations, or because of very rapid relaxation from one or both 

of the two leve:ls to a third level which is not directly involved in 

the external~ excited resonance. A rigorous treatment of damping is 

of course not intended in specifying the above relaxation times; 

thE£€ phenomenologically represent the kind of damping which may occur. 

For the limit of ideal self-induced transparency ofelectric field pulses of 

. width T, the inequalities 
-1 

T << T2 and T >> w are to apply in the 

ana~sis to follow. 

The Area Theorem and Its Properties 

For those oscillators exact~ at resonance in the absence of 

relaxation, let !::JJ.J=O, and define T
1 

= T2 =co in Eqs. (24), (25) and (26) 

for all 6W. Therefore 

v(O,z,t) Npsinql( z ,t) , 

w(o,z,t) = w cos~(z,t), 
0 

where cp(z,t) = {\!:,(z,t' )dt' 
-co 

(28) 

(29) 

(30) 

16 



expresses the angle throuc;h which the fictitious polarization vector P -
at exact resonance (6W=:O) is turned at.' time t by the {.field pulse. 'l'he 

angle cp therefore expresses the area of the pulse developed up to time t. 

Let the area A of the entire pulse be defined t•hen the upper. limit t ~ oo 

applies in Eq. (30)·. Therefore, A = KL~
00

Ccz,t' )dt'. The total tippine anu;le 

( ) . -l(wv{O,z~)} . • 
of P O,z,co l.S EJ=tan I-:T'Jt-0·-;- ) wlnc.1 ml'ly not be numerically equal to A 

- ~~~ ,z,oo . 

in other physical situationse 

We nm-r can shmr hmr the beha v:i our of the component v( 0, z, t) at exact 

resouance is connected with the motion of components u(L'w,z,t) and v(w,z,t) 

off resonance (0X/O) through their mutual interactions with the {.field. 

•Integration of both sides of Eq. (22) from t = - o: to t = + oo = T, gives 

JOOIOO = T d0 z) 2nKW -d~ = - -- g(ti.ll)v(w,z,t)dtd.(.!2w), 
z ~c -oo -oo 

(31) 

where the c:ase O(z) = A(z) will apply. The long time T signifies that the 

(." 

PJ..llse c(z,t) has died atvay. This does not necessarily mean that the individual 

·polarization coinponents u(L'J.~>,z,t) and v(~l 1 z,t) have died away, but only that 

they destructively interfere to make the net polarization, given by Eq. (21), 

vanish because of the range of spectral frequencies t:/.J}. Let T = T + t', 
0 

and choose T as an arbitrary time origin ha.ving propertit!S assigned to T 
0 

above, with time t'>O measured with respe~t to it. At t = T, Eqs. (24) and 

(25) (with T2 = oo) combine to give 

u(w,z,t) = u(lxll,z,T )cos(~')+ v(w,z,T )sin(twt'). 
0 0 

( 32) 

After substitutin8 v = {ou/dt)/Dw from Eq. (24) into Eq. (31), integrating 

Eq. (31) with respect to t, and applying Eq. {32}, Eq. (31) becomes 

1'{ 



For arbitrarily large t' ~ oo the contributions from the integrals in 

Eq. (33) occur only at ~~=0, since the integrands are oscillatory. 

Formally, the first integral in Eq. (33) appears to be undefined, a.nd, 

therefore it is evaluated as the principle part of the integration in Eq. 

(31). The complex integration of u(O,z,T
0
100 

cos~' )d(~) is then zero. 
-co 

.Alternatively, one can argue that the first integral averages to zero for 

laq~e T since u(6W,z) is an odd function, proportional to w near f::M=O. 

·.The functions g(w), v, and W are even functions of t:JJJ. The second 
'-
integral results in a delta function vrhich allm.rs v to contribute only 

at t:M=O as follovrs: 

At t = T according to Eq. (28), 
. 0 

v(o,z,T) = Np sine(z). 
0 

Therefore, from Eqs. (34) and (35), Eq. (33) yields 

de(z) __ a ( 
dz - 2 sine z), 

2 2 
where a = 8n Np wg(O) 

TjflC 

At frequency w the constant coefficient a in Eq. (36) is defined as 

the reciprocal absorption Beer's lencth for weak light pulses of narrow 

band-.ridth, from coherent or incoherent sources, -.rhich do not 
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(34) 

(35) 

(36) ~-



signincantly alter the ground state population of the absorbing dipoles. 

This is signified by letting e(z) << 1 in Eq. (36). For this case the 

expression of Beer's law for an absorbing medi~~ follows from Eg. (30) 

applied to (36), as 

The general solution of Eq. (36) is 

e(z) = 2tan- 1 ([tan{~ )]exp(-~z)}, 
0 

(37) 

(38) 

which defines e as the rotation angle of the fictitious vector P(O,O,t) 
0 -

for those dipoles with 6W=0 and z~o at the entry face plane of the medium. 

The branch solutions of e versus z from Eq. (38) are plotted in Fig. (1-a). 

The solution for e(z) is analytic, but we know of no analytical solutions 

for t(z,t) except par:ticular ones which will be presented in the limit 

· ~: = o. Examples of computer plots for{. versus z and t are shown in 

Fig. (1-b) for cases e = 0.91r and 0 = l.l1t; The initial shapes C(o,t') 
0 0 

are arbitrarily chosen to be Gaussian such that 

K L 00 

C( 0, t ' ) d t ' - e . 
0 

In Fig. (1) it is seen that the pulse area e(z) diminishes toward 

e(z) = 0 for initially applied pulse areas e < 1t if a is positive in 
0 

Eq. (36)~ where Beer's law holds for G(z) << 1. If the sample is 

populated initially in the excited ~te, a is negative in Eq. (36), and 

(39) 
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e(z) evolves by rendine z as increasine from right to left in Fig. (la). In this 

situation the runplifying medium will transform a small pulse of initial 



~area e
0 

<< n into a e(z)=n pulse area independent of z for z >> a-l (this 

case, to be discussed later, is depicted in Fig. (8)). This property v1ill 

hold if we maintain the ideal infinite plane wave condition with no vari-

ation of beam intensity in the x,y plane norm.;tl to the z direction. For 

T > T"~, and the area remaining at the value "'~axT- n, the area theorem 

WOUld therefore demand that the amplified peak pulse T continues to Shorten. 

Losses would occur in a real case to limit the growth of power and the 

further shortening of T. Also a.ny real beam profile is non-Uniform in 

intensity. A uniquely defined field C(z,t) which is selected by a small 

aperture in the output will in general have a character which is influenced 

by neighboring portions of the beam, diffraction losses, initial beam 

focusing, bearn self-focusing, off-resonance excitation etc. (which, for 

the pres8nt introductory discussion, are complications that cannot be 

predicted from Eq. (36) as it stands, \·rhether or not damping is considered). 

20 

The deviations from linear pulse energy absorption rate are conveniently 

found from a computer evaluation of an empirical rate equatj_on for the puj_se 

energy T: 

dT T 
dz =- atF(A,T,"pulse shape"), (40) 

where C !co- 2 T = 1t; ccz,t) dt. 
-co 

(41) 

The function F is defined as a factor which is responsible for devia-

tions from Beer's law. It is identified from the canbination of Eqs. 

(22), (25), and (26) (with T1, T2 =co). The pulse shape can be defined 
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as an arbitrary smooth function, such as a Lorentzian or a. Gaussian function. 

F will have minima near A = tJ = 21t / 41t etc., and maxima near 31c, 51c etc. 

because of the oscillatory behaviour (w ~ - coa8) of dipoles near or at 

exact resonance. A pulse of small energy T and large width T loses the sane fiactim~[ 

amount of energy as does a more intense pulse of the same area but wlth a 

shorter width and a larGer energy. This is a result of the relationship 

T"" 1/T for fixed pulse a.rea; i.e. the bandwidth of absorption by the pulse 

is proportional to its energy. Formally if the spectrum g(6w) is constant 

throughout the pulse spectrum, F does not depend upon T if the pulse area 

and shape are held constant. However, if the g(w) spectrum is bell shaped 

and not flat, F then depends upon T, and F will monotonically decrease with 

increasins T. For T so large that the pulse width approaches or is less 

than T~, a pulse may or may not become modulated with increasing distance 

z. If T >> T~ however, the induced polarization will last for a time . 

comparable toT, and the pulse will retain a width comparable to its initial 

value and remain unmodulated by oscillations. This argument fails for 

e > 31t because osdllations in the absorbed and emitted energy begin to 

. 10,17 
split up the large area pulse into separate 21t pulses . 

For a flat g(6W) spectrum the pulse shape and area dependence of 

F in Eq. (40) is plotted from computer calculations in Fig. (2) with 

the exception of the case of a square pulse shape. The factor F is 

precisely zero at e = 2n for a 21t h. s. solut).on. This case is not 

plotted, but is almost undistinguishable fro:rn the Gaussian case except 

in the region of tJ = 21e. The square pulse result is analytic, given by 



F'(! 11,. u- u) \ 1 • .,q urc ~' (1/A){AdxJ (x), vJldch is obtu)_ncd by solving F.q. (40) 
. 0 . 

0 •. 

Eq. (2£>.)~ :in the ustwl way, and perforrning the required 

:integ1·ut:i on over ts.:. 

We continue an outline of further predictions of Eqs. (36) and (38), 

and retain ar5swnptions upon 1-rhich they are based. For the system initially 

in the ~round st~te (a: positive) the dynamics of the pulse proph~a.tion 

presents a fin<1l stable situation vrhich is not inherent jn the ampUfying 

case (a necativc). Fig. ( lb) shous hou the e = l.l:n: pulse, e.bovc the 
0 

cr:iUcnl area e -- :rr., increases in area 
0 

[e(z) .... /Cdt) tOi·~ard the limit 

0 ( ) 2 h Z > ~... a:-l a.11d .?..~ 0 z = :rr., w.en ~ ~ . 
dz 

vlhile this increase in pulse area 
.2 

.-,r, 
cJ. 

takes p1oce the pulse loses some energy (,.,f(:_ dt) over a number of absorption 

-1 . 
lengths a , and appears to be reshaped into a stable form, vrhich is pre-

sen ted fl s a hyperbolic secant traveling vra.ve solution 

{(z,t) sech[ ~ ( t-z/V)], 
KT T 

2 
(42) 

•rhere KJ
00

C(z,t' )dt' = 2:rr.. 
-oo 

The ~;olution Eq. (112) will be derJved, and it vill be seen that it is 

a unique e:m8Jytical rcsult
10 

for a traveling vrave pulse in the absence of 

dissip~~tion (T
1

=:T2=co) for a sharp line (T~:::oo) at exact resonance. It serves 

as a solution in the case of arbitrary g(6. w), but its uniqueness in this case 

hDs not been confjrmed. Constant pulse velocity V and 

pulse w:i <H.h T re::sul L wbcB the depletion of er,crc;y from the firr;t h3l:f' of the 

pulce ( .. ro 5 t r,;-.jV) by the obsorbing tvo level r.ystem :if; cxDctly balanced by 

~I 

·..! 
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emission of the some mno<.mt of energy by the system into the second h(·llf of 

the pulse ( z/V ~t ~ oo ).. During its -second half the pulse is amplifi.cJ by that 

porL:i.on of the t-..rb 1evel <.;ystem 'vhich the pulse had previously pillllped 

into the excited state during its first half. This has the effect of 

produc:il13 a pulse delny, mil kine V < c/Tl· 

Sh<l!"P _]_:~!~(.:.__~~':.<::. 

In vlcv1 oJ' the indications of our initial computer calc:ulation:l
1

, 

we are led to believe th2t a traveJJ.ng wave pulse exists vrhich is et 

resonc1nce 'd th the tvo level system nnd has a pulse area of 2n. Such a 

pulse solution must therefore s8tisfy the equaUons 

(43) 

one of \-Ihich is Eq. ( 22) . Our task is to find the proper pulse shape 

' 

which sat:tsfics the Eqs. (18) and (43). Let g(tioJ) = 5(~) be a delta 

function in Eq. (43), and substitute into Eq. (43) the polarization 

given by v(O,z,t) from Eq. (28) .. Therefore 

( 44) 

The expression 

(45) 

frotn Bq. (30) is applied to Eq. (li-4), giving the relations 

{ = ~- sinrp/2 
K.T 

(46) 



end 

(47) 

where 1/V Eq. (47) is recor;nized a.s the equation 

which governs the motion of a pendulum initially oriented in the non-

eguiHbrium position <p = :n. From a number of possible solutions to 
0 

Eq. (47), only one of them is of particular importance to the trans-

parency effect. It is obtained by writing Eq. (46) in terms of 

q = K(jj2, and combining Eq. (46) With Eq. (44) to give q = (~T~ 

I dq ( ' -1 ) or dt T = -r:--f; = d seen q • This leads to the 21c h.s. solution, 
Cl"l-q 

expressed by Eq. (42), which must be of finite pulse energy. The 

equivalent of Eq. (42), expressed as the solution of the pendulum 

equation (Eq. (47)), is 

-1f ~' t - v)}-, 
<p = 4tan le (48) 

which corresponds to the pendulum oscillation of infinite period. 

The other pendulum solutions, corresponding to period swings or oscilla-· 

tions which have J
00

(~) 2 dt = oo (see Fig. 3), are rejected as correspondin,s 
-oo 

to light pulses of infinite energy. A number of pendulum solutions have 

been discussed by Jaynes
6 

and c~~ings relative to a maser cavity problem 

in which a two level system is at resonance with a microwave field. 

6 6 
Bloembergen and Pound and Bloom discuss the standing wave radiation 

damping problem for the loss of magnetization of a precessing macroscopic 

magnetic moment while it is coupled to a resonance LCR tuned circuit. 

Bloom shows in some detail the nature of the hyperbolic secant radiation 

dDmping of nuclear mu[91etism as a function of cavity losses. Dicke
6 

ol>Lnins a similar solution for the transient behaviour of a radiating 

macroscopic electric dipole moment in a standint; microwave csvity pr-oblem· 

-,. 
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If vrc assert that a symmetric 2n h.s. pulse is supported by an in-

homogeneously broadened mediwn, then each off-resonant component v{t:w,z,t) 

in Eq. (43) is expected to respond symmetrically in time with respect 

to the h.s. pulse. It will be shown that it is consistent to define 

v(~,z,t) = v(O,z,t)f(6w), (49) 

where f(~'-') is some even function of t:J.JJ independent of t, with f(O)=l. 

If F~q. (49) is valid, then the spectral integration of f{&.>}: in Eq. {4-3) 

will lead. to Eq. (44), apart fr?m a constant factor, and Eq. (44) in turn 

leads to the 2n h.s. solution as shown. The form of f{6w) is obtained by 

solving Eqs. (25) and (26) for u{C:tu,t) and W(6w,t), with T1 = T2 =co, 

ru1d using Eqs. (28) and (49). Eq. {24) then yields 

2 
= T ' (50) 

where T
2 

for a given z is independent of t and 6w, because f(hW) and ~ 

are respectively independent of t and /::J.JJ. The second of Eqs. (50) yields 

(51) 

and the first equation, using Eq. ( 45), gives the pendulum equation Eq. 

{47). The parameter T must be a constant independent of z if the traveling 

wave solution Eq. (48) to the pendulum equation, together with Eq. (45), 

is to satisfy Haxwell's Eq. (43). 

Hyperbolic Secant Pulse Properties 

25 

Durine the evolution of the pulse toward the hyperbolic secant form the 

pulse shape changes while net energy is being absorbed by the two level 
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~ 
system. Computer plots in Fig. (4) shou examples of pulse ene1.·gy ab-

. 
sorption as a function of pulse are? A=S for fixed positions z. Pulses 

which are not hyperbolic secant in shape will leave the undamped inhomo-

geneously broadened system excited to some extent and therefore lose energy 41 

b~ an amount6W::::- *:::: Ntlw/2 + J00

rl(z,6W,t :::::o)g(w)d(t-w), which follows 
-co 

upon combining Eqs. (22), {26) and (41). Ate:::: 2n the hyperbolic secant 

pulse gives~~= 0 regardless of the spectral shape of g{Lw). This implies 

that u, v, and W in:the limit of no damping start from their ground state 

values of 0, 0, - N~w respecti vcly and return precisely to these f:a.me 

values after the 2n pulse subsides, independentlJ~: of the off-resonance 

paraT.eter 6w to which the vector P (Eq. (17)) is assigned. Fig. (5) shows ,., 

the trajectory of the end point of vector P for various values of l:!w-r • .... 

From the analysis relating to Eqs. (49) and {51) the components of P are ,., 

found to be 

u(t:w,z,t) = 
2NR ~ sin{~L2) 

l+{&tr)2 ' 
(52) 

v(L:w,z,t) = 
Npsin~ 

l+{&.trr)2 
' {53) 

and W(t:w,z,t) = Nfiw (2sin
2

{gi2) 

2 1+(~) 2 " 
- 1), (54) 

where ~ is given by Eqs. (30) or (48), so that 

sin(~/2) = sech[~(l - z/V) J. (55) 

From Eqs. (22), (43), and (53) the general expr~ssion for the reciprocal 

pulse velocity is 

(56) 



which reduces to the time delay per em of V-l ~ cxr/2 in the limits 

T:* << T, err >> rv'c, where g(t:w) is assumed constant over a spectral 
2 

1 
region defined about "' 

T 
These conditions indicate that the pulse is 

-1 
retarded in time about a· pulse width T per abs01·ption length o: • 

If a 2n: rzypcrbolic secant pulse is injected into the target sample 

at z=O, the spectral funct:i on g(t-iJJ) can be of any non-symmetrical shape, 

and ideal self-induced transparency will operate·immediateJy. Therefore 

the special results for the 21r pulse above apply upon substituting Eq. 

(52) into Eq. (23), to give a phase shift linear with distance and in-

dependent of time, expressed by 

dp(z) 
dz 

(57) 

Consequently the resonance process alters the wave vector in the resonant 

medhtm from the value k as seen from Eq. (1), to the value {k+k'). For 

T >> T~, 

The 

Eq. (57) reduces to the ordinary. result for linear dispersion. 
· in the narrow line case ( g(6w) = 5(6w)) 

w1iqueness of the 21r h.s. solution/is nm-r argued as follows .. 

Out of a general class of traveling wave solutions S of the form S(t - ~), 

27 

we note first that the 2n: h.s. solution is one in a class of pendulum solutions 

which is a solution also to the cavity problem, where all of these solutions 
namely the pendulum solutions of Eq. ( 47) with k' given by Eq. (57). 

to the cavity problem are knovrn/ By the cavity problem it is meant that S 

is a solution to the second of' the two equations in Eq. ( 1!3), where only 

the time dependence is involved. As a cavity solution, the 2lt h.s. function 

is a solution of the undamped two level system (as in an m-rn experiment), 

as shown by Eqs. (52), (53) and (54), which applies to both on and off-

resonance beha.viour. The 2n: h. s. solution contains all the parameters 

necessary to describe any set of initial conditions in the cavity problem. 



'~ 

·The 2~ h.s. fQ~ction is unique out of all the cavity problem solutions 

in that it is the on~ pulse solut~on of finite energy, required by self-

induced transparency, -vrhich satisfies simultaneously both the traveling 

wave (first) and cavity (second) equations of Eq. (43). 

Actual experimental results indicate that near]~ symmetrical hyper­

bolic secant-like pulse shapes grmr even if g(L-w) is not excited 

symmetrically. The tendency to produce spectrally clean and nearly 

synunetric output transparency pulses is associated -vri th the excitation 

of g(W) at any fY.JJ if g(~) presents a broad line width with a slowly 

varying derivative d[g(~JJ)]/d(l':Ml). If :the pulse width T is sufficiently 

large, g(6w) will appear to be nearly a flat distribution in first order, 

because it is excited over a very narrmv spectrum. A second order cor-

rection will arise as a small change in the effective host medium re-

fractive index because of the dispersion contributed by a small imbalance 

of off-resonance dipoles which give g(~) a slight asymmetry about 6w=O. 

-,i_, 

28 



III. CHANGES IN SELF-INDUCED. TRANSPARENCY PULSE CHARACTERISTICS 
WI'rH DISTANCE 

There are a number of factors ahrays present in the experiment 

which actually cause the pulse to change shape and broaden, attenuate, 

self-focus or defocus, or perhaps even to sharpen, depending upon a 

variety of actual experimental conditions. It is instructive first to 

discuss some qualitative features of the pulse before it becomes de-

laycd and shaped into a stable hyperbolic secant form. 

At a given position z, let t(z) define a time point during the 

pulse •·rhich corresponds approximately to the same point on the pulse 

at other positions z, chosen to define a certain pulse characteristic 

such as maximum amplitude or slope of C:Ct(z),z). Then t(z) is some 

function of z, and if it is applied as a limit in the integration of 

Eq. (22), one must take this into account in carrying out the dif-

ferentiation process with respect to z. Tnerefore 

Def:ine 

o~ I 1 
~z . = ~ c + v(t(zf) ; and 
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(59) 

v( tfz 1) +/{{ t( z), zi ~~"'L t(z:r:g(W)v(ru, t', z )d(W)dt '+~ Ocp(~~ z) )] , (6o) 

' 

whc.re q)(t(z)) is expressed by Eq. (30), with t replaced by t(z), and 

o~~z) is the reciprocal of the instantaneous pulse velocity at t(z). 



The resonance process contributes i/Y(t(z)) as a component of the 

reciprocal pulse velocity. T,l;J.e p11l_se shape changes in distance and timc,i 

and the velocity V(t(z)) is altered over several absorption Beer's 

-1 
lengths a 

Varying Pulse Delay 

In the case of e 
0 

= l.ln, as seen from Fig. { lb), the pulse 

delay increases with increasing z in the z,t plane, and. acquires 

a constant pulse velocity V, or constant delay timeT= ar/2 per unit 

length relative to the retarded time t-~z/c, where T is the final stable 

pulse width. For the two level system initially in the ground state, Eq. 

(60) displays the follovring pulse area properties shovm in Fig (lb), where 

t(z) is defined at the pulse maximum. 

For 2n > fJ > 1£ : 
0 

As e ~ 2n, 

t(z) = t + z/V, 

For fJ < 1£: 
0 

V(t(z)) > V and_~> 0. When 8 

d~ -1 
and dZ = 0 for z >> a . 

I d~ 
As 0 ~ 0, 1 V(t(z)) << ~/c and dZ < 0. 

-1 
= 2_n, Y(t(z)) = v = (

0
T) 

2 ' 

As seen in Fig. (lb), for the initial pulse conditions e = 0.91£, 
0 

the absorbed pulse exhibits little or no delay V(t(z))-l per unit ,length, 

. __ becau:;;e ~' as a necati ve quantity in Eq. (60) , cancels out the double 

integral term to a large extent. In the limit of low pulse power ab­

sorption, where cp is small, v cr. [, and KC -r << 1, whereupon V( t( z)) -l#:::(). 

The leading edge of the pulse is absorbed linearly and its rise time 

is altered very little. However, for larg~cp, corresponding to large 

t(z} for the same z, the lnec;ing edc;e of the pulse is in fnct stretched 

out because it is amplified briefly by the contribution of off-resonance 

30 
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dipole radiation. By multiplying numerator and denominator of the 
. 2 

double integral term in Eq. (60) by C: ,, setting V(t(z)}
1= o, and 

defining d~ = KCdt, therefore, 

- ~m 
2'~'" 

This describes the limit of classical low power absorption ~orhere 

(61) 

expresses the ratio of the integrated po1.rer loss :~ (Eq. (26)) with 

T
1 

= oo) to the average energy flux Tlc{ /41f. of the circularly polarized pulse. 

For the two level system initialJy in the excited state, the double 

intec;ral in Eq. {60) becomes a negative term, bec£Juse g(.0Ll.l) is inverted. 

The term ~ remains positive, as dictated by the area theorem of Eq. 

(36)' and a small pulse '.rith initial e < 1T. is amplified tmrard e = n 
0 

-1 
for z >>a , where a is negative. Now the leading edge of the pulse 

31 

is sharpened by the initial gain. After the effective gain factor laFI (Eq. (ItO)) 

sharply decreases in magnitude the lagging edge of the pulse falls and 

stretches out. 'Hhile the pulse is being formed and amplified at arty z, 

we cannot formulate a general an~lytic shape for C: which com:yares to 

the 21f. h.s. case for transparency. However, one must deduce, as the 1T. 

pulse continues to be amplified, that the double inteeral term in Eq. 

(60) is negative, ~ -) 0, and V(t(z)) ~ 0. 

This expression for the pulse velocity gives the appearance that 



the actual pulse velocity exceeds c/Tj. __ 

J3ut the pulse velocity as defined here is only an arbitrar-.t definition 

of the backward displacem2nt in t:i::ne versus distance (hence V(t(z)) is 

negative) of some pulse shape characteristic, and not of the sp~ed of 

light itself. The pulse velocity increase implies a sharpening of the 

leading edge of the pulse because of the amplification proces~;. There-

fore, the peak of the pulse rises rapidly '1-rith increasing z and appears 

earlier in U.me t, as shown in a special case relating to Fig. (4), to 

be discussed later. Actual·ly a noise impulse '1-Till slgnify the first 

appearance of t, and the leading edge of the amplified pulse can never recede 

to a time eerlier than t + Zfl/c, which is the earliest perr:lissible time 
0 . ' . 

that information can be conveyedto an observer at position z by the first 

no:ise impulse generated earlier at time t • 
0 

Althot~h the hyperbolic secant function (Eq. (42)} fort has been 

introduced as c.n analytic pulse solution to the self-induced transparency 

pulse field, this function at t = - co behaves in contradiction to the re-

quirement of causality. This lack of causality is introduced because of the 

assQmptions used in deriving Eq. (42). ·However Eq. (42) is physically 

acceptable as a basis of analysis since it accurately represents the shape 

of C for finite times t. 

Multiple Pt.llse Formation 

The area theorem expressed by Eq. (36) implies that any initial 

pulse area e , which obeys the condition (n+l)n > e > nn, will increase 
0 0 

in area towa.rd (n+l)n if n is odd, or it will decrease in area tow-ard nn 

if n is even, and the pulse sharpens to give an increase in pulse pm.rcr. 

Figs. (lb) and (6) respectively shmr the re~ults of computer plots of 

pulse shape changes for the cases 2n > e > n and 3n > e· > 2n. If the 
0 0 
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ini tJ.al pulse is to evolve into an area which is on i.nteger multiple 

of 2n, it mey in_general split up ~nto n separate 2n pulses which do not 

overlap one another at suffidentJy large z. Fig. (7) gives computer plots 

which sho·.v how two separate 2n pulses emerge in a distance z 
-1 

> a from -
input pulses e near 41!. Each 2n pulse has its own particular >lidth and 

0 

corresponding delay time proportional to the pulse width. Therefore, the 

narrower pulse ahwys occurs earlier at the output. Fig. (16-c)1 to be dis-

cussed later, sho>ts the observed output of what could possibly be a pulse 

splitting effect of this type in a ruby excited self-induced transparency 

17 experiment. G. L. J..a.rnb has analyzed a specia.l case of this pulse "split-

ting.effect" pheno:nenon under the assumption that a narrow line (~=T2 = oo) 

two level system remains stable, but it is not known that this splitting 

effect applies to the case of inhomogeneous broadening. The manner in YThich 

the computed pulse splitting occurs depends upon the initial pulse shapes. 

Here a flat two level inhomogeneous spectrum '-lith T2 = oo is excited ••ith 

. pulses of Gaussian shape. As the pulses separate completely they evolve 

into individual hyperbolic secant pulses with separate areas of 2n. 

Pulse Stripping, Superposition, and Self-Focusing 

In the actual experir.1ental si tua ti on the pulse entering into the 

resonant medium is not unifonn in intensity across its profile. For any 

position z in the sample we visualize for convenience that the pulse 

intensity falls off symmetrically as some function of the radius r, 

measured normal to z and outward-from an axis in the rod. 

If we assume that the plane wave analysis of the transparency effect is 

appl:i.cable to small patches of the light wave front anywhere on the pro-

file, a modification of the pulse intensity output across the be!J.m pro-

file can be described along the rod. -At a particular radJus r > r , where 
c 

the pulse area falls below n, the light will be absorbeJ. for all r > r 
c 



~ -1 
\,·i thin a fevT Beer's lenc;ths a Consequently, the m.l.ter periphery of 

the original pencil of light should_.be stripped avmy. A 

core remains vThich contn:i.ns a distribution of p\llse areas with each 

pulse area approaching 2rr. These have their mm pulse· vridths ancl delay 

times corresponding to the intensity assigned to each region at r < r . 
c 

The more intense beam centered about r = 0 will reach the exit end of the 

rod in a certain time before the arrival time of the portion of the beam 

distributed at r rw r , so that a form of "do-nut" shaped intensity pro­
.c 

file remaining near the entry end.of the roc would be expected on this 

basis. The strong vari.ntion of delay with input intensity near r = r 
c 

would prevent the formation of sharp outer edges in the intensity profile. 

Also, diffraction will couple energy from the bea~ at a given radius r
1 

to a different radius r
2 

at a distance further down the rod. Tne 

transparency effect must be analyzed in more detail to take these effects 

into account. Our initial investigation of the effects of these additional 

complications by analytic methods have been unfruitful. 

If effects caused by diffraction and stripping can be ignored, 

particularly if the beam intensity falls off very slm-rl:y from r 0, 

j: 2 
the pulse intensity output (., versus time t, as displayed from a. photo-

diode, can be visuali.zed as a superposition of squares of individual 

hyperbolic secant curves, where each curve is delayed by an amount pro-

portional to its own pulse width T. The total superposition of hyperbolic 

secant functions would tend to display a skevred asyr:-JJietric pulse when the 

beam is detected over a large aperture at the target output. Use of a 

sufficiently small aperture would give a uniform bell shaped function 

approaching the h.s. shape. 



Suppose the output electric field profile is given as 

ar,t) 

where T(r) is the 21c h.s. pulse width at radius r as defined by T in 

· Eg. ( 42), and t (r) is the time of the 
0 

and dist~:mce z. The observed electric 

output pulse peak at radius r 
. . 2 

field intensity ~ from an 

aperture with radius r at the end of the rod of length z = L is pro­
c 

portional to 

2 · L r=r 1 2{ t } . tr (t) - . c--:-2sech T(r) - o:L/2 rdr. 
=0 T(r) 

The experimental measurements of pulse areas, to be discussed later, 

could show deviations from the ideal 2n h.s. case, partJ.y because of 

(62) 

the sup2rposition effect ind.icnted by Eq. (62). Depending u:pon the exact 

form of T(r), t (r) 1 and the aperture size r , the measv.red pulse areas 
. 0 c 

could be either greater or less than 2n because of the above effect. 

An additional transverse effect is indicated by the dependence of 

d¢ dz' given by Eq. (57), upon the pulse vridth ,-. A self-focusing property 

can be assigned to the l:ight beam according to Heygens principle if 

gj increases with increasing peak field C~(r) = 2/KT(r) 1 which is equi va.­

lent to an increasing pulse energy or decreasing ·r(r) for a 2n h.s. pulse. 

Thl.s will occur if the applied frequency w is on the high frequency side 

of the resonance line (tw.negative), and the phase velocity .co/(k+k'(r)) of 

the periphery ·of the beam exceeds that of the center of the beam. This 

focusing effect will produce an instability which modifies the plane 

wave 2tc h.s. expression for:~ given by Eq. (57) to an unknown form. 
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Conve1·sely, if the appUcd frequency w is on the low frequency side of the 

recommce peak {t:f.ll pori ti ve), a different type of defocusing process 

will. o-:.:cur. The simultaneous existence of self-focusing, pulse stripping, 

and diffraction makes it quc~;;tionoble to consider these effec.ts es inde--

pendent of one another. The detailed nature of transverse bema behaviour 

here remains to be ,.rorked out. 

Effect of a Transverse Mode on Self-Induced 'l'ransparency 

If the electrornagnetic field is forced to propagate in a single 

mode, as in the transmission of a. pulse down a wave guide, or by the 

maintenC)nce of a transverse Gaussj_an profile of l.aser light do'.m a 

cylinder, the area theorem (Eq. (36)) must be modified to take this 

property into account. Consider a dispersionless wave guide which contains 

a uniformly inverted two level amplif'ying medi~ .which r.eotricts,pulse trans-

mission to a. single mode expressed by a complex orthogonal mode described by 

the function ~~x,y). The electric field expressed by Eq. {19) js then 

written as 

E{x,y,z,t) - t:.( )).(. ) i[mt-kz-~(z).] 
s x,y c z,t e + c.c. 

,-.J 

18 
Therefore in place of Eq. (22) the formal method for introducing 

single mode behav1our in Maxwell's equations results in the expression 

o{' 
"'-'.":::-.ll 
oz c 

.?f..~. ( 2 ~COi)Ij dxdy [~*(x,y) • :P]P./x,y,z,t)e-i[cut-kz] 

'dt + . ·~ . . . . . . .... 

[ f.r.(x,y) 1
2

dxdy 

where a loss term ef!/2 is introduced£' ::;:e_e-i~(z), P+(x,y,z,t) is 

by the form of Eq. (21), and~ now takes into account the presence of the 

wave guide. 

(63) 

il 



~(x,y)· 
-~ 

A 

The mode fundion s(x,y) is nonaalized so that p ~(0,0) == 1 at the - ......, 
A < '~:~~~~I \il) 

center of the beam, >rhere p =I (t;·~ l£cJv-;_)l" In Eq. (64) the phase factor 

inherent in s(::-:,y) is cancelled by :its c:anplP.x conjugate which occurs in 
rJ, 

P· For the emplify:ing medium the modified area theorem equation for the 

pulse area A(z) ut the bca.lil cente1· (x = y =- 0) becomes 

~ [r dxdyr; 
dA(z)=+

2 
·;;- L 

~ 

· l.(x,y) Jsi+(z{; · ~x,y)} 

II dxdyu . ~rx,y) J 
- ~A(z), 

where a is the JJ.near resonant gain cor.stant for this particular mode. 

The tipping angle of vector P is given by A(z) = G(z) only at the center ..., 

of the beam. In effect the electric field at x ~ y = 0 is deterrrdned by 

its functional varlation imposed by the mode fwlCtion s(x,y); and the 
'V 

(65) 

dipoles et a pertL:.:ular transverse x,y position obey the torque type egu6.tion 

(Eq. (18)) vhen driven by the electric field s(x,y){(z,t) at that position. 
"-' 

The net area derivative at x = y = 0 in Eq. (65) is therefore deternin~d by 

the fm1ctional variation of ~(x,y) over all x,y. By this procedure the con-
,v 

strair:;t imposed by the '\rave guide mode" bypasses the problem of dif-

fraction_, but at the expense of assuming that the _§(x,y) function holds 

throughout the evoluUon of the pulse area A 1-ri th distance z. Nevertheless, 

consideration of the relation Eq. { 65) is much more realistic with regard 

37 

to questions posed in the literature
19 

regarding the production of "n pulses" 

by lnscr anlplifierE>. In these experiments there are large transverse varia-

tions In field int~nsity_. a!'ld the pseudo vector tipping angle has a strong 

depende!'lce on transverse x,y position in the beam. 

Let Eq. (65) car~; over to the case of a single transverse mode 

traveJ:inc; lla.ve laser. .Assume a specific Gaussian t:cn.nsvcrse function 



~J~~-..,..,exp[-(x 2 
+ y

2
)/r

2j-, where r is some mean transverse distance. Then 
"" 0 0 

Eq. (G5)reduces to 

dA. = _Aa(l-cosA) - ~A/2. 
dz 

The cqailibrium area A = cos -l(l - 2f3A/a)
2 

shm.:s. that in the limit of 

small losses (!3 -> O), A_, 2f£ in the laser ampl:i.fication process. In the 

plane Have case it is popularly expected that A -tlt but the existence 

of the cl10sen transverse mode and definition of pulse area here happens 

t.o yield A"' 2f£. If losses expressed by the para;:neter !3 or ~/a in-

crease in Eq. (66), the c'orresponding pulse area becomes less than 2rt. 

Thus fer the pulse area referred to is the exact resonance tipping angle 

e(z) at the exact center of the beam profile, vrhere a small aperture is 

presumed to monitor it. If the entire beam profile is measured, the 

apparent pulse area is modified considerably from its value at the center 

(66) 

of the be3m to an apparent value which may be different from 2f£, depending 

upon the means of averaging. Of course this analysis is.to be taken only 

in a quali taLi ve sense, because the equat:i on v.'hi ch should apply is 

sensitive to the mode function t(x,y) which is actually present• 

F 1 l.f h ~=*"" or examp e we c oose ~·P ·so:: 
2

1 
2 2 

the area theorem Hould 
l+(x +y )/r 

0 

be given by 

dA = 9:[. f. Asinydy]- {3A · 
dz 2 . y 2 ' 

0 

where the integral function above is the-sine integral fw1ction Si(y). 

Here tb~ equilibrium area A for finite f3 is entirely different from the 

(67) 

previous case, and for no loss (f3=0) the equilibrium area A is indefinitely 

large. 

... 
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Orientation and Dcgenc£acy Effect~ 

So :far the analysis of self-induced. transparency has asswned tl'mt 

all dipole matrix elements are singularly defined for a simple two 

level system, and that the dipoles are oriented in a comm.on direction 

throughout the sample. In a gas the direction of light polarization of a 

plane 1vave will specify a corr~spondtng dipole moment polarization direction 

at any time if the induced dipole moment is obtained from the excitation 

of gronnd symmetric_ states. There are caset,0 hmvever, in which the 

induced dipole moment will not occur in a Wlique direction specified 

by the applied field; instead, there may exist projections of dipole mcment 

matrix elements upon the incident optical field polarization direction 

-which are neDrly random in value . 

.An instructive way to look at the above problem is to say tr1a.t the 

dipole mOine:nts are apparently different for different molecular orienta-

tions. This can be illustrated by a simple example in which two in-

dependent dipole species with dipole matrix elements p
1 

and p
2 

interact 

independently with a light pulse. ·Here p
1 

and p
2 

are not randomly 

oriented but are each polarized in the same direction. Only one mode 

of el;ectric field polarization will result, and the previous area 

theorem analycis can be a.pplied to give 

Tne pulse area is defined as A = e
1

, so that e
2 

= (p
2

/p
1

)A, and a
1 

and 

a
2 

are the absorption coefficients for each type of dipole. Eq. (68) 

dA 
For dz = 0, the pulse 

(68) 

3Y 



area will no longer be at 2n. For (p
1
a

2
) jp

2 
<< a

1
, the species p

1 
>-rill 

dominnte, and to first order in p 1 a~/ij;> 2 a_i a stable pulse area 

: ' 7 t 
.. !J I 

·;~."'! {ft.J\" t/' . 
i A. .. :; • -

'I .•. , I"T'. -
., j- • 

I ., . ., 
will result. . /lr +<· t- . 

Now consider gas molecules in which the dipole moment p is 

ind.uced only along a particular molecular axis. For linearly polarized 

light let n denote the angle between {and p, so that the effecUve field 
...J .......,_ 

acting on the dipole is Ecosn. An equivalent of this projection pro-

cedure is to specif'y that the effective dipole moment peff = pcosn inter­

acts with C~ Hence the area theorem is derived for such a system by 

summing over all possible values of peff which interact with the-uniquely 

determined field L which is a consequence of the sum of all the dipole 

interactions. Let the pulse area A be defined as the tipping angle at 

resonance for all dipoles with n = 0. The area derivative with respect 

to distance, as e~pressed by Eq. (36), becomes · _(Peri!') 
the sum of all sis\- p _ 

contributions over a unit sphere, expressed as 

~ = - <'f>J 
14 

sin!lcosnsin(Acosn)dn 
0 

=- (~ 2 )(sinA-AcosA). 
2A 

The separate cosn factor in the integral expresses the reprojection of 

the field radiated by peff back onto the applied field{,. Eq. (69) in-

dicates that no stable pulse condition exists in \Thich complete trans-

parency occu-rs. If circularly polarized light is applied instead of 

linearly polarized light, then with n = cos-
1

(peff/p) defined as the 

angle betueen the polarization direction and the propc.gation direction, 

(69) 



dJ\ 30: [ 1( • 2f"'l • ( A • f"'l) ,M 

dz u 
-- - l;- SJ..n HSJ.n 11Sll1H u.H. 

- co 

a a 3o: L J2n+l (A) 
== - 2 Jl(A) + 10'T3(a) + - . r;;2 J )(2 l)r;----3=i\ ' 2 \'"·n-. n+ \c.n-:-:> 1 

n=2 

where J (A) is the Bessel function
21 

of order n, finite at A==-0. In the 
n 

limit of small A, Eqs. (69) and (70) reduce to the linear Hmit which 

dA a 
requires that dz = - 2A· 

For a rigorous quantum description of ·orientation effects as they 

affect transpc!.rency in a ear, the problem must. be expressed in terms of 

anc;nlar momentU!:l states. Suppose the ground and ex:::ited states are 

character:i.zed respectively by a multipHcity of 2J + 1 and 2J' + 1, with 

angular momenta· J and J'. The dipole matrix elements involving trans-

22 
itions between such states have been cataloged Generally, the con-

tribution to the pulse area derivetive dA/dz (assuming equal initial 

ground state populations) from allowed transitions between the states 

!J,mJ) and IJ' ,mJ,) is proportional to lp(mJ,mJ,)Isin{lp(mJ,mJ,)IA/p
0
}, 

for the same reasons leading to Eq. (36), where I p(mJ,mJ,)j is defined 

as the dipole matrix element for the transitions mJ +--) mJ,. The matrix 

elements are assumed to refer to either rc optical tr<msitions, or a+ 

optical transitions. 'I'he dipole factor p 
0 

is formally arbitrary, but to 

be specific it is chosen to be the largest of the lp(mJ,mJ,) I involved. 

Generally the pulse area derivative may be written as 

which is derived in the same way as Eq. (36). 1'he summation is over 

41 

(70) 

(71) 

mJ and mJ'' restricted either to all o~ transitions or to all 1" transitions, 



where each of mJ end mJ, can appear only once in the sunm1::ttion. The 

factor CY. from Eq. (36) is defined here vrith p
2 

replaced by L lp(mJ,mJ') 1
2

, 

and A==~ j
00

C(z,t' )dt'. 
-lXI 

Referring to the tabuL'3.ted matrix. elements
22

, the nwnbers IP(mJ,mJ') I 

1~2 

are either zero, or equal to p
0

, for rr: End a transitions if J"'O, J':;l; J:-::J'=l; 

J=l, J'=O; or J=J'~~. For these transitions the above formula reduces to 

-~asinA for which 2:rr h.s. pulses should be formed and display the trans­

parency effect. The same remarks apply to li transitions for J:-::}, J'=3/2 or 

vice versa. But for J=-~, J' =3/2, the matrix elements for a transi t:i.ons 

are in the ratio of 1~.f3, resulting in Eq. (68) vrith p
2
jp

1
J3. 'I'he 

familiar form o:f - ¥sinl\. is not, reproduced for laJ:·ger J and J'. It is 

curious that for J or J'=~· or 3/2 the analysis holds for :rr transitions, 

but not for a tr·ansitions. If a circularly polarized light pulse cn:ters 

such a rr..cdiun1 the result may be that the system vrill be unstable against 

the formation of linearly polarized 2:rr h.s. pulses. 

For large J, J', the results degenerate 1nto the classically derived 

formulee. Specifically for large J=J'+l in the presence of n transitions, 

or for large J=J' and in the presence of a transitions, Eq. (69) results; 

and for large J=J'~l in the presence of a transitions, or for J=J' in 

the presence of :rr transitions, Eq. (70) results. It must be emphasized that 

along with J must also be included the effect of hyperfine interactions, 

unless the resultant hyperfine splitting is .characterized by an energy 

<< h/T. If a magnetic or electric field is applied to remove the degeneracies 

in the above problem, the results are unchanged providing that the frequency 

splitting of the degeneracies is small compared to the inverse pulse width 

-1 -1 
~ both and the inverse Doppler linewidth ~ T~ 

.. · 



IV. F.Jt'FSC'l'S OF HEiii.XATION 'l'HlES OH PUJ.SE TRM~SlUSSION 

'l'he effcctc of weak damping upon the plane Have 2rr h. s. pulse 
. 

are now as~.esecd for the condition .T /'1'2 << 1. It will be shown that 

the pulse energy decoys lincorly with dist~mcc, the pulse area dcvio.tcz 

to a. value slightly bclovr 2rr, and the pulse delay time can deviate 

considerably from the previously derived value. 

Pulse Energy __ Dsmpin~ 

\-lith the pulse euergy per cm
2 

defined by Eq. (41), integration of 

Eq. (22), and use of Eqs. (24), {25), and (2q), leads to the resulting 

expr~ssion of energy conservation: 

[Vl(~,z,t)- W (2.w)] 
---T- --

0 
g(LW)d(,.w). 

. 1 

The time t is defined after the light pulse has decayed to zero. The 
0 

first term represents the residual energy stored. in the t'w -level system; 

whereas the second term represents the energy that was taken fromthe light 

pulse and temporariJ.y stored in the system, but wni ch he.s dec&y ed by a T 
1 

relaxation process (e.g. spontaneous emission). 

To assess the pulse energy decay behaviour vrith T
1 

and rrz finite, 

· 2 2 2w2 2 
it is convenient to consider the modified. form of u +v + L 2 = H

0
, a consequence 

' w 
of' Eq. (lB~when relaxation processes are introduced. Upon multiplying 

Eqs. (2h), (25), a.nd (26) by u, v, and W, respectively, adding and 

performing a time inteeratjon, then 



tt
2 

2( 2 2 w-vJ /~J,z,t) + u (t-.w,z,t) + v {t~J,z,t) 

At t ~= cc, u, v, and H will have relaxed by damping to their 

equilibriLLl'Jl values U=V=O and H=H , respecti veJ.y, which they had at t 
. 0 

Therefore, Eq. {73) implies that 

2 2 . 

J
oodt'_r (e:~,z,t'_)_+v_{_6W __ ,z_,_t_'_) + K2 H(t-w,z,t')[I-T{L-w,z,t') - vlo]}::: o. 

-~ l- T' IJl T 
2 1 

In Eq. (72), vre may choose t anytime after the pulse has subsid.ed at a 
0 

given position z. ~'he domina'1t contributlon in Eq. (72) is then the 

integral for t
0 

>> T
1

• However, since Vl{t
0

) - W
0

- exp(-t/T
1

), the su.'ll 

of the t•..ro integrals mv.st be independent of t . Having chosen t >> T
1

, 
0 .o 

only the second integral need be considered. Using Eq. (74), Eq. (72) 

reduces to 

2 
dT- - _2_1+~ -r-oo , r(vl(~,z,t)-Ho] 
dz - Ni'l.W -oo diJ!(~)a6Wl T

1 

( 2 . 2 2} ~-) [u(LW,z,t) + v(LWzz,t) '] 
+ 2 'I'' • 

K 2 

This formula is independent of the approximations T << T
1

,T2, and is true 

for pulses "Which are not necessarily 2rc h.s. pulses. Upon traveline; 

throut_;h the slir.;htly lossy medium, an electric field pulse which deviates 

(73),. 

(74) 

(75) 



from the ideal 2n h.s. fonn, only because T
1 

and T2 are finite, w:ill 

induce a polarization for vrhich the .above formula can be evalunted to 

first order in T /T2. vle may for example vrri te u = u( s) sin( cp/2) + 61, 

where u(s) is the coefficient of sin(cp/2) in Eq. (52), and 6u is a 

small correction of order T/T2· The integration over u
2 

in Eq. (75) 

will yield terms at least of the order ( T /T2)
2 

from the integr<:md 

tenns (6u)u(s)sin(~/2)/T2 and (Lu)
2

. Since only the first order cor-

rection is desired these may be dropped and vc mn.y replace u in Eq. 

(75) by u(s)siny/2. Similarly v and VI may be replaced by the zero 

order solutions given by Eqs. (53) and (54). Then after performing the 

time integrations i!l Eq. (75) we obtain 

ctT - 4N""r [foog(t:w)d(6w) (~) (! -! ) foo g(t:w)d(~) J 
dz = u.v'T . 2 2 + · 3 T T' 2 2 2 ' 

-oo J,. +W T 1 f . -oo ( 1 +~J T ) 

For the extremely narrow line case, the spectral distribution may be 

defined as a delta function cL = oo, no inhomogeneous broadening) 
.L2 . 

g(6L-J) = 5(~>), and Eq. (76) becomes 

since 

by letting C( t) = 5._sech(~) in Eq. ( 41). For the inhomogeneous broad 
KT T 

line case, 13(!.:i•>) is constant over th.~ rcsion of excitation and 

(76) 

(77) 

(78) 



'4 ) (1 2 ) ~~ -- - ( ; Nh wg( o) T + T' . 
1 2 

The pulse energy loss rate expressed by Eq. (79) is plausibly expressed as the 

product of tl'\e number of quanta Nhmr~/ T absorbed from the pulse and given back 

to it, the damping rate l/T
1 

+ 2/T2, and the time T. We must keep in mind that 

Eqs. (77) and (79) are valid only forT<< T2, T
1

• 

If several 2n h.s. pulses are propagating through a slightly damped medium, 

the above formulae apply to each of the individual pulses. Situations may arise 

in which the number of 2n h.s. pulses is so large, that the additive effect of 

preceeding pulses cannot be ignored. Imagine a train of n2n h.s. pulses, and 

suppose that T
1 

is much longer than the total time required for the train of 

pulses to pass a point z. T2, however, still is required to be much longer 

than an individual pulse width, but no restrictions need necessarily be 

placed upon the time span of the total train as compared with T2. 

(79) 

Under such conditions, the first several of the train of 2n h.s. pulses lose 

energy as dictated by Eq. (76), whereas another 2nh.s. pulse loses energy as 

dictated by an equation similar to Eq. (76), but with g(6m) appropriately 

modified to take into account the change in spectral population due to the 

action of all preceeding pulses. The first pulses in the train each therefore 

lose more energy than the trailing pulses. Since the velocity of a 2n h.s. pulse 

increases with its energy, and also increases as g(6m) decreases (Eq. (56)), the 

trailing pulses will tend to overtake the first pulses in the train. How 

pulse splitting effects, illustrated in Fig. (7), counteracts this tendency for 

pulses of similar initial time widths to converge is not yet known. 
I 

Effect of Relaxation upon Pulse Delay 

The effect of damping upon the pulse delay time can be calculated on 

the basis of assumptions used for pulse energy damping. Define the delay time 
z 

as td = J vCz), replacing -~-/in Eq. ( 42), where we assume V = V ( z) is a slowly 
0 z ~ 

' 1 a-r(z) dtd 
varying function of z: and let ~ = 

2 
=---for a 2n h.s. pulse. Therefore, v,z, dz 

... 



using T expressed by Eq. (78), and~~ = ~id v(!) together with Eq. (79) and the 

definition of a (Eq. (36)), we obtain 

1 
1.rhere T = 

e 
the result 

_!T 
T ' e 

(1) (~ + 2 ~) and -r(z) << Te. The form of Eq. (80) implies that it is 

of a first order correction perturbation evaluation. 
-t /T 

For a given delay 

(80) 

time td, Eq. (80) states that T(td) = T(td=O)e d e, where the 2 :n h. s. output pulse 

energy is evaluated at different distances z, corresponding to a given delay time td. 

If we define td = T when\z = L, the length of the medium, and if we assume td=O at 

z=O, then 

T 
2 I 1 

L == a:J c ,-c t ) )dt d. 
0 d 

Since -rT is constant from Eq. (78), then from Eq. (80), -r(td) 

(81) 

td/Te 
= ,- e , where ,-

o 0 

is the input pulse width. Finally, Eq. (81) expresses 

T •- Telog(l- ~;~ (82) 

as the total delay time. From Eq. (81), the final pulse width (z=L) becomes 

-r(L) = ,- /(1 - aL-r /2T ). The net delay may be therefore written as 
o o e 

T = T log( -r/ ,- ) . ( 83) 
e · o 

From the limitation that ,- < T , the maximum expected delay time for parallel 
e 

beam conditions may be estimated to be about T log(T /-r ). 
e e o 

Stable Pulse Propagation Solution with Damping 

Loss of pulse energy in a passive homogeneously broadened medium caused by 

T2 and T
1 

damping can be compensated by focusing the light beam down the rod. 

·Formally this is accomplished by adding a term aE to the right side of Eq. (43), 

which will then cancel out an expected loss term from the integral over 

v(6ro,z,t). The constant a is ideally determined by parameters consistent with 

the pulse solutions to the optical Bloch equations. In practice deviations 

of the focusing parameter from 

47 



C1 ·vrlll occur over suffic:i.ently long distances z, so that the balance 

provided by Ci~ is actua.lJy unstable, ond the pulse will eventually 

dec.:rease or increase because of the inst9.bili ty. ·Assuming the ideal 

balance condition reasonably applicable to a short sample rod, 

48 

we consider a soluble case where the • 

sample is pureJ.y homogeneously broadened by l/T2_ (v1ith 1/~ == 0 and 

l/T
1 

= 0), and optical exdtation is at exact resonance. 

Solutions which satisfy Eq. (43) (vrith crC added to it) and Eqs. 

{24), (25), and (26) are found on the basis that the stable pulse with 

area e :: 2tr is expressed by 

f:, 2 2 1 
(..(z,t) = ;Tsin[cp(z,t)] = it"T'Gec~( t- z/Vd), 

and 

The inverse pulse velocity is nov 

where ~d is given in terms of tbe actual pulse width ~ by: 

and the focusing parameter is given by C1 ={l/Vd-n/c)/3T2_. The Bloch 

equation solutions on resonance are 

u = 0 

(84) 

(85) 

(86) 

.• 

(88) 



r; K 
·and W =- -

(),) 

where cp(t,z) 

[ 4T · ~ T
2 

coscp + 3T' cos 2 + ~ 
2 3T~ 

is given by Eq. ( 30) •. 

.... · . ....-:: 

These solutions apply as well to the d,ynnmics of the polarization :i.n a 

cavity, as given by J. Bloom
6 

relative to a radiation dampinc problem 

in nuclec:.r induction. He hav~;: not solved the above case when the line 

is also inhomoeeneously broadened(~ finite). 

Effect of Relaxation Upon Pulse Area ... 

In the limit that T2 and T 
1 

are very short compared to pulse t-ridth 

T, ordinary rate equations would apply to give a "hole burning" or non-

linear saturation solution to the pulse propagation problen. The inter-

mediate case of T - T2 has so far been analytically intrac t.able, but a.n 

explicit small correction to the quasi-steady state hyperbolic secant· 

(89) 

solution can be made in the case of T < T2, T
1 

by a slight alt€ration of the 

2;r condition. The "2n-" area condition for the h.s. pulse is altered to 

first order and is diminished slightly to the value (see Appendix B) . 

(90) 

Appendix B presents a generalized form of the area theorem which includes 

demping. It is not valid simply to replace g( 0) by T2/ JC in a, which occurs 

in the area theorem expressed by Eq. (36), if homogeneous broadening is 

the sole cause of the line vidth. 



V. EFFECT OF DOPPLER VF;LOCI'.rY SHJF•rs IN GASES 

For gaseous particles, which at rect ,.rould be at exact electric 

dipole resonance Hith the applied optical frequ.ency w, a Doppler fre-

quency shift 

6w = w - w = kv 
0 z (91) 

is present for those dipoles moving with velocity v along the propaga.tion 
z 

direction z of the light pulse. In this section it is sho~1 that most of 

the properties of self-induced transparency which have been discussed will 

apply to resonant gases, except that the pulse velocity and area underco 

a transformation when the spectral line is excited off-resonance. This 

transformation constitutes the principle difference bet',reen the resommce 

response of dipoles fixed in a solid (e.g. ruby
10

) and dipoles movj.ng iz:!. 

a gas (e.g. sulfur hexafluoride
12

). In the ga.s the dipoles cen move in the 

z direction through a slowly moving pulse envelope C( z, t) (of lovr pulse 

velocity V) in e time c~uparable to the pulse width T. 

Consider an atom which 

interacts with the electric 

is originally at position z at t=O, which 
0 

field E(z +v t,t)==((z +v t,t)exp[i(w-kv )t-kz ], 
0 z 0 z z 0 

where z = z + v t 
0 z 

and the phase term p(z) in Eq. (19) is absorbed into 

the modulus {. making it e potentially complex quantity. Relaxation by 

collision is neglected by assuming that T is short compared to the time 

bet,.;een collisions. We first show that the motion of the dipoles ha.s negli­

gible effect in the evaluation of{. when the spectral line is excited at 

the peak of its resonance. For an inhomogeneously broadened Doppler 

spectral frequency width greater than the inverse pulse width 1/T, only 

those atcms are excited Hhich have a ranee of Doppler velocities extending 

from v =0 to v "' + £_ . Therefore, the dipoles can move at most through a 
Z Z - WT 
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distance v T~A. durinc a pulse vidth t:i.me T. Since the spatial extension along the 
z 



~ -1 
·z direcUon of a transparency type pulse is approxinwtely ex , and 

because the condition a:-l >> A. holds in order to avoid strong coherent 

bacJ~scatterins, the smAll displEH.:cment of atoms through a distunce A. wil;L 

not impose nny significant variation upon the field modulus C (z +V t,t). 
0 z 

The Hamiltoni<m for a particle dipole of the gaseous system should 

be written as 

-
fi2_2 

):{ = ):{ - p · E( z, t) 2rriv-, 
o , .. o 

where the ldnetic energy operator of the particle of mass m is added to 

the static Hamiltonian, Eg. (3)~ and we define z = z + v t, r the center 
0 z ,.., 

(92) 

of particle mass m, IilV = fik , and v the particle vector velocity. Neglir,ible 
..... m ,.., 

particle recoil effects may be ignored, and the dipole two leve~ wave 

function 'Ill is therefore separable from the particle 

latter is assigned a kinetic phase factor expi(lc ·r 
-m-

vn::ve function. The 

fik
2

t 
-

2
m-), but this 

factor has no effect upon the optical pulse resonance behaviour of the tvro 

level system. 

Now define an observer at rest ~fith respect to the dipole in a 

Galilean frame of reference moving with velocity V , and write Z=Z =Z +V t, 
g .e g g 

where z 
.e 

and z 
g 

are respectively laboratory and Galilean coordinates, 

and. V =V for the sint;le particle. The laboratory Hamiltonian Eq. (92) 
g z 

will satisfy the time dependent Schroedinger equation when the respective 

laboratory a.nd Galilean frorue vrave function \jr J, a.nd vg are related by the 

transformation 

oy {z ,t) 
g g 

ch 
g 

(93) 
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Tne density matrices p 0 (z,t) and p (z ,t) are related to one another in 
b g. g 

the se"'''e ,ray. To evaluate the spatial derivative in Eq. (93L let us 

inspect the electric fields E(z ,t) and E(z +L\z,t) 1,rhich interact 
. g g 

resp-2ctively l-rith tw-o dipoles havine the zame Doppler fr~quency shift C:JJJ 

or velocity V , but are sep3rated by a small distance t:;z. It was pointed 
g 

out earlier that the greatest distance an excited dipole \-rould travel 

durin0 the pulse t:L'Ue T is of the order of }..., so that the scrJaration 6z 

~ -1 
UJ.""1der consideration is e;ovcrncd by the: relation }... "' 6z << a OnE· sees 

therefore tl-w.t any voriation \-lith tc-z of the field modulus C(z ,t) ex}Jeri­
g 

enced by dipoles, movine; tmvard or m:ay from position z at •rhich the 
g 

pulse is defined, may be neglected. The only difference in the value of 

the electric field at the .positions separated by 6z is imposed by the 

phase difference of the light taking plc:ce over a wave length. Therefore, 

with the co~dition that a~<< 1, the relationshp E(~g+6z,t) = E(zg,t-67../c) 

holds, wh~ch signifies that the two dipoles have experienced th~ same 
I 
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history of excitation by the field except for a time delay t.z/c. Therefore 

the relation 

'f (z + 6z,t) 
g g 

will apply, and a Taylor expansion of both sides of Eq• (94) yields 

1 
o't' ( z , t) 

g g 
- c <5t 

to order a}. << 1. Use of Eq. (95) in Eq. {93) allmrs the tine dependent 

Schroedinc;er eCJ_uation to be vritten as 

(94) 

(95) 
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a • 

H1~ ;,< z, t )o·:Hi( J.+V g/c Hr g( zg' t ):::;}! _eC z, t ),!, p,{ z, t )=( l+V g/ c )l!g( z g' t )~~g( z g' t) 

ll'hcre }{ (z,t) is g-iven b;>' Eq. (3)with ID
0 

= c.u. Witn 1/lj}z,t) :: 1/lg(zg,t), therefore 
f. 

.. 
i11~ _gC z, t) ·"' H _/ z;, t) 1ft _e( z, t) ( 96) 

where 'J{ ( z., t} = ( 1 + V /c: )li ( z , t). The f;mall term in V /c << J. may be dropp:::J 
£ g . g ~ g 

us a faetor oi' the p • E term. :in the GaHlean Hum:iltonian Jl (z ~t)l!. so that 
,..;;..~ _,.... g g , 

Hiz,t) is g.tven by Eq. (3) wlth ID 0 =~l+Ve/c). Subscgur~nt steps in the anoJ.ysir; 1bJlo:.ir:: 

Eq. ( 3) >rill. therefore include in a natural_ '-ray the :i.nhomo;:;eneous broaden·· 

ing cO!ltributcd by the lJ()pp.ter frcqur:mcy shift DJ;.J = kV g' \vhfch follcMs 
v. J~ 

by virture of the term ~c--~ intrccluced in Eq. (96). 

The spectral integration in gq, (21) applies vd.th g(!.iW) novr to be 

defined e.s the normalized 1·1axwell-Boltzman velocity distribution function, 

and v ::.: V pertains to any one of the veloeities in the Doppler f>pectrwn. 
z g 

'l'he elccLrie f1eld E acts at position 7. upon dipoles with a r<mge of 

velocities v 1ihich started from different posi.tions z at t = o. If the 
z g 

phase factor exp].[(w-·1\v )t - kz ] is chosen ill Eq. (21), integration over 
7. g 

a dist:cibution of positions z -vrould be cancelled by integration over 
g 

velocities v contained in this phase factor. This property of cancella-
z . 

tion is expresned by retaining the equivalent phase factor exp:i.( wt-kz), 

where z is a constant of the integratjon. HoHcver, the polarization 

u + i v still remaj.ns as a function of t:w == kv , to be integrated over 
z 

g(&<>), nmv defined as the Naxwell-Boltz.ma.n distribution of velocities. 

'I'he area theorem given by Eq. ( 36) remains u.YJ.affected by Doppler frequency 

shifts, or by OJ!.)' effects these may have on the p.1lse shapes themselves. 

The area theorem derives from those dipoles ba.vinG zero velocity (tw:-:.0) 

in the Holt<·.mRn (.1istrn1ution, end jt is only th.::se dipoles which con-

tribute to the }h.1lariz.atJon v(O,z,t). 



Althou;;h the analysis above is not generally applicable to the 

case where g(L'1-:J) is asyr;:,;netrically excited off-resonance, it can be 

a.pplied to the an&.lysis of the 2ll h. s. pulse solution expressed earlier 

by Eq. (42). In this case the conditions given by Eq. (94) G;:lu (95) are 

again valid if the problem is ena1yzed in a reference frame m;:;vine; with 

a velocity V chosen to coincide l-Tith the velocity of dipoles at exact 
g 

resonance with the applied pulse. RelGtive to this moving fraae the pulse 

may be considered to excite a sufficiently small band of Dopp.le:r broadened 

frequencies so thc.t lv g - vziT << a-1, 

Let the p~ak of the· distribution g(l1..J) 

-1 
't-rhich is a consequence of a >> A.. 

be excited off-resonance by an 

amount n. The resonant dipol~~ move with an average laboratory velocity. 

Tne analysis of the off-resonance 

excitation of an inhor.10geneous Doppler broadened system, which leads to 

a 2:rr h. s. solution of the form of Eq. (42), now requires that. vz be re­

placed by v + V in Eq. (91). 
z g 

The pulse velocity Vp£ in the labore.tory frame is nm-1 defined as 

= v + v ' pg g 

. 
where V is the pulse velocity in the Galilean frmile. 'E11e 2:rr h. s. 

pg 

field p~lce in the Ga.lileo.n frame is expressed as 

=( 2 ''"ecr-
0· (t jv )j. 

R-r·_J .., f' - z g pe ' 
g g 

{97) 

(99) 



with T defin~d as the Galileo.n frame pulse vlJ.clth, and v == 2/(cxr ) . 
g pg g 

The ob::.erved pulse in the laboratory: frame is obtained from Eq. (99) 

by substituting z = z - V t so that 
g g 

C(z,t) = ( 
2

V:e;'L )sech[! ( t 
\in/ p£ T £ . 

-/·->], 
pi, 

(100) 

T £ == T gvp:./Vp£ is the laboratory pulse width, and Vp.£ :::; 2/(a:r ;) . 

A curious property arises if we imagine that the pulse givel! by Eq. 

(100) excites the gas. Let the gas be given a. real flmr velocity V in 
g 

the negative z direction so that vp£ - v 
pg 

• and Vp£ becanes negative, as seen from Eq. 

- lv I g 

(98). 

passes through .zero 

At V =0 the pulse will 
p.e 

momentarD.y stop, suspended in space, and acquire an "infinite width". 

As Vp£ becomes negative tlle pulse moves backwards tmvard the entrance 

window fro:n ,.,hich it came. 

At t == «> the laboratory frame pulse area is A.e( oo) = 2n(V jv ) , which 
. pg p£ 

is not equal to A (co) = 2n for the pulse in the GaJ5lean frame. However, 
g 

the tlppinc:; angle2. qJ for the polarization P(O,z,t) are the s<Jme in both 
"' 

frames. The tipping angle is given by the pulse area in the frame moving 

at the velocity of exactly resonant atoms 

+oo 

e " KI (_(zg,t)dt " 2n 

-00 

Equally well we may find e in the laboratory frame by calculating 

the time integral of the electric field modulus at the site of a moving 

atom: 

A = KJ +oo e( z +V t' t )dt =I +oo ~v ~g sech ; ( t - v z - ~ g t), dt. 
-oo L g _oo ~ p~ ~ p£ p£ 

This quantity is equal to (l- Vg/VpL)-
1

A£(oo), which, in view of Eq. (98), 

reduces to G = 2n. The addition k' = d~/oz to the propagation vector is 

unchanged by the transformation. 
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VI • .Al>IT.'LHTED rt PULSE SOLUTION HITH NO D!W.LPING 

A nurn.ber of authors
2
3 have investigated the problem of a propag<:,Ung 

amplified light pulse. Hopf and Scully
24

, in particular, have trea.ted the 

problem for on inho:nogeneously bro::J.dened line. An analytic description of a 

continually ampH:f).ed pulse is difficult to obtain, but we can present one 

011 the basis thot the pulse leading edge is nearly infinitely steep, and 

that it travels esscntiullj at velod ty c/T). As previously noted the area 

theorem (Eq. (38)) states that a pulse in an amplifying two level system evolves 

to"vTard a 1t pulse. Althout:h the area is fixed at ri the pulse width T shortens 

with increasing distance as long as T >> '11, where T'~ is the inverse inhomo­

with 
e;eneous line width. The pulse energy therefore must increa.se"'Z at a rate wh:i.ch 

would slacken as the pulse shortens to the point where T "' T~. The pulse sbape 

would correspond.ingly undergo a radical change. Vle present a solutj on for the 

pul<;e shape in the range where T >> T~ -- a pulse function vThich is essentially 

invariant for 1:111 z and satisfies the combined Maxwell a.nd optical Bloch equationr .. 

If the lcadi!'.g edge of the pulse is defined analytically it would be im-

possible to obtain an overall pulse function which would describe both the 

linearly amplified leading edge, governed by the po•rer gain factor'.... exp(a), 

a.nd the main profile of the pulse of width T which follo·ws at a lesser gain. 

The smaller gain for the lagging portion of the pulse is expressed by the 

factor F in Eq. (40), which is less than unity. The sharp front of the pulse 

will be given a finite rise time short compared to T, but ccmparable to or 

long compared to ~· These restrictions on the rise time will allow the pulse 

edge to be described as almost infinitely sharp. 'l'he pulse peak at the leading 

edge will be given an amplificAtion"" exp(o:z/2), while the :rr area of the de-

clining pulse envelope which follOi·rS is m3.intained by requirinG that its pulse 

wjdth decrease as""' exp( -az/2). The resulting pulse ~.rill have an enere;y gain 



"' exp(.o:zjr;). The f:;ban' (;d.c;e 011 the _puJ sc \rill be formed artcl Hill per-

sist by the action of E;uturnble filters placed within the amplifying 

med:i.wn :i.n order to stabil:lze H. 

A pulse which ne .. U sfie:::; the fJ.bove lim:itine behaviour is the "half-

hyperbolic secrmt nolutjon", where the lending edge travels along the line 

t = nz/c: 

tcz,t) 
_ 0~ for t - 117/c < 0 

-·l 2 { 1 TlZ} ·-c::yGCdl --r--.... (t - .:..t::.) 
KT ZJ T z) C 

and tlK :inverse pulse \,'i .. dth j_s g:i ven by 

-1( ) -1( O) · (az) T Z == T Z:::. exp -;;·- . 
~ 

for t - !0. > 0, 
c 

The corresponding solutions to J~gs. (2~-), (25), and (26) a.re nm-1 

for t > nz/c respectively 

v = Npf
2

[l-.0>•lT
2

)sincp- llt~ 2 T 2 tanh(t/T)cos~tt 

- 2!'W3T3£hJL\~0t + 2LWYrcoscpsin6ait], 

+ 26Cl>'f sin L:lc.t.n; s incp J 

if t above is replaced by t-nz/c, fc= f(L:lco) is given by Eq. 

cp -- 4 tan- 1 {eu/~). F T- t · 1' h or a ~ren z1an 1ne s ape, 

( T-~/n) 
g(tit.>) = --·---~, and therefore 

l+6J.() '1'~ J 

(51); and 

(101) 

(102) 

(103) 

(105) 

'If 



f 00 

g( !::J.;J) v( L'.JJ) 6.( l:J.ll) ::: -. J'JpT-~Kc( 1 
-co 

t 2Hp T2·X· 

T t~nh *) + --,. -- exp (- t/1'~ <}l 

(106) 

It can noH be verified that Eq. (22) is sa.tisf.ied, except for the negli-

gible jast t'.;o terms in Eq. (1C6) abov~. Fig. (8) shovrs a plot of the 

change vrith distcmce of c. pulse shape injected at 2. = 0. It 

is assumed tbat a saturable filter inuncdiately absorbs enough of the lead-

ing ed[;c of the pulre to fonn a slw.rr) leading edc;e vrhich bee; ins to grmr; 

ther.::fol'e,- the pulse evolves into a half-hyperbolic secant 1r pu1re shape. 

The beginning oscillations of the pulse a.re dra1m in qualitDtiveJ.y. Only 

after the pulse le2cHnc sharp edge develops and the oscillations subside 

does the amplified half 2tr h.s. puJ.se conform to the analysis given above. 

VII. EFFECT OF 1'RANSPf',RENCY ON PHOTON ECHOES 

The area theore:m giv-::m by Eq. (38) specifies that a g:i.ven input area 

. 
9

0 
evolves into a final area e(z) at positj.on z, but it.cannot preclict 

a pho".-.on echo 
7 

since the theorem docs not give any information about pulse 

shape. Nevertheless, in an extended mediu.'ll some important properties of 

the photon echo can be deduced from the theorem; namely, it can describe 

some aspects of the echo pulse area and support the justificaUon that 

the echo peak will not necessarily occur at times 2T at the output positior> 
s 

z, where T is the separation time bet•reen input pulses at z = 0. Suppose 
s 

a 1f./2 - 1f. pulse sequence, corresponding to input pulses e 
1 

( 0) and e
2 

( 0), 

is injected at z = 0, where T is sufficiently large so that the t•ro pulses 
s 

do not overlap. The areo. theorem requires that the 1r.j2 pulse will decay 

> -1 
to zero for z - a This condition applied in the gaseous SF

6 
photon 

5
,, 

. ~' 
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~ . 25 
'echo experiment of Patel and Slusher • Since the total injected area 

is e
1 

(0) + e
2
(o). = 3;c/2, the final ?rea in the output becomes 21C=G/z)·1·0e(z), 

where e (z) is the sum of areas of possible multiple echoes following the 
e 

e2{z) pulse. The most important first echo follmring the e2{z) pulse will 

temd to be delayed and •rill occur at a time > 2T ·because the aggregate of 
s 

all pulses will broaden as the sura of pulse areas increase together tOivard 

2Jr. Of course in the output the predominant echo follovling the e
2

( z) pulse 

may have an amplitude greater than the first e
1

{z) pulse since the latter 

tends to diminish touard zero amplitude. 

For any sample thicY~ess, the dependence of the echo area e is ob­
e 

tained from Eq. (38) as 

where 

de
1

{z) 
is the solution of dz = - (o:/2) sine

1 
( z); and 

de 2{z) [ -j 
is the solution of dz = - ~cose 1 (z) sine2{z). The effective "ex" 

for the second e
2 

pulse is given as o:cose
1
(z), which is proportional to 

the number of on-resonance d:ipoles that remain ip the ground state after 

the e
1 

pulse has subs:ided. Therefore Eq. (lo8) gives 

(107) 

(108} 
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-- n -vsint11 (z) "- ~2(0))\t 
e2(z) - 2ton lsinf) (o) va~ 2 'f For smoll z, the small echo area is e;ivcn 

1 

by ee(z) = ~sine 1 (0)[l-cose 2 (o)]z, \Thich is a maximum for e
1

(o) = 90° and 

e
2

( 0) = 180°, the S8Jlle optimtun condition 1·Thich applies for obtaining a 

maximtun spin echo
8 

signal. 

VIII. EXPERIMENTAL RESULTS 

The preceding analysis is based upon tvro important assumptions: 

(1) the propagating light pulse contains no frequency modulation, and 

(2) the pulse is described in terms of a plane wave. Computer calculations 

contain these ass1~~ptions and reveal that a 2n h.s. pulse continues to 

propagate. Yet the basic character of such a pulse shows up in actual 

experiment ,.;here the pulse input is undoubtedly frequency modulated, and 

the pulse is not in the form of a plane wave. The observed self-induced 
\ 

transparency pulse appears to stabilize against frequency modulation, and 

the pulse persists in spite of non-plane ,.;ave conditions. In the previous 

analysis small deviations from ideal assumptions do introduce small 

losses, but the deviation which is most serious is any departure from the 

plane wave condition. Transverse mode effects (as introduced by Eqs. (64) 

and (65)) or diffraction effects cause strong deviations \Thich are not 

completely understood. Transverse deviations in beam behaviour will grovT 

seriously with path distances exceeding a few Beer absorption lenr;ths. 

The pu~pose of our experiments with ruby is to check how far the 

experimental results conform to the phenomenological predictions of the 

plane wave transparency model, and to set forth those observed pulse 

characteristics vrhich are in disae;ree!;Lent 1·Tith the predicHons. Fig. (9) 

indicates a porticulnr experimental arranccm0nt for measurine; pulse de-

lays, but appHes as vrell to a number of other measurements. A Q-switched 

liquid nitrogen-cooled. laser oscillator is follm-red by a ruby laser 



amplifier '~>Thich f:elccts and amplifies the plane polarized E(2E) ~ ~A 2 (,:!:3/2) 

output laser line, as indicated in .the energy level diagram of of Fig. 

(lOa). The laser amplifjer scheme is shmm in Fig. (11). By thermal 

tunj.ng, the passive target ruby sample cooled at liquid helium tempera-

ture to reduce phonon relaxation presents the 4A
2
(!:!) (-) E(2E) trans-

ition whj.ch is tuned to the driving laser pulse. The target sample 

(0.05% Cr+3 in Al
2
o

3
) is 0° c axis oriented, of } in. diameter," and 2 ancl 3/4 

in. length along the z axis. The inpilt pulse to the amplifier was of 

multimode charscter longitudinally, but •..ras of a selec:ted single trans­

verse mode. Defocusing of the ,trL>nr.verse beam profile by abberations 

in the amplifier ruby rod was compensated by converging the amplifier 

input so that \vhen the amplifier output was recollimated ("' f - 25 system) 

an image of the amplifier rod was_f.ormed ne?.r the sample. Peak outputs 

bebreen 1 and 10 mega·vatts were available. 

For non-linear transmission measurements of deviations from Beer's 

law, the simplest possible arrangement of source, sample, and detector 

vas used. Corning glass filters, checked for linearity, were put behind 

and in front of the sample. The output light vas photographed with Polaroid 

Type 47 film at the image plane of the exit end of the sample replacing the 

mirror in Fig. (9) . 

The simplest demonstration of non-linear tr&nsmis.sion 

is, to move attenuators from behind the sample to in front of 'the sample, 

while keeping the total filter attenuation constant. If the s~ple re­

sponds linearly, then the plB.cemcnt of attenuators •.rould make no differ­

ence in the total transmission. If the sample transmits non-linearly, then 

·more enere;y should be transmitted with attenuators behind the sample. Fie;s. 

(12a) and (l2b) show reproductions of the photographed transmitted output, 
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!\ 

with the input and output attenu~tions indicated. Fig. (12a) resulted 

from 11.:~.e of u ·multi-tr«nc·:ver::,c mode_ laser, and Fit~· (l2b) involved. the 

use or a 1a ~>er OLl tJ_mt \>'i th trnnsvcrc,e mode control. Fl[i. ( 13) 

is a eraph of results obte:i.:ned by orJserving the amount of atts::nuatlon 

behind the sample necer.;;.;:-;ry for the film to be unexposed. Each error 

bar j_nclude~; fo'.l:c or fj_ve such measurements. The finite steps of attenua-

tors and fluctuatjon::; jn the transmission resulted in about a x2 resolution. 

d I 
2 

The vertical axis j_s more properly calle the peak encrsv ern . 

The non-1ine<n· tram·::ml.ssion results are in agreement w:ith the j_dea of 

lmv loss nclf-·induced tran:::.porency propa13atine; 1m1r:.es, but coulcl aJ<;o be 

1 • d h J 1 1- • 
4 

h 11 h ) b • It T.l' tl • d exp aJ.ne y ol. 1er w::c1J<>nJ.Sms sue as o .. c urnJ.n~; . y 1 1 1ncreasc 

accur;::i(::y of theory and experiment, such measurements can perhops be more 

ind:i.cEJ ti ve of what is h<:ippening~ but in the experiments here, there are 

other more stringent and conclusive tests available to reveal the real 

nature of non-b.ncar trrmsr:d.ssion. The self-induced transparency effect 

is lmiq<J.dy distine;u:i shed. by the observation of large pulse time delay and 

pulse reshaping effects. By a ''time dele.y" it is not meant that the pulse 

peak merely shifts~ but instead that if I. (t) and 
l~ 

. t •t• L' ] ·~ I t(t + ~) output Jn ens1 ·lcS respec~1ve y, ~1en 
ou c 

Iout(t) are 

> I. ( t) is 
ln 

input and 

observed 

_to be the case for some Ume t, whieh would not be exhib:i.ted in the case 

of "hole burnine;". Here L is the sample length. 'fhi s ine qnali ty implies 

that energy has been stored temporarily in the dipole system, and then 

returned to the field pulse. The large delay time L/V which occurs for 

on-resonnnce trans1D.rency signlfies that the geometric length of the pulse 

-1 
in the r.,cdium is of the order of VT "' a for c >> ·v, and the medit.u-n 



·~. 
'l'he initial delay observaU.ons used a more prjnli.tive form of the 

laser th~m an improved version to qe described lateT. There vw.s no trans-

verse 1:1odc control, mJd the ou.tput pulse uent directly throuch the Kerr 

Cell into the samplE! as nho·.m in Fig. (9). Detectors used Here an S-20HT 

phototubc and a Ph:i.lco semiconductor photodiode. The output from the 

;:;ample vras given an extra time delay by passage through thirty feet l)efore 

strikinc; the phototube. 'J'he T;tonitor bea.m excited the phototube first in 

time. Vfith the use of a semiconductor detector the sequence was reversed. 

The semiconductor detector vras placed in a plane which c,oincided vith the 

;image of the output surface of the sample formed by a po:3i ti ve lens 

{nwe;nif:ication xl~). 

The non-lineo.r tranmn:tssion measurements indicated a transmission 

loss of about 75%· 'l'he largest pulse delay should occur vrhen the pulse 

width T('z) is large, comparable to T2, and if it is held opproximately 

constont in distance. Slight convergence of the incident Jj.gllt beam 

2 
allows a nearly constant T(z) by increasj_ng the beam enere;y per em in order to 

compensa.te for beam losses. Therefore the net delay time would be given 

by aL -r/2, which j_s greater than the longe?t delay time"" T log(T /-r ), 
e e o 

given by Eq. (83), for a collimated~ 

This situation was arragned so timt the beam diamtere converged 

by a factor of about 2 l/2 through the length of the sample. Delay 

observations under these converging beam conditions are described in Ref. 10. 

Figs. (Jl~a) and (ll;b) illustrate examples of the first obr;ervations
10 

under 

parallel bcom ccndit:ionf; o:f pu}s.~ dc:lay and reshaping with the simplest ar-

rnngc1:1cnt in Fig (9) of ~;ource, srqnple, and detector. A semi-conductor de-

tector was used in the earlier converging beam investigations which 

detected a maximum delay of 



about Go nr;cc. L<Jter clelay observa.tions vrerc rr1ade -vlitll a nevr ruby lnscr-

amplifier system v1bich produced sho;rt:er j_nput pulses ("' l1 nscc s). 1-Ji t.h 

parallel bemn condi tionf;, del3y f, of cbout 10 nsec vere obs..;rved. 

2rc Pulse f.1easurcments 

'l'he d.clay m•::<:l.surcments, referring to Figs. (lite - g) output signals, 

were m.?. de \vi th a nevr arr<mgement shmrn. in Fig. ( 15) . The detector measured 

.the light Jntensity which went through a mask in the image plane of the 

output end o1' the sample, of which a 59 micron circle was brought into focus by 
an f-2 lens. 

With the Sc'ffiC nevr arrangement, the laser-<:nnplifj er output vo.s directed 

into the S<l!nple, and a filter which tronsm5tted only one sense of circular 

polarizat::i.on ,.,ras put betvreen the aperture stop above and a ITr S-20 photo-

tube.. '1\.,ro grovnd glass surfaces in front of the phototube, combined with 

careful positioning of the detector, rer.10ved. the possibilHy of serious 

dependence of sensitivity upon the orientaUon end position of the detector. 

Measu.rements of the pulr;e height and ha1f-vridth verc made of sample output 

pulses. Prior· to these mea.surements the phototube vas calibre:.. ted by ob-

serving the output current produced by a vreak incident incoherent light 

bearn which vras spectrally filtered ( 69lt0A - 200A wide band pC! ss filter). 

The input intensity was measured with a caliurated Epply thermopile. The 

calibration vras checked by measuring output currents produced by the photo-· 

tube when irradiated by a Q.-svritched laser pulse. The measurements -...rere 

compared with ballistic calorimeter measurements with agreement within 20%. 

The meesurements of the Epply thermopile '<rere chosen. The final calibra-
' 

tion vras estim:~.ted to be accurate to w:i thin 10/h and vas represented in 

terms of the vertical displacement of a 519 Oscilloscope trace, measuring 

71.5 watts/em. The time re:sulution of the ITT photocl.etector vras judged 

to be adequate for thr:sc measun::mc!1ts by virtue of the observed 0.5 nsec 



half-vridtb pulse response of the detector to a. mode locked Nd laser pulse. 

TJ.•ansm:i:::;r;i.on throur;h the various opt_ical elements wa.s calculated to be 

59. )jb. 'l'he effect of the sample end reflection was taken to be a trans-

mission loss of 7·5%· 

0 
Hith the sample temperature near 4.2 K a numbc;r of sample output 

pulses were recorded. Fig. {16) illustrates typical output sir;nals >rhich 

provide data for. the graph in Fig. {17). The graph plots pulse height vs. 

pulse 'iridth for pulses selected by the following criteria: the pulse 

hRd to have prcd seJ.y two points of infJ.ecU.on, one on the leadinG edge, 

one on the lar;e;inL:; edr;e. For example, the pulse in Fig. {16b) was acc-epted 

but a pulse shovn in Fie. (16a) 'rras not accepted. 2/ +3 The value of p r1 for Cr 

in ruby was computed fro:a the integral absorption cross-section data by Nelson 

26 ( . ) b 4 1 -4 2 and Sturge thelr TEl ble I to e 13. 3 x 0 cgs units. The effective 

dipole moment pin the measured quantity p
2/T) is not the isolated dipole 

1 - +3 
moment of hA

2
(.:!:,.2) <--'> E(2E) tran?ition in Cr , but is instead its shielded 

value. Use of this value is the equivalent of expressing the interacting 

field(: a.s the local field at the site of the dipole in the host mediu.rn 

Al
2
o

3
. Hi th this value of p

2 /T) the relation between peak pOi·Ter Sp in mega­

watts and the pulse '<ridth TRW (full width at half nwximum intensity) of a 

61.6 I 2 circularly polarized output 2n: h.s. pulse is Sp = 2~-IVl em , where THH 

THH 

is the number of nanoseconds which defines the full width of the observed pulse 

at half-maximum intensity. The pulses have a measured area always less than th~. ideal 2rc 

value, roughly between r. and 21£. The theoretical logari t:b.r:lic plot of S versus 
F 

TH\J is shoc,m in Fig. {17). It is also sic;nii'icant that no unique relrrtionship 

(17)' aJ.thou~)l the product of peak pulse hejghts over a broad 



rang<.: of valuer;, \·lith their correcponcline; pulse "W:idths, still yj.cld a 

re stri. cLed rr:mce of tJ rcas. 

\1jth:in the pla.nc \vnve model a nun1ber of causes can be invoked to 

account for deviation~; from the jdeal 2rc 1:1rea value. In ruby both the 

right and left ci rcul8.rJy polarized traveling vave s interact with Cr + 3 
the 

ions. Co::1sider) for exal:l}Jle ,... circularly polarized input pulse of a given 

sense of rotation (cr+), iihich is above the n area threshold conditioD. It 

will p3.rtially convert to the opposite sense of rotation (a-) because of 
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'Lirefringenc:e (the c axis of the ruby crystal deviates from the cylindricoJ. azj_s 

throughout its length by several degrees). The small pulse area associated vri th the a 

component will be bel0'\·7 the JT area threshold for self-induced transparency 

and be absorbed. This constitutes a loss mechanism vrhich drains energy 

avray from the a+ component vrhich ini tiall.y exhi bj_ts the transparency. In 

ruby additional corrrplicationr:. result :from the dynamic mJ.xing of magnetically 

dq;ener<Jte states of the Cr + 3 optical levels, where the mixing is caused 

by the lo12al magnetic fields of neighboring Al
27 

nuclear moments. ll.nother 

contribution to non-ideal 21c area behaviour is the fnct that plane •rave 

conditions did not :persist in view of the properties of pulse stripp}.ng 

and diffraction effects discu::.:sed previously. The lack of uniform pulse 

intensity profile) even for plane -vrave behaviour, is alr.o a contributing 

factor, as mentioned previousJy in regard to Eq. (62). 

The majcr cause of the consistent deviation of measured output pulses from the 2• area 

in Fig. (17) is the fact that the output pulses exist in the form 

of small fi1aments, smaller than indicated in Fig. (12). The a.perture stop 

areas used to calibrate the response of the detecting system \vere not in 

general completely covered by the output pulse cross-sectional profile areas. 

The filament areas ,.;ere less than the stop area, and sometimes a fraction 

of the filanent area would fall outside of the stop area boundary. An in-

spection of the situation would account for measured pulse-area angles 

less than 2n and for the deviation of the average slope of measured points 

in Fig. (17) avey frot'l the line slope in the case of 8 = 2n. 

t-iention should be made of some of the uncontrolled experimental aspects 

of the ruby laser source and srunple system. It was noticed that strain in­

duced birefr:i.n.:::;ence of the ruby sample at liquid helium temperatures was 



.. 

considerable in its influence upon the transparency effect. Hhen the 

strains ·Here reduced by mccbanical~y clamping the sample less tightly 

at the exit end, the transp3.rency threshold conditioil was increased. \·lith 

strains minimized as much as possible, the sBrnple output beam appeared to 

be quite uncollimated and the bearn came out in a. cone of about 5 to 10°. 

·At a minimum sample strain a high resolution photogr·aph of the transverse 

variation of the output is shown in I<'ig. (18). The input contained fila­

ment diameters typically about 10 to 30 microns. It is clear)~ seen that 

the plane wave conditions in the experiment are violated to some det;ree. 
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In the presence of hir;h semple mechanical strain, it is suspected that the 

primary interaction region at resonance bet•..,een Cr + 3ions and the light too:~ 

place near the output end of_ the sample where the end clamp produced a 

predominant mechanical strain. Mechanical ccmpressive strain on ruby shifts 

the absorption line toward .lmrer frequencies. This probably allm.red the 

sample resonance at the rod exit end region to be more easi~ tuned to the 

laEer source, because the laser source frequency always tends to be on the 

low side of exact resonance because of flash lamp heating. vfl1en the strair. 

is relieved, the l:ie;ht interacts with essential~ the entire tample len3th, 

and because the beam forms small diameter filaments, diffraction effects 

then become more important. The diffraction effect reduces the power along 

the filaments, and therefore demarids a higher driving power in the input 

to achieve the transparency threshold condition. 

The question as to why small filaments persist in these preliminary 

transparency effects over long distances may possibly be ansv;ered :i.n terms 

of pulse stripping, focusing, and diffraction effects which are. preser .. t 

simultaneously. The power levels in a filament in these experiments are small 
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( 

conpGred \d.th that required :for self-trappinG in sapphire. Nevertheless) 

although ·the conditions for _plane >v..a.ve props.gation in the experiment are 

v:i.olatcd) yet the gross ezpe:dmental results are predicted by the plene 

wave theory of self-induced transpo.rency. 

IX. CONCLUSJOHS l1ND DISCUSSION 

The self-induced transparency effect has been experimentally confirmed) 

and has been analyzed mainly on the basis of ideal asstl_Tnptions. An un-

damped ensemble of dipole oscillators is chosen as representative of an 

inhomogeneousJ.y broadened two level quantu_rn mechanical system which is 

at or near resonance with a pu1se of plane wave rad:i.ation. The effect of 

phenomenological relaxation drunping times is accounted for to first order 

in the ratio of short pulse width times to long damping times. F..xperi-

ments \dth ruby indicate that the plane '<rave condition is violated) end 

that transverse instabilities exist in the beam. Intensity variations· 

across the profile of the pulsed laser input beam are possibly associated 

vith these instabilities and impose further deviations from the pred:ictcd 

2~ h.s. area and shape of output pulses. These complications arise fr~1 a 

number of simultaneous effects such as beam diffraction) frequency and 

phase modulation, anderratic laser pulse outputs. Future investigations of 

of the transparency effect must cope with deviations Trom plene wave con-

ditions, particularly 'rrith regard to the influence of transverse properties 

of the beem as discussed, for example) concerning a single transverse mode 

relating to Eq. (65). Of course the plane wave condition is more easily 

satisfied in transparency experiments with syste:ns where the dipo1e moment 

p is larr;e, and promises to be a reasonably obeyed condition in experi-

ments where the power required for a 2n: h.s. pulse is not too large) as 

12 
in the vork of Patel nnd Sluf>hcr . 



In spite of a number of uncontrolled aspects mentioned above, the 

experimental results indicate that propacating transparency type pulses 

do ex:i.st ar:; str:i.king]y syrmnetric out:put shapes which are remarkably stable 

s.gainst non-·li.near disturbances caused by frequency modulation, phase 

shift, and amplHude rnodulat:.ion. A rigorous mathematical proof of the stability of the 

2n h.s. pulse \·lith these perturbations taken into accoount is, hm·Tever, 

present]y lacking. 

There are indications that there may be breakup of input pulses of 

area A > 3n jnto separate 2r.: pulses. The nature of the frequency mode 

distribution of the injected pulses may also give rise to separate 2~ 
'' (e.g. the output illustrated by Fig. 16-d). 
pulses, where each pulse has a different center frequency/ Single output 

pulse a.reas a.re measured to be in a range betvreen 1f and 2n, but this 

rane;e m.J.y be attributed to the difficulty of averasing the pulse inten-

sitics over a sufficientJ.y small region. The final pulse outputs are con-

sistent w·ith the notion that they are made up of a superposition of several 

2rc h.s. pulses if the plane wave condition is obeyed, whether or not the 
( 

' 

input is frequency modulated. The nature of the transverse output varia-

tions is not yet understood. 

The Faraday rotation effect has been discussei7 in its relation to 

transparency in ruby. This effect results from the dependence of the wave 

vector k, t;iven by Eq. (57), upon the shift of the spectrum g(cw) with an 

externDl]y applied magnetic field, if the optical levels are made up of 

Zeeman degenerate states. In rnby each participating levE:l is doubly degen-

erate. If the degeneracies are slj.ghtly lifted by a magnetic field, and the 

center of the g(i::i<l) line is tuned previous]y in zero field. to the applied 

optical frequency w, a plane polad zed inp'ut pulse should transform into a 

plane polarized output pulse w)th, however, the pJ.one of polarization rotntcd throu,::;i1 :::r, 
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anomalouszy large anc;le. It is instructive and realistic to point out 

what the actual experimental cond5.~ions would impose upon this effect. · 

Exact tuning at the center of spectral distribution was not the case 

in our ruby experiments. If the lir;ht frequency drives the resonance on 

one side of the peak of g(c:..,), the plane wave model predicts that right 

and left circularly polarized 2n h. s. pulses ;fill experience different 

wave vectors, leading to a Faraday rotation, and will also travel at 

different pulse velocities. Consequc;ntly, the right and left circularly 

polarized 2n h. s. pulses vrill possibJy_ overlap at the output so that the 

tail of one pulse overlaps with rise of the other pulse. The output 

would then first appear as a function of time to be circularly polarized 

in one sense, become elliptically polarized a.s the t;-ro pulses begin to 

overlap, become linearly polarized when the two pulse intensities are 

simultaneously equal, again become elliptically polarized, and finally 

become circularly polarized. The t;-ro pulses Hould become well separated 

• when about a radian of rotation is achieved. If the field intensity is 

not unifonn across its profile a.n added complication is introduced be-

cause of pulse self-focusing which the above argument ignores. 

A number of special cases of asy~ptotic pulse behaviour in an in­

verted t;vo level amplifying system have been examined by others23 , and 

the one case by us in thj_s paper. The transparency mechanism plays a 

role in the pulse shaping and steepening process before asymptotic Hmits 

are reached, and shouJ.d serve to predict as well certain asymptotic 

limits within the scope of its asstl!i1ptions. 

We conclude by posing the questio:.J.: Are there any unknmm long term 

transient effects concr:-rni.ng the interaction of coherent radiation with 

m:::!ttcr lvhich 1:1ny reveal themselves only after very careful experimE:nt? 

70 



~It j_s not inconceivable, for example, that some aspect of self-induced 

transparency mie;ht exist in inters~ellar space, where particle densities 

are very lmv (see Appendix A), and relaxation times are very long. 

Questions of this nature must folloYT if care is taken not to accept the 

predictions of rate equations under conditions where transient coherence 

effects may be important. 
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APPENDIX A 

For the induced electric polarization to be represented by a 

continuwn, the relevant volume to be used for avcragine; must con-

tain 8 large number of radiating dipoles so that the fract:i.orwl 

statistical variation of this number is then smCJll. A simple argu-

-2 . 
mcnt shoi-!S that a volume "' Ao; should be chosen. Consider a small 

region in the plane ~-rave where a coherent source of dipoles is spread 

over a circle of diameter d which radiates into a diffraction cone of 

apex ongle p <";::: ')...jd. The electric field envelope {changes appreciably 

-1 
in a length a The pertinent averaeing volume is therefore determined 

by the distance a-1 
over "'hich diffraction occurs, and the condition 

that the beum spread in diameter, given by />a-1
, is approximately eqv.a.l 

to d itself. Thus d ::::< ..f>-}a, which determines an effective radiating 

volwne ~ t..a-
2

• The effective nurnberN of radiating dipoles in this 

-2 
volume is not N~a , but must be given by 

(1-A) 

which is to be .. large. The extra factor ~/r arises because the bond­

wj.dth 1/T of the 

in the spcctrwn. 

drivins pulse excites the fraction ~~/T of all dipoles 
. 3 

One can define T = 3i'ic__ to be the inverse of the 
lse 

8 
2 3 

pw 

Einstein spontaneous emissjon rate. Upon applyine the definition of a 

in Eq. (36) to Eq. (1-A), the inequality becanes 



It is already assw~cd that 

d).. << 1 

because of snwll bac1~scattcring, and furthermore 

T << T' 
2' 

so t~K~t certainly it is true t!mt ,. << T
1

'" , because of the condition 
. l"t .,c J.nequa 1 y 

'I': < TJ • 'l'hercfor'/ (2-A) is a consequeL::.:e of these assu.tptions. 'l'he 
~ ,.., .se 

inequ.ali ties ( 3-A) end ( 4-A) limit the mnxj_mum value that one can 

choose for N, ":hich, surprising]~, makes the inequ.a.li ty (1-A) less 

strong os N increases because a is proportional toN. Conversezy, 
(1-A) 

the ineq>.wli ty /bccc.mes greater as N decreases and the relevant radie.tlne; 

volume becomes 1arcer. 'l'he approximation that the Jight j_s a plane -.rave, 

hmrever, brCCtkS dmm if U becorn.e S too STo1all. 

An alternative to ·the expression Eq.(2-A) is to note that we can 

write Eq. (1-A) as N = (NA 3 T~/~) ~ )) 1. From Eq. (3-A) the factor 
(A.a) 

(A.a)
2 

represents approximately the very small fraction of the total 

propagating energy which is backscattered, although NA 3 T~/T may represent 

as little as one or a fraction of a radiating dipole, on the average, 

within a wave length. In the experiments of Patel and Slusher,
12

'
25 

the continuum description possibly applied to as few as one radiating 

• SF 
6 

molecule per A. 3 volumn. 
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APPENDIX B 
. 

The effect of T2 and T
1 

upon the pulse area is now consiJcred. In 

Eqs. (22), (21~), and {25) replnce v by v exp(t/T2), u by u exp(t/1'2), 

and {by C~xp(t/'1'2).. Thus, Eqs. (24) and {?.5) are unchanged but Eq. 

{26) is not. v71th no dampin~ the area theorcn1 proof used Eqs. (26) 

only to evaluate v(l'h~=O, t ->co). A similar derivation before this 

final evaluation now yields 

where t in this -appendix is the retarded time t-n z/c. 
the 

(1-B) 

/ If.-..left hand side of Eg. (1-B) converges, vrhich requires 

-t/'1'' 
that {must decrease faster than e 

2
, then this result may be regarded 

as an exact generalization or the area theorem to account for homogeneous 

I 

broadeninG· Eq. (1-B) can be expanded in po-,rcrs of l/T
2

, vrhere o:1ly the 

first order correction will be considered. Let a delay time tc(z) be defined 

such that 

J l< t ~ Z ) [ t I - t C ( Z ) ] d t I = 0 I 
-co proporticmr.J.. to 

where t (z) isf'ihe first moment of t relative to t = 0· 
c 

Then to first order in T2-l 

Furthermore, i.t may be verified the.t the follO\dng is the solution, at 

cx8ct reson3nce ~;0, to the optical Bloch Eqs. (25) and (26) to first 

order :i.n 1/Tz) 1/'r l ~ 

(2-B} 

(3-B) 



;P- ~ Jll + J t[r.~( t 
1 
)( ~ 1 - ~ \. ' sin2qJ ( t' ) 

-~ ' 2 J!u . 

J } 
-t/T 1 

+ ~ C(t 1 )t 1 sinq(t 1
) dt' · e 

2
z;in(p(t) 

l . 

fJti - /"1 
-+ cosrp( t) l· -~ LKC( t 1 )(rr

2 
1 ' 

- T~'cos2~(t 1 ) 

(4-B_) 

Combining Eqs. (h-B), (3-B), and {1-B) leads to the result 

(5-B) 

Eq. (5-B) is a generalization o:f the area theorem to :first order in T/T;.. 
. ~ 

and T/T
1

. He nm-r restrict our discussion to a p-ulse which has evolvecl 

to nearly a 2rc h. s. pulse :form. A deviation :from this :form vrill occu.r 

only because T
1 

and T2 are not infinite. The pulse area A will differ 



from 2,1 by a nec;ati ve Jncrement to ;first order in, 1/T';. 1'he pulse 
G 

itself differs from the id~al hyperbolic secant shape to order l/T2· 

In the various integrals on the right hand side of Eq. (5-B) C and <:p 

may be taken to zero order. The above Eq. (5-B) then reduces to 

(6-B) 

Jt,or the nearly 21r h. s. pulse, let A = 2r.:+M, where L"A is an area incre-

n:ent. To zero orde:x; dt /dz = crr/2, for T >> T2, as seen from 
(transforming ~0 the ret~rded time drops the n/C term). 

Eq. (56)/ Since~ is of order ltT21 keeping only terms of first order 

in l/T2 in Eq. (6-B) leads to 

d(t\1\) 
dz --

so thnt after a few absorption lengths 

-a 
J{Q: [ Z I 2 ( z-z I ) I 

.0.'\{ z ) = - ¥ d z e T ( z ), 
2'o 

(7-E) 

(8-B) 

which states that ,6;{!,. relaxes toward the value :.21fT /T2. The fractiongl 

-1 
change cf' M to first order in T in an absorption length a is of order 

T2-l· Therefore, to first order, 

(9-B) 

wh:ich is independent of T
1

, in contrast Hith t1te pulse energy lo~s result 

'(6 
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F'IGURJ~ CM:''l'IONS 

}<'j g. 1. Pulse orca plots of self-induced trnnsparency areo theorc.:m. 

(a) Branch solutions to Eq. (36) are plotted. The entry face of the 

medium Jr;ay be o.t any- value of z. For an absorbing (ampl:ifyinc;) medium 

with a;> 0 (o· < 0), the pulse area evolves in the direction of incrce.sing 

(decreasinc;) distunce z tovrard the nearest even (odd) multiple of 1C. 

Even and odd multiples of 1C area solutions are respectively stable a.nd 

unstBble. The distance z is marked off in units of 1' a-l em for Figs. 

(1-a) and (l-b). 

(b) Computer plots of evolution of input e 
0 

= 0. 9n: and e 
0 

= l.ln 

pulf<'S uith distance and time. The time scale may be fixed throu.::;h an 

arbitr::n~y choice of electric units and the assir;nment of e . 
0 

Jo':ig. 2. Computer plot of function F (Eq. (40)) versus area e. A 

flat speetrum g(~) = constant is assumed with the condition T >> T-~. 

The trend of oscillations toward F = 0 ap:gears as shapes chosen approach 

that of a smooth sy:m.:netric pulse. Incoherent damping because of finite 

T2 will tend to average out the oscillations ond increase the overall 

value of 1', for e > n:. A flat spectrum g(6w) = constant is assumed. 

Fig. 3· Slcetch of rigid pendulum solutinns of Eq. (47) closely 

related to the 21C h.s. case. 

(a) The tippine; angle <p oscillates about the equilibrium position 

<p == n for the rigid pendulu..'Tl, which is gi vcn an initial potcnUal plus 

kinetic enerr;y slightly less than the critical energy (the potential energy 

in the upright position). The electric fi.eld {,,.,. ~ is shown .with its cor-

respondinc; oscillations. 

(b) For the initial energy precisely equal to the critical potential 

encrc;y, the period of o~;d.lJ.Fttions is infinite, 11nd the pendulum yield~; 

• 
one osci]}.o.tion with ?J proportionsl to a sir:c;le 2r. h. s · field pulse· 

So 

.•· 



(c) 'l'he tippinG angle <y increases indefhli tcJ.y for the initial 

tot~l encrey slit_;htly cxceedin;:;; the critjcal potential energy of the 

upriLht position. 

Fig. 4. Computed absorbed energy by a thin ::.a!TJpl.e from a Guussi<m 

pul.::e of fixed. pulr.c width as a function of pul~;e area 0. A flat spectrum 

g{tN) - cm.~.stant j_s ar;sumed. 

Fig. 5· Trajectories of the pseudo-vector P( C:Wr), d ri.ven by a 2n h. s. -
field pulse, for various values of f::.J...n. The radius of the sphere is 

l_t(Wr") I =-= Np. Units of W are "K/m. 

Fig. 6. Computer plots of absorbed energy anc1 {field pulse shape, 

versus Cl.i stance and time, for a e = 2. 9ri input pulse as it evolves tovard 
0 

a 2rr pulse. The area theorem Eq. (36) require5 a pulse vridth narrowing 

and peo.k power runplificntion by almost a factor of two. The absorbed energy 

represents energy stored in the two level system. The units are the scmc 

as in Fig. 1. 

Fig. 7· Computer plots of pulse shapes versus z and t for inHial 

input pulse areas e nea1· 4r(. Final individual pulse areas, which spJ.:i t 
0 

away fro:n the initial pulse, evolve toward o(z) = 2n for z >> a-
1

. The 

energy absorbed in the case of e == 4n is plotted in Fig. (7-a). Pulse 
0 

separations at a given z, and final 2n h. s. pulse vridths ,. , depend upon 

' ( 

the input pulse areas e and shapes chosen. Units of C, z, and t are as 
0 

in Fig. l. 

Fir;. 8. Plot of n pulse solut.ion of Eq. (99) for the case of an 

-1 
ampl:i fyi n;::; medhun, valid for z > 4 .16c . ,., For z < 4.16a-l the pulses 

sketched in guaHtativcly to show trailing oscillations vhich final)~ dis-

appc~1r before tl1c "half hyperbolic secnnt" sohrt-i onf; ore rcach(~d. Bct~;ccn 
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Fie;. 9· Experimcntu.l arr<:meement for monitorinc seJ.f-induc.::~d trans-

p.:'1rency pulse delay and transm:i.ss:i.on intensj_ty. 

Fig. 10. 

(a) EnerGY level diagram of ruby laser pulse source and tf1e te..rect 

ruby sample. The 4/1.
2

(2::'}) level :is represented as broodened to r..ccount 

for the inhomogeneous r;(.0.u>) spectrum. Phonon relaxation between the 

2A(2t;) and E(2A) level is suppressed at 4. 2° K to avoid '1'2 << T p' vhere 

T p is the input pulse width. 'l'he ruby la::;er E(2N E-:· lu\;(:~~-)) output is 

suppressed. 

(b) Sketch of ruby hm level system inhomor;cncous Sp'::ctru:r. g(L{J.l). 

The relative mae;nitudes of ho;noeeneous (l/T2) and inhomogenous broadening 

1 (;_r:) arc schematicalzy shown. 
2 

Fig. 11. Ruby laser amplifier system. The oscillator cavity '.-ras 

formed by the curved mirror CM and the flat feedback mirror FBH. 'l'he 

·oscillator beam path, indicated by the single dashed line, went through 

the laser rod LR, the Brewster angle calcite pola.rizing prism CPP, the 

Brewster angle Kerr cell KC and tbe polarizing Rochon Prism RP. Two 

stops S force single transverse mode operation. Due to the high e;aJns 

available (- 105 with double pass), an 8yj, reflective mirror Rf·I va.s used 

inside the cavity to couple out energy. The Kerr cell was operated at a 

82 

voltage so that the net feedback vras about 1%, thus suppressinr; the unwanted 

1J.A
2
(.::J) ~--: E(2A) transition. The output "tTaS focused vrith a lens L throue;h 

a very dense saturable dye solut:!.on SD, and the bea'U ;.;as expanded in 

dj_nmeter by lenses L to fill the laser Bmplifier rod Lfl.. The al!lplifier 

output v2.s recollimn.tcd to form the final output. Hirror::::. Fl>! r.erved to 

, fold the beam back onto the bench used to support the system. F'lo.shle>~'UpS 

are design11ted by FL. 

,• 



Fie;. 12a - b. Transmitt0d output intensity photographs of pulses 

indicnting non-linear trannnission, with indicated input and output attenua-

tion fo.ctors. Outputs :iu (12-·a) and (12-b) are '-lithout and 1·lith transverse 

mode selection respectively. 

Pig. 13. Enerey output versus input ruby-light transmiss:i.on throuch 

sample (arbitrary units). The ma.e;nified (xll~) output is attenuwLed until 

Polaroid Type-!~7, 3000 speed film is unexposed, thus determ:inine pc&k 

transmitted encr::;y /cm
2

. Error bars represent output fluctuatio::1s pre-

su.rnably caused. by several uncontrolled cho.racteristics of the ruby-l&ser 

source and the finite steps in the output calibrated attenuation. The 

dotted datum is the transmission Hith the SGmple at room temperature, and 

the dashed line represents a linear transmission law. 

Pig. 14. Pulse delay observations vrith a collimated input. 

(a) Input and output laser pulses with sample at room temperature. 

·An optical delay served to separate the tvro pulses. The second po.lse has 

traveled through the sample. Sweep speed is 20 ns per division ·.;ith 

sign2.l from a F'i·T 114 Model ITT vacuum. photod:i.ode. 

(b) same as (a) except that the sample is thermally tuned by cooling 

to liquid helium and a x20 attenuator in output beam path is renoved. 

Pictures (a) and (b) use the system shmm in Fie. 9. 

(c) In pictures (c) - (f) the laser amplifier system of Fig. 11 viD.S 

used. Different detectors were used for observing sample input and output, with 

cables and a "tee" used to separate the respective signals. Sample detuned at 

room temperature with output magnified x5.05 and stop diameter 12 mm (2.4 mm at the 
snmple putpnt fRee) attenuated x11,2000. Time scale: 5 nsec/div. 

(d), (e), (f), (g). S~unpJ.e tuned at temperature"' 4.2° K wlth stop 

dirunct~:r 0.85 nun 1(0.17 m;n at the so.m}'le output face) 8nd no attf:nuation. 
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The f'irst pulse is the monitor output: The second pulse is the detector 
. 

output. Cable and distance delays runounted to 13 nsec. Cable reflections 

occur at the f'ar right. Ti.'lle scale: 5 nsec/di v. 

Fig. 15. Apparatus used f'or pulse area measurements. The somple 

output past'>ed through lens 1 which formed an image of the sample output 

end E in the plane of the stop. The output' through the stop a1)erture 

was collimated and passed through a circular wave polarizing system with the · 

maslt M blocking the unwanted component. The f-numbcr of the system was 

limited by the output dewar windows to a value of about f = 2. 

Fig. 16. Typical oscillographs of transmitted light pulses. Oscil-

lograph (a) was not acceptable for pulse area measurements, '\orhile oscillo-

graphs (b) and (c) were acceptable. Oscillograph (c) was considered to 

be tvro separate pulses. '\-!hen two separate pulses were observed, the trailinc; 

pulse alYTays had a smaller measured pulse area. Occasionally an oscillo-

g.raph similar to (d) was recorded. (d) agreed well with the idea that the 

output was two 2:7! h.s. pulses of different frequencies. Time scale: 

5 nsec/div. 

Fig. 17. Logarithmic plot of peak power versus pulse width. The 

circles represent points obtained from measured pulse widths and areas. 

The experimental error, apart from averaging over the 59 micron circle, 

is small in comparison with the data scatter. 
.• 

Fig. 18. Photographs of the sample output intensity. The photograph 

in the upper left corner is the result of a resolution test. The other 

three photoc;raph::; are output intensit?' photographs. The scale represents 

59 microns at the photographic magnification of x90. 
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LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 

Neither the United States, nor the Commission, nor any person acting on 

behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 

respect to the accuracy, completeness, or usefulness of the informa­

tion contained in this report, or that the use of any information, 

apparatus, method, or process disclosed in this report may not in­

fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 

resulting from the use of any information, apparatus, method, or 

process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 

includes any employee or contractor of the Commission, or employee of 

such contractor, to the extent that such employee or contractor of the 

Commission, or employee of such contractor prepares, disseminates, or pro­

vides access to, any information pursuant to his employment or contract 

with the Commission, or his employment with such contractor. 
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