Lawrence Berkeley National Laboratory
Recent Work

Title
SELF-INDUCED TRANSPARENCY

Permalink
https://escholarship.org/uc/item/9sr1d25d

Authors

McCall, S.L.
Hahn, E.L.

Publication Date
1969-05-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/9sr1d25d
https://escholarship.org
http://www.cdlib.org/

A s

Submitted to Physical Review UCRL-19014
Preprint

";/
et g coy g e e
© SNES PN SO
}
s ¢ 'y
3

B

LIBRARY AND
MOCUMENTS SECTION

SELF-INDUCED TRANSPARENCY

S. L. McCall and E. L. Hahn

May 1969

AEC Contract No. W-7405-eng-48

B

S, wnimend fu - R G
" e ™y PN "~

[ —— S ———

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545

P ST E——

xxxxxxxx

AN

LAWRENCE RADIATION LABORATORYS
UNIVERSITY of CALIFORNIA BERKELEY

3

Z

$1061-190N



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



‘wﬁ

o

: *
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ABSTRACT

Above a critical power threshold for a given pulse width a short
pulse of coherént traveling wave optical radiation is observed to
propagate with anomalously low energy ioss while at resonance with a
two gquantum level system of absorbers. The line shape of the resonant
system,is determined by inhomogeneous broadening, and the pulse width
is short compared to dissipative relaxation times. A new mechanism of
self-induced transparency, which accounts for the loQ‘energy loss, is
analyzed in the ideal 1limit of a plane wave which excites a resonant
medium with no damping present. The stable condition of transparency
results after the traversal of the pulse through a few classical absorp-
tion lengths into the medium. This is signified after the initial pulse
evolves in%o a symmetric hyperbolic secant pulse function of time and
distance, and has a specific area as a "2m pulse.'" Ideal transparency
then persists when coherent induced absorption of pulse energy during
the first half of the pulse is followed by coherent induced emission of
the same amount of energy back into the beam direction during fhe second
half of the pulse. The effects of dissipative relaxation times upon
pulse energy, pulse area, and pulse delay time are analyzed to first

order in the ratio of short pulse width to long damping time. Analysis
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shows that the 27 pulse condition can be maintained if losses caused

by damping are compensated by beam focusing. In an amplifying inhomo-
geneously broadened medium an analytic "W pulse area" solution is
presented in the 1limit of a sharp rising pulse leading edge. The dynamics
of self-induced transparency are studied for the particular effects

of Doppler velécities upon a resonant gas. The analysis of transparency
for random orientations of dipole moments associated with degenerate
rotational states yieldé modified forms of self-induced transparency
behavior which indicates finite pulse energy loss in some cases as a
function of distance. The effect of self-induced transparency on the
photon echo is consldered. Experimental observétions of self-induced
transparency are made in. a ruby sample at resonance with a pulsed ruby
laser beam. Single and multiple 27 pulse outputs are observed, and pulse
areas are measured in the range of 2m. ‘The experimental results are
compared with the predictions of the ideal plane wave theory. Devia-
tions from the ideal plane wave theory are discussed. An analysis 1is
made of the effect of a transverse mode of the propagating beam upon

the transparency properties of the pulse.
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1. INTRODUCTICN
The development of sources of‘;ulsed coherent radietion has

initiated investigations of the behaviour of coherent traveling wéves
es they interact with medis which have absorpﬁion bands near or at the
frgguency of the applied pulse. Of particular interest are resonant
absorbing media cheracterized by localized two level transitions which
are excited by obticall and phonon2 radiati on. The absorption of low
intensity coherent ‘or incoherent radiation can usually bé intérpreted
in terms of linear dispersion theory, particularly if the ground state
energy levels of the absorbing medium (or excited states in the case of
a prepumped active amplifying medium) are only slightly depopulated by
the redistion. As the resonant traveling wave radiation intensitf‘is

3

inereased, the linear problem~ can be perturbed to account for the on-
set of weak nonlinearitiesh. If damping is not too severe, transient
oscillations in'state populations can exist during and after the sppli-

5

cation of pulsed radiation”. The transient behaviour of two level

systeg; interacting with standing waves6 in cavities is closely related
ﬁo‘fundamental aspects bf éulsed traveling wave resonance phenomena. .

For very large intensities of pulsed coherent radiation encompassed by
optical, phonon, and microwave radiation, the pulse width times have a
'c£itical effect if they are comparable to or shorter than the discipative
damping times of the resonant medium. The state population changes be-
come markedly nonlinear and time dependent: the resonance susceptibility
of‘the medium is then a strong function of the driving field.

Usual perturbation treatments of strongly driven resonance phenomena

cannot tractably reveal many rother surprising nonlinear propagation



effects. The mere application of simple rate equaﬁions to describe

the population of quantum states is;invalid, and tﬁe use of standard ab-
sofption and emission coefficients to exaemine the pulsed response of
systems at resonsnce in the usual manner can be inadequate or incorrect.
The timé dependence of the off-diagonal elements that represent the
induced polarization plays a principle rble in the description of coherent
superpositionsof quaentum levels. The simplest two level system is one
where each: level is non-degenerate, and it is this cese which will be the
main one to be discussethére; We will spesk 1n-terms of optical states
and electric dipole moments, but our analysis will also apply to cases
where magnetic or guadrupole mbments are involved‘in the resonance process.
The pulsed radiation can involve magnetic, electric, magnon, phonon, or

other classically describable fields.

A striking manifestation of thé nonlinear resonance response to pu;ggg

of coherent light is the photon echo effe¢t7. This phenomenon, the optical

analogue of fbe spin echo effects, illustrates the collective superradiant
state described.py Dicke6, which iadiates energy coherently into the
‘electromagnetic fieid. .In the c;se of spin systems, the same effect is
- spoken ofrin tepms of free precéssion coherence, where spin ensembles
radiate coherentlj,into a resonant cavity. 1In this work we consider the
.interaction of a light pulse wiﬁh a medium which has dimensions large
compared to a wave length, and is not contained in a cavity. The medium
-dimensions may or may not be lane in comparisén with the linear ab-
sorptién length. The optical résonators are assumed to be distributed
ovérAa spectrum of frequencies determined by an internal spread of
fixed two level splittings. This spread defines the line shape as in-

homogeneously broadened. If a weak pulse enters the medium, a fraction

¥



of the pulse energy is absorbed ahd,retained as excitation energy of the

two level system in the beginning iength of the sample; and after a few

‘absorption lengths the pﬁlse intensity has disappeared according to the

usuél Beer;s ;aw9 of absorpﬁion. Although the dipoles are left excited
after the pulse has gone by, they éannot reradiate power because they
quickly dephase amohg themselves, owing to the broad pulse spectrum over
which'theyvhave beén excited. While a given group of dipoles is excited
éoherently by the pulsé, absorption is induced becau;e of the familiar

resonance property that the driving electric field is opposed by an eléctric

field radiated by the dipoles. However, if the initial pulee powér is suf-

ficient to excite resonant dipoles into & predominately inverted or "pumped"”
state before the pulse has subsided, some energy of induced emission radia-
tion will belrefﬁrned coherently into the remain;hg portion of the pulce.
The electric field radiated by the induced polafization will then add to

thé driving field. Once this emission process takes hold to the slightest

degree, it becomes favored more and more as the pulse propagates into the

medium until the following equilibrium condition is reached. The energy of induced
emis s1on, transferred to the livht beam during the last half of the pulse,
beccme equal to the energy of induced absorptlon transferred from the

light beam, during the first hLalf of the light pulse. This constitutes

the dynamic.condition of self-induced transparencylo, and the final

pulse ig characterized as a "2x pulse" in the same way a gyromagnetic

sp;n system can be excited to upper states and returned to the ground

state by a pulse of radiofrequency power. Attenuation,causéd by damping

of the resonant dipoles or by background scattering losses is assuﬁed

to be absent or small, but the transparency effect retains its



essential description in the presence of real damping 4f the initially applied pulse

has a width short compared to, or even comparable with the damping time.

In the simple case of a pléne wave tne injected pulse evolvee to &
final symmetric shape which is a 2n hyperbolic secant funption (here— ) _ e
after denoted as 2x h.s.) of time and distsnce. The pulse velocity

becomes less than that of non-resonant light in the medium because of

thé continual asbsorption of energy from the pulse leading edge and.

emission of enerzy into the pulse trailing edge. When the pulse velocity

is considerably lessvthan the light velocity,'the pulse energy is des-

cribed as belonzing predoainantly to the resonent medium rather than to

the electromegnevic field.

The transpezrency effect is not necessarily_restricted to the special
case of single pulse transmission. For eXample, in an extgnded mediun
the effect is sn aid in predicting some properties of the photon echo
which evolves as a third pulse following the applicétion of two érevious
pulses. In another situatioﬁ a light wave of sufficient intensity which
is turned onvand léft on will shafpen'invits'leading edge és it travels
thrpugh the mediug. Field oécillations Qililfinaliy develop'following‘
therleading edge which will decay in a damping time determined by lésses
in the medium. Wﬁere the damping is small, a single pulse of large area
may split up ;nto two or more self propagating individual 2x h.s. pulses

‘ which have widths less than the damping time of the medium. .Generally,
the final pulse mayvbe chéracterized as a superﬁositibn of 2n h.s. pulses
of various widths, phésgs, delﬁy times, and center frequencies.

Initial computer calculationsll indicated specific rules for the
propegating puls2 area as a function of distance. These rules implied

the existence of small pulse energy loss during pulse propazation,vhich:



led to en analytic investigation of the resultant pulse shape. Ac-,

cording to the assumptions of the ideal plane wave model, the pulse
shape evolves to a 2x h.s. form for which the losses are not merely_
small, but precisely zero. The transparency effect was dembnstratedlo
experiménﬁally in the case of rubyllaser pulsed light acting on a passiye
ruby sample tuned to the driving puise. Subsequently the transparency
effect wes demonstrated_ip a gas12 by Slusher and Patel in the case of
10.6 michﬁ radiation pulses from a 002 laser passing through a gaseous
medium of resonant SF6'

In view of the rapid develOpmeﬁt of "Q-switch"l and mode-lockl3
pulse techniques which produce laser pulses in the range of 10-8 to
10-12 second:, such pulses should propagate over anomalogsly,large dis-
tances through real systems with electron dipole demping fimeé
in this range. The onset of attenuation effects are themselves of
critical interest in the.measurement of short lifetimes in resonanf atomic
states, electron bend states in solids, and collisién damping times and
cross sections in gaseé. The shape and area of the self propagating

pulses ere themselves a measure of transition dipole moments, relaxation

. times, and e number of other properties ultimately connected with the

nature of the medium line shape and resonance structure. The analysis

in this paper applies as well to many situations where the medium is

prepared initially in pumped excited states. This is a condition common

to all lasers and amplifying media,rand the transParency effect appears

to be an impgrﬁant con:ideration for analyzing the nonlinear character

of lasgr pulse steepeninyg, smplification, aﬁd final output pulse character.
The analysis of the simple case of a two level system interacting

with circulerly polarized light is initiélly precented in this psper.

This cese ie chosen because of the close physical correspondence of its



vector model to macroscopic physical quentities, so that we may utilize
easily the concepts of nuclear maguetic resonance. Some of the resultant
restrictions are subsequently removed in order to discuss other related - x

cases.,

II. ANALYSIS OF SELF-IFDUCED TRANSPARENCY

Assumptions

The several analytic results which describe the opticel self-induced
transparency effect cén be derived on the basis of & semi-classical
description which involves & number of sssumptions. For simplicity con-
sider & circulsrly pdlari;ed traveling plane wave light pulse of optical
frequency w, given by

5(z,t) = é(z,t)(gcos(wt-kz - ﬁ(z)).+ Ssin(wt-kz-.ﬁ(z))L | (1)

-

Lol

vhich enters and traverses a medium in the direction k of increasing

A A
distance z, vhere the orthogonal unit vectors i and j are transverse to
the propezation direction.  The strength of the electric field modulus
C i. sufficiently larze that the electromaznetic field may be rezarded
as classical; end yet it is small enough &o that|pC|<< fiw, where p is
the interacting dipole moment,. We may consistently assume that

. r : . .
) L 9 .
{gé << I%I and g-‘—{ < wld, : _ (2) N
2n
where k = qg = -xﬂ,_h is the free space wave length, n is the host
refractive index, ¢ the speed of light in vachum, and % is an arbitrary
phase angle not dependent on the time t. Egs. (1) and (2) imply the

neglect of coherent back scattering. Only coherent forvard gscattering
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. _ ) . _
‘appliés in the regime ¢ 1 >> A, where o 1 is the optical absorption

1

length attributed to the absorbing ﬁipoles which respond at frequency

w of weak monochromatic light. The refracti?e index 7 is assumed to
be unaffected by the light pulse intensity, and we therefore neglect
effécts which may arise from nonlinear generation of light with fre-

: :
quencies not close to w. Frequency modulatioh and pulling effects are
not considered by assuming that there is no time dependence of ﬂ. This
restriction is consistent with all of the assumptions made here.

3 initially in the ground state

The medium contains N particles pér cm
of two energy eiéenstates between wﬁich electric dipole transitions can
occur. The induced electric dipole polarization can be accurately repre-
sented as a continuum (sece Appendix A); and the resultant optical resonance
line is inhomogeneously broadened. In solids such a.broadening could
bg caused by a distritution  of static crystalline electric and magnetic
fields, and in optically rescnant gases the distribution of Doppler
frequencies serves as the inhomogeneous.broadening'mechanism. The effect
of other linewidth coﬁtfibutions is neglected, such as lifetime or
collision broédeping caused by phonon interaétionS,or by any other
homogeneous contribution to the linewidth. The resultant distribution
of natural frequencies wo 05 a given ion, atom, or mole¢ple (hereafter
designated és a "dipole") is described by the symmetrical spectral

-}

density function g(iw), where‘/\ g(Mw)d(Mmw) = 1 and fw = w, - w. The
-0 ) . )

applied frequency @ is tuned to the center of the spectral function

g(w). The dipoles are coupled only by their interaction with the

plane wave electromagnetic field, ang the direct dipole-dipole coupling

is assumed to be negligidbly small.
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Resonance Dynamics of a Two lLevel System

At the entry face z = O of thé medium, let ﬁ(o) = 0, and define
(E-(O,t) in Eq. (1) as en arbitrary input pulse envelope shape, perhaps .
generated by a laser source. In the medium the interaction Hemiltonian

of the two level system with no damping terms included is expressed as

H=H -1 - E(t), : (3)
where Mé is the main interaction, internal to the two level systen, which -
determines the splitting ﬁwo. The electric dipole moment operator is

defined as

fo = P(J.‘ox + Jay)-’ ' '(h)
where p = P, = Py are magnitudes of the respective components of electric

dipole momentslh. The Pauli operator g has transformation properties
identical to the spin opératbr pi which occurs in magnetic resonance prob-
lems, where —;—g - ¢ is the ideﬁtity matrix. With the definitions that
7P, = plo, * do),
: +i{wt-kz- '
E,(2,t) ={(z,t)e [wt-ka ‘“?’J - | (5)

Eq. (3) becomes ' ) o v

=M, - M5B (2,t) + 5B, (2,0). (6)



The two quantum level solutions for the expectation value of the

3 15 to be of the

source electric dipole moment per gm’ have been shown
same form as those obtained for the magnétic moment in nuclear induction16
We review briefly a popular density matrix method which provides a concise’
method to obtain macroscopic equations of motién of the dipole systen,
needed in our analysis. The reader informed on this point may skip this
review and proceed with the analysis immediately following Eq. (17). The
density matrix method may ultimately embrace treatment of relaxation
Adamping, or of casés.where an arbityrary mixture of o, and x optical
polarizations may occur, which 1ndicate respectively—folarizations
transverse and parallel to a definéd axis in the medium.

Considering only its time dependence, let the dipole two-level wave

function be given by
= ay (B + oay(t)iy, | | (7

with population coefficients al(t), az(t) and state functions y,,V,
assigned respectively to excited (1) and ground (2) states. The dependence
of ¥ upon z and the phase of traveling wave excitation must e?entually be
_included. In our particuiar experiment tﬁe ground state is completely
populated before dipole transitiéﬁs are induced, and therefore

|a2(o)]2 =1, Ial(O)lz = 0 at time t = -». The initial density matrix

is given by

11



g
"The operators in Egs

P, = PO,
P_ = P0_

Hiw
¥ =2

o) 2

The time depcndent

it

. (5) end (6) are expressed in matrix form as

0 1

0 0
Zp <; o)’ and

)

equation

11(t) = [H,p(t)]

12

(9)

(10)

for the density metrix is conveniently examined in a representation in

which ¥ and p(t) transform as follows:

Wt Ry - Mo, Bl

bop(t) = Tp(t)T

where T = ei(oz/Z)[(wt-kz - d(z)], K = %E, and Awl= w - o

In developing the time dependent behaviour of p it is understood that

(11)

(12)

p = p(t,,2), although the notation is restricted to writing p = p(t).

In the case of the Simple:ﬂo matrix given in Eq. (9), the T frans-

formation allows one to view:Ho as the interaction Hamiltonian in &

.frame of reference rotating about the laboratory z axis at

" frequency w. Eq. (10) therefore transforms to

w67 (t) = D07 (6)1.

(13)
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In this representation the time derivative of the expectation value of any

.

, * .
operator F is :
; *1 . _
= tht)‘) = %Tr[F*(t)[N*,Ff]]. (1)

! * _ . i '
The operators F of interest here are given by 0,10, s and oy, vhere

the spectral energy density is defined as

Nt | o
V=2 (o), - | (25)

end the transverse electric polarization density is

utiv = -gg(o'xﬁio'y) . | _ . (16)
The terms u and v can bqhidenﬁified as the electric dipole dispersion

"and absorption‘cdmponents respectively, in accord with the undamped Bloch
equation notatibnls.TheSe components combine Yith  a péeudp polarization

- %E, vhich plays the‘rélé.of transverse megnetization M, in the original
Eloch notatibn, tp‘défine a vector polarization sz A real électric
polariia%ion P, ﬁay in fact exist, but would not be involved in

our tréatment here. The three components éogethér define a fictitious

vector polarization

2"121;)“'*‘.’0—".’0; (17)
in the - © frame of reference rotating at frequency w about
a ‘
unit vector w, defined in this ~ case along the .laboratory z

axis parallel to the direction of light propagation. The unit vectors



A A A

u v ,¥, form a mutually orthogonal set. From Egs. (1%), (15), end

(16) the time dependence of P abovq is obtained in a form of the

feamiliar torque egquation
Ao
— = Px[u xé(z t) + w Aw] - (18)

Coupling to Maxwell's Equations

The final step before presenting an analysis of the pulse
propagation is to couple Eq. (18) to Mexwell's equations for propaga-

tion of a circularly polarized plane wave. From Eq. (5) let the traveling

wave

B (2,t) = (f(z,‘t)ei,-[“’t’kz + i‘(Z)],_ _ S )

with parameters defined in Eq. (1), be the complex solution of the

wave equation

2 2 2.,
3 E+(z,'t) ) 11; o E+(z,t) L bx e} P+(z,t) . (20)
32 at? cz' at?
: el poocnian I
The reseonence—induced-net complex polari7ation a#z t) is given by
p¥(z,t)=f s [u(m,z,t) + 1v(aw,z,0) 1 2B ) (a)

Any symmetric distribution function g(/w) centered about the applied
frequency w is acceptable; snd in the particular case where g(ltw) is a
bell shaped function, (l/Tg)sec-l is proportional to g(O)-l, and is an

approximate measure of the

1k



line width. The assumed relationsnof Eq. (2), which state that

éxz,t) is slowly varying, also assu}es a similar bshaviour for P+(Z,t)
After substituting Eqs. {19) and (21) into Eq. (20), the relati:us of
Eq. (2) permit slowly vafying terms to be dropped, and tne following

equations result:

%é-.— -(r,/c)g% - %EL v(tw,z,t)g(mw)a(aw) ; | (z2)
uE P
e ¢ 2 [ e, (e, (23)

*  To complete the array of required scalar equations, Eg. (18) is re-~
written as follows, but with the addition of phencmenological damping

terms according to the Bloch notationl6:

du

a—t: = vy - U./T', ) ) (21‘)
&y Sy (25)
at w e’

(W-¥ )
aw o)
a——g = y{ W - -——--TT;‘—-"'. . - (26)

Any incoherent damping effects, such as spontaneous emission or life-
time broedeninzg mechaniems associated with collisions, are included in

the relaxation time T!. 7The time T. defines the energy damping time

2 i
constant esscciated with relaxation which restores the energy of the
. W\
optical system to the ground state value wo = - N<§~ . The total optical

linewidth is defined approximately as

ot
%[l."
g



1 1 1 ’
ARE TR (27)
T2 T Tg
In turn, %, o~ % %,,, where Té' pertains to any lifetime broadening
2 1 2

mechanisn which does not significantly alter the population distribution
between the two levels of the system connected with the resonance. In-
stead Té' accounts for the broadening of either or both levels by relaxa-
tion processes that do not cause transitions between the two levels. Such
broadening is produced, for example, by electric Stark or magnetic Zeeman
frequency modulatién of the level eigenvélues because of incoherent local
field fluctuations, or because of very rapid relaxation from §ne or both
of the two levels to a third level which is not directly involved in

the externally excited resonance. A rigorous treatment of damping is

of course not intended in SPecifying the abovewrelaxat;on times;

these phenomenologically represent the kind of damping which may occur.

For the limit of ideal self-induced transparency ofelectfic field pulses of
_width 7, the inéqualities T << T and T > w T are to apply in the

2

‘analysis to follow.

The Area Theorem and Its Properties

For those oscillators exactly at resonsnce in the absence of

relaxation, let AMw=0, and define Tl‘= Té = « in Egs. (24), (25) and (26)

for all &w. Therefore

.Q(O:Z:t) Npsin@(z,t),‘ o ‘ | , (28)

W(O:Z)t) = WOCOS@(Z,t), , ) o (29)

t
where m(z,t) = \]ﬂ CXz,tf)dt' (30)

16
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expresses the angle through which the fictitious polarization vector P

at exact resonance (Aw=0) is turned at’time t by the é{i&eld pulse. The
angle @ therefore expresses the area of the pulse developed up to time t.

Let the area A of the entir¢ pulse be defined when the vpper limit t —
applies in Eq. (30); Therefore, A = ﬁjn“ziz,t')dt'. The total tipping angle

. -1fws(0,2,2) .
of P(0,z,») is @=ten Iggrﬁf;f;) which m2y not be numerically equal to A

in other physical situations.

We now can shov how the behaviour of the compounent v(0,z,t) at exac£
resonance is comnected with the motion of‘components u(fw,z,t) and v(ow,z,t)
off rescnance (Amfb) through their mutual interactions with the éffield.

:Integration of both sides of Eq. (22) fromt = -~ « tot =+ ®» = T, gives

, fepe =T
QQEZ) = zflzuf f g(aw)v(ow, z,t)atd(ow), (31)

where the case 6(z) = A(z) will apply. The long time T signifies that the
pulse ékz,t) has died away. This does not hecessarily mean that the individuzl
“polarization ccmponents u{lw,z,t) and v(M,z,t) have died away, but only that
they destructively interfere to maké the net polarization, given by Eq. (21),
vanish because of the range of spectral frequenéies L. Let T = To + t',

and choose TO as an arbitrary time origin ha?ing properties assigned to T
above, with time t'>0 measuted with respect to it. At t = T, Egs. (24) and
(25) (with T! = =) combine to give

2

u(tw,z,t) = u(Am,z,To)cos(Awt') + v(ém,z,To)sin(Aum').r (32)

After substituting v = (du/dt)/fw from Eq. (24) into Eq. (31), integrating

Eg. (31) with respect to t, and applying Eq. (32), Ea. (31) becomes
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@lz) _ 2m~tm‘/w.o
dz nn

-Q0

[gégg)][u(ém,z,To)COs(Amt') + v(Am,z,To)Sin(éwt')]d(ﬁm)' (33)

-

For arbitrarily large t' — <« the contributions from the integrals in

Eq. (33) occur only at Ac%o, }sinc‘e the integrands are oscillatory. -
Formally, the first integral in Eq. (33) appears to be undefined, and,

therefore it is evaluated a's the principle part of the integration in Egq.

0
‘ QllJt' .
(31). The complex integration of u(O,z,ToJ» COSM ) () is then zero.
. Ve 00

Alternstively, one can argue that the first integral averages to zero for
large T since u(Aw,z) is an odd function, proportional to Aw near Aw=0.

. ‘_{Fhe functions g(iw), v, and W are even functions of Aw. The second
integrai results in a delta function which allov'rs v to contributé only

at ANw=0 as follows:

fé g(ow)v(f,z,T )sin{ &)y ey _ 7g(0)v(0,2,T ). (34)
~ ' | |

-00

At t = T according to Eq. (28),

v(o,z,To) = Np sin6(z). i (35)
y |
Therefore, from Egs. (34) and (35), Eq. (33) yields
o02) - - sino(a), | | (36) *
w
2.2 }
where o = w.

ytic

At frequency w the constant coefficient a in Eq. (36) is defined as
the reciprocal absorption Beer's length for weak light pulses of narrow

bandwidth, from coherent or incoherent sources, which do not
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significantly alter the ground state population of the absorbing dipoles.
This is signified by letting 6(z) << 1 in Eq. (36). For this case the

expression of Beer's law for an absorbing medium follows from Eg. (30)

applied to (36), as
2 2 ~a :
&2)? = Lo)%e™. | (37)
The general solution of Eg. (36) is

6(z) = 2tan ([tan{30_)lexp(-30z)3, (38)

which defines 80 as the rotation angle of the fictitious vectorkz(o,o,t)

for those dipbles with Aw=0 and z=0 at the entry face plane of the medium.

The branch solutions of  versus z from Eq. (38) are plotted in Fig. (1ra);i

The solution for 9(z)»is analytic, but we know of ho analytical solutions
for éiz,t) except particular ones which will be presented in the limit

= 0. Examples of computer plots for‘éfversus z ‘and t are shown in
Fig.(1-b) for cases o, = 0.9x and 0, = 1.1x. The initial shapes éio,t')

are arbitrarily chosen to be Gaussian such that

(39)

(o]

nfmé(o,t')dt' =0 .

In Fig. (1) it is seen that the pulse area 6(z) diminishes toward

(z) = O for initially applied pulse areas 6, <= if a is pésitive in

Eq. (36), where Beer's law holds for 6(z) << 1. If the sample is

.populated initiallyvin the excited sate, o is negative in Eq. (36), and

0(z) cvolves by reading z as increasing from right to left in Fig. (la). 1In this

situation the amplifying medium will transform a small pulse of initial
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area o, << m into a 6{z)=n pulse a;ea independent of z for é >> a-l (this
case, to be discussed later, is deﬁicted in Fig. (8)). This property will
hold if we maintain the ideal infinite plane wzve condiﬁion with no vari-
ation of beam intensity in the x,y plane normzl to the z direction. For
T > T%, and the area remaining at the value Ké;axT ~ 5, the area theorem

would therefore demand that the amplified peak pulse T continues to shorten.

" Losses would occur in a real case to limit the growth of power and the

further shortening of 7. Also any real beam profile is non-uniform in
intensity. A uniquely defined field éxz,t) which is selected by a small
aperture in the output will in general havé a éharacter which is influenced
by neighboring portions of the beam, diffraction losses, initial beam
focusing, beam self-focusing, off—fesonancevexcitation etc. (which, for
the present‘introductory diséussion, are cbmplications that cannot be
predicted from Eq. (36) as it stands,.whether or not damping is considered)..
The deviations from linéar‘Pulse énergy absorption rate ﬁre conveﬁiently

found from a computer evaluation of an empirical rate equation for the puise

energy T:

%; = - a7%(A,T,"pulse shape"), . ' (ko)

where /- ﬂ%k/ﬁakiz,t)zdt.. - (41)

The function F is defined as a factor which is responsible for devia-
tions from Beer's law. It is identified from the cambination of Egs.

(22), (25), and (26) (with Tys Ty = ©). The pulse shape can be defined
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as an arbitrary smooth function, such as a Lorentzian or & Gaussian function.
F will have minima near A = 9.= an by etc., and maxima near 3x, 5u etc.
because of thc oscillatory behaviodr (W~ - cosB) of dipoles near or at

exact resonance. A pulse of small energy 7-and large width 7 loses the same fiacticns]
amount of energy as does a more intense pulse of the same area but with.a
shorter width end a larger energy. This is a result of the relstionship

[~ l/T for fixed pulse erea; i.e. the bandwidth of absorption by the pulse
is proportional to its energy. Formally if the spectrum g(/w) is constant
throughout the pulse spectrum, F does not depend upon Z—if the pulse area
and shape ere held constant. However, if the g(/w) spectrum is bell shaped
and not flat, F then depends upon 7; and ¥ will monotonically decrease with
increasing 7: For 7-so large that the pulse width approaches or is less
than T;, a pulse may or may noi become modglated with increasing distance

z. If T >> T% however, the ihduced polarization will last for a time .

2

comparable to T, and the pulse will retain a width comparable to its initial

“value and remain unmodulated by oscillations. This argument fails for

6 > 3n because oséillatibns in the absorbed and emitted energy begin to
. . 10,17
split up the large area pulse into separate 2n pulses .
For a flat g(/w) spectrum the pulse shape and area dependence of
F in Eq. (40) is plotted from computer calculations in Fig. (2) with
the eXception of the case of a square pulse shape. The factor F is
preciseiy zero at @ = 2 for a 2n h.s. solutibn. This case 1is not

plotted, but is almost undistinguishable from the Gaussian case except

in the region of 6 = 2x. The square pulse result is analytic, given by



A
F(A, Ysquare") = (l/A{/w deo(x), which is obtuined by solving Eq. (40)
.O “ :
beginning with Eq. (ZZ)M in the ususl way, snd performing the requirced

integration over A,

The Hyperbolic Secant Solution

We continue an outline of further predictions of Egs. (36)Rand (38),
‘énd retain assumptions upon which they are based. For the‘system initially
'in the ground state (o positive) the dynsmics of the pulse prop=gation
presents a final stable situation vwhich is not inherent in the amplifying
case (@ negative). Fig. (1b) shows how the 60 = 1l.1ln pulse, above the
critical arce 0 = m, increases in area [6(z) ~ féht] toward the limit
6(z) = 2x, when z >> ot end gg'z 0. VWhile this increase in pulse area

A

takes ploce the pulse loses some energy (~JC dt) over a number of absorption

lengths a-l, and appears to be feshaped into a2 stable form, vhich is pre-

sented as a hyperbolic secant traveling wave solution

&z,t) = 3; séch[j%- (t-z/V)1, _ (L42)

K

[+]
vhere ﬁ/ﬂ éiz,t')dt' = 2x.
-0

The solution Eq. (42) will be derived, and it will be seen that it is
a unique analytical resultlo for a traveling wave pulse in the absence of
dissipation (leTézw) for a sharp line (T%:w) at exact resonance. It serves
as a solution in the case of arbitrary g(A w), but its uniguencss in this case
has not been confirmed. Constant pulse velocity V and
pulsce width ¥ result when the depletion of encrgy from the first half of the

pulse (-® §1;§n/V) by the absorbing two level system is exactly balsnced by
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emission of the some amount of energy by the system into the second half of
the pulse (z/V stso ). During'its gecond half the pulse is amplified by that
“portion of the two level system which the pulse had previously puped

into the excited state during its Tirst half. This has the effect of

producing a pulse delay, making V < c/q.

Sharp lince Case

. - <o . e . Al
In view of the indications of our initial computer calculations ,

we are led to believe thet a traveling wave pulse exists which is et
resonance with the two level system and has a pulse erea of 2x. Such a

pulse solution must therefore setisfy the equations

¢ o0
%§~2 - % g% = - %%ﬂkl; g(ow)v(iw,z,t)a(Mw) - 2;.§§~, | (43)

onc of vhich is Eq. (22). Our task is to find the proper pulse shape
which satisfies the Egs. (18) and (43). Let g(/w) = &(Aw) be a delta
function in Eq. (43), and substitute into Eq. (43) the polarization

given by v(0,z,t) from Eq. (28). Therefore

folmad

The expression

¥ = & ' (45)
ot .

from Eq. (30) is applied to Bg. (44), giving the relations

é”= %; singp/2 | ' (L6)
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end

2 . %
o9 _ (l )sin ‘
39 . (d,)simg, (47)
at2 2 ' _

vhere 1/V = EE%%QEIE-+ n/c. Eq. (47) is recognized ss the equation
which governs the motion of a pendulum initially oriented in the non-
equilibrium position mo = .. From a number of possible éolutions to
Eq. (47), only one of them is of particular importance to the trans-
parency effect. It is obtained by writing Eq. (46) in terms of

é = né}/?, and combining.Eq. (h6)-w1fh Eq.'tuh) to give § = (q/T)fI:az

4 - , : :
or dt/% =28 d(sech'lq). This leads to the 2x h.s. solution,

V1-q |
expressed by Eq. (42), which must be of finite pulse energy. The

equivalent of Eq. (42), expressed as the solution of the pendulum

equation‘(Eq. (47)), is
1 z . :
arke- B
¢ = bten l{eT v } (48)

which corresponds to the pendulum oscillation of infinite period. o
Thé other pendulum solutions, corrésponding tp period swings or oscilla-
tions which havek/ﬂm(gg)zdt = o (see Fig. 3), are rejected as corresponding

~oo
to light pulses of infinite energy. A number of pendulum solutions have
been discussed by Jaynes6 and Cummings relative to a maser cavity problem
in which é two level system is at resonance with a microwave field. -
Bloembergen and Pound6 and Blocm6 discuss the standing wéve radiation
damping problem- for the loss of magnetization of & precessing macroscopic
magnetic moment while it is coupled to a resonance ICR tuned circuit.
Bloom shows in some detail the hature of the hyperbolic secant radiation
dasmping of nuclear magnetism as a function of cavity losses. Dicke
oblains a similar solution for the transient behaviour of a radiating

macroscopic electric dipole moment in a standing microwave cavity problem-
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Case of Inhomogeneous Broadening

If we assert that a symmetric 2n h.s. pulse is supported by an in-
homogeneously brosdened medium, then each off-resonant component v(iw,z,t)
in Eq. (43) is expected to respond symmetrically in time with respect

to the h.s. pulse. It will be shown that it is consistent to define
v(ow,z,t) = v(0,z,t)f(w), (49)

where f(Aw) is some even function of Nw  independent bf t, with £(0)=1.

If Eq. (h95 is valid, then the spectral integration of f(/w), in Eq. (43)
will lead to Eq. (L4k4), apart from a constant factor, and Eg. (44) in turn
leads to the 2n h.s. solutibn as shown. The form of f(/AWw) is obtained by

solving Eqs. (25) and (26) for u(fw,t) end W(Mw,t), with T, = T} = =,

1 2
and using Egs. (28) and (49). Eg. (24) then yields
N | .
1-f(aw) 1 sing(t')dt' = Tz, (50)

ple(w)  $Y em

vhere @ for a given z is independent of t and Av, because f{(/Aw) and ¢
are respectively independent of t and Aw. The second of Egs. (50) yields
1
f(ow) = 33 v (51)
1+NoTT '

and the first equation, using Eq. (45), gives the pendulum equation Eq.
(47). The parameter T must be a constant independent of z if the traveling
wave solution Eq. (48) to the pendulum equation, together with Eq. (45),

is to satisfy Maxwell's Eq. (43).

Hyperbolic Secant Pulse Properties

During the evolution of the pulse toward the hyperbolic secant form the

pulse shape changes while net energy is being absorbed by the two level
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system. Computer plots in Fig. (4) shov examples of pulse energy ab-

sorption as a function of pulse areé A=0 for fixed positions z. Pulses
which are not hyperbolic secant in shape will leave the undamped inhomo-
. geneously broadened system excited to scme extent and therefore lose energy

-]

b& an amount AW = - g—g— = Nhw/2 +f Wz, Mw,t = )g(Am)id(Aw), which follows
upon combining Egs. (22), (26) anéé(hl). At 8 = 2n the hyperbolic secant
pulse gives & = O regafdless.of thc spectral shape of g(Aw).> This implies
that u, v, and W injthe limit of no damping start from their ground state

w .
values of 0, O, - E%— respectively and return precisely to these came

values after the 2n pulse subsides, independently of the off-resonance

parameter Aw to which the vector 2 (Eq. (17)) is assigned. Fig. (5) shows
the trajectory of the end point of vector 2 for various values of Awr,

Fram the analysis relating to Eags. (49) ard (51) the components of P are

found to be

alaw,z,t) = 2R Lor sinle/e) | | (52)

: 1+ (owr)” R
v(aw,z,t) = 225129—5 ’ é53)
1+(owr)
. 2 :

and W(tw,z,t) = N <%51n (Q/g)' - %): (54)

o z (owr)™ ' ‘ :

where @ is given by Eas. (30) or (48), so that

sin(9/2) = sech[%(l - ;/v)]. : (55)

- Fram Egs. (22), (43), and (53) the general exprécsion for the reciprocal

_ pulse velocity is

. o g(ow)a(m) (56)
n/c ' ERETUT'_m 1+(Aw1)2 \

26
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which reduces to the time delay per cm of V-1 = 07/2 in the limits

T§ LT, Qr >> n/c, where g(/w) is éssumed constant over a spectral
region defined about ~ %. 'These conditions.indicate that the pulse is
" retarded in time about a‘pulsg width T per absorption length a-l.

If a Zn.hyperbolic secant puise is injected into the target sample
at z=0, the spectral function g(/w) can be of any non-symmetrical shape,
and ideal self-induced transparency will operate- immediately. Therefore
the special results. for the Z2m pulse above apply upoﬁ s.bstituting Eq.
(52) into Eq. (23), to give.g phase shift linear.with distance and in-

dependent of time, expressed by

. 2 o0 .
g Z) - ' ot . Mg(M)d;Qm) r
& X T mger ) ? (57)

Consequently the resonance process alters the wave vector in the resonant
medinm from the value k as seen from Eq. (1), to the value (k+k'). For
T >> Tg, Eq. (57) reduces to the ordinary'result for linear dispersion.
' in the narrow line case (g(A®w) = &(Aw))

The uniqueness of the 2x h.s. solution/is now argued as follows. ,
Out of a general class of traveling wave solutions S of the form S(t - %),
we note first that the 2n h.s. solution is one iIn a class of pendulum solutions
which is a solution also to the caﬁity problem, where all of these solutions

namely the pendulum solutions of Eq. (47) with k’ given by Eq. (57).

to the cavity problem are knowr / By the cavity probvlem it is meant that S
is a solution to the second of the two equations in Eq. (43), where only
the time dependence is involved. As a caVity_solution, the 2x h.s. function
is a solution of the undamped two level system (as in an NMR experiment),
ss shown by Egs. (52), (53) end (5b4), which applies to both on and off-

resonance behaviour. The 2x h.s. solution contains all the parameters

necessary to describe any set of initial conditions in the cavity problen.
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EThe 2 h.s. function is unique out.of all the cavity problem solutions
in that it is the only pulse solutién of finite energy, required by self-
induced traﬁsParency, vhich satisfies simultaneously both the traveling
wave (first) and cavity (second) equaticns of Eq. (43).

Actual experimental results indicate that nearly symmetrical hyper-
bolic secant-like pulse shapes grov even if g(/w) is not excited
symmetrically. The tendency to produce spectrally clean and nearly
symmetric output transparency pulses is associated with the excitation
of g(tw) at eny fw if g(lw) presents a broad line width with a slowly
varying derivative d[g(mw)]/d(aw). If the pulse width T is sufficiently
large, g(/w) will appear to be-hearly a flat distribution in first order,
‘because it is excited over a very narrow spectrum. A Second order cor-
rection will arise as a small change in the effective host mediun re-
fractive index because of the disPersion contributed by a small imbalance_

vof off-resonance dipoles which give g(fw) a slight asymmetry about Aw=0.
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III. CHANGES IN SELF-INDUCED TRANSPARENCY fUISE CHARACTERISTICS
o WITH DISTANCE

There are a number of fectors always pfesent in the experiment
which actuélly cause the pulse to change shape and bfoaden, attenvate,

self-focus or defocus, or perhaps even to sharpen, depending upon a

~variety of actual experimental conditions. It is instructive first to

discuss some qualitative features of the pulse before it becomes de-
layecd and shaped into a stable hyperbolic secant form. |
At a given position z, let t(z) define a time point during the
pulse which corresponds approximately to the same.point on the pulse
at other positions z, chosen to define_a_certain”pulse characteristic
such as maximum amplitude or slope of éit(z),z). Then t(z) is some

function of 2z, and if it is applied as a limit in the integfation of

‘Eq. (22), one must take this into account in carrying out the dif-

ferentiation process with respect to z. Therefore

t(z) ' t(z) . » - v
L %g(;v,z)dt' = g-z- ([» C(t',Z)dt'> - Btz_z)_ (t(z),z_).. (58)
Define
B e iy e | (59)

S | o) e |
) =[1/C7t(z),2_) %ﬁ-"‘-’L f_mg(a»)v(m,t',z.)d(mdt'»r,}—éq—’%éi)—)] , (60)

where ¢(t(z)) is expressed by Eq. (30), with t replaced by t(z), and
ot(z ' .

4

is the reciprocal of the instanteneous pulse velocity at t(z).



30

The resonsnce process contributes 1/V(t(z)) as a component of the
reciprocal pulse velocity. The pulse shape changes in distance and timcﬁ
and the velocity V(t(z)) is altered over several absorption Beer's

lengths a-l.

Varying Pulse Delay

In the case of 6, = 1l.1x, as seen from Fig. (1b), the pulse
delay increases with increasing z in the z,t plane, and acquires
a constant pulse vglocity V; or constant delay time T = a:/z per unit
length relative tO’the retarded time t—nz/c, where T is the final stable

pulse width. For the two level system initially in the ground state, Eq.

(60) displays the following pulse area properties shown in Fig (1v), where
t(z) is defined at the pulse maximum. '
For 2n > 90 > n:

>

As B = 21, V(t(z)) >V and_gg > 0. When 6 = 2x, V(t(2)) =V = (%‘—T—)
t{z) = t + z/V, and g% =0 for z >> a-l.

For 6 < n:
-9

As 0 -0, 1/v(t(z)) << g/c and %Z"i < 0.

As seen in Fig. (1lb), for the initial pulse cénditions éo = 0.9,
the absorbed pulse exhibits little or no deiay V(t'.(z));1 per unit length,
because gg, as a negative quantity in Eq. (60) , cancels out the double
integral term to a large extent. In the limit of low pulsg power ab-.
sorption, where @ is small, v «.é: and ndfT <<IL'whéreupon V(t(z))-lxo.
The leading edge of the pqlse is ébéorbed linearly and its risé time
is altered very little..'Héwever, forilargarw, corresponding tb large .
t(z) for the.sahe z, the 1uéging edEe of the pulse is in fact stretched

out becausc it 1s emplified briefly by the contribution of off-resonance
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dlpole radiation. By multiplying rumerator and denominator of the
double integral term in Eq. (60) by éf ,, setting V(t(z)y = 0, and

defining d¢ = Kéﬁt, therefore,

X._.g - (61)

This describes the limit of classical low power absorption vhere

- <f g(éw)"é*’ dAN)/( Iix )

expresses the ratio of the integrated power loss ——'(Eq (26)) with
1
For the two level system initially in the excited state, the double
integral in Eq. (60) becomes a negative term, because g(éw) is inverted.
The term g% remains positive, as dictated by the area theorem of Eq.
(36), and & small pulse with initial 6 < x is amplified toward @ =

for z >> a.l, where (@ is negatlve. Now the leading edge of the pulse

T. = °°) to the average energy flux an)/hu of the circularly polarized pulse.
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is sharpened by the initial gain. After the effective gain factor |oF| (Eq. (LO))

sharply decreases in-magnitudeithe lagging edge of the pulse falls and
stretches out. While the pulse is being formed énd amplified at any z,
we caﬁnot formulate a general anélytic shape for'éfwhich compares to
the 2x ﬁ.s. case for transparency. However, one must deduce,las the x
pulse continues to be amplifiéd, that the douﬁle integral term in Eq.

(60) is negetive, g% - 0, and V(t(z)) < O.

This expression for the pulse velocity gives the appearance that



the actual pulse velocity exceeds é/ﬂ,w_ :

But the pulse velocity as defined gére is only an arbitrary definition

of the backward displacement in time versus distanceA(hence.V(t(z)) is
negative) of some pulse shape characteristic, and not of the speed of
light itself. The pulse velocity increase implies a sharpening oftthe
leading edge of the pulse becaﬁse of the amplificafion process. There-
fore, the peak of the pulse rises rapidly with increasing z and appears
earlier in time t, as shown in a sPecial.case relating to Fig. (%), to

be discussed later. Actually a néise impulse will signify the first
appearance of é; and the leading edge of the amplified pulse can never recede
- to a time eerlier than t_ +.zq/c, vhich is the earliest permissible time
that information can be conveyed,t§ an observef at position é by the first
noise impulse generated earlier at time'to. »

Although the hyperbolic secant function (Eg. (hz)) for éihas'been
introduced as an analytic pulse-solution to the self-induced transparency .
pulse‘field, this functiqn at t = - o behaves in contradiction to the re-
quirement.of causality. This lack of causality is introduced because of the
assumptions used in deriving Eg. (L42). - However Eq. (42) is physically
acceptable as a 5asis of analysis since it accurately represents the shape

of C for finite times t.

- Multiple Pulse Formation

The area theorem expr¢SSed‘by Eq. (36) implies that any initial
pulse area 80, which obeys the condition (n+l)n > 90 > nn, will increase
in area toward (n+l)s if n is odd, or it will decrease in area toward nx
if n is even, and the pulse sharpens to give an increase in pulse power.
Figs. (1b) and (6) reséectively show the results of computer plots of

pulse shape changes for the cases 2n > 60 > n and 3n > 86 > 2n. IT the
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initial pulse is to evolve into_an.area which is sn integer multiple

of ¢r, it may in general split up %nto n separate 2n pulses which do not
overlap one another at sufficient]y large z. Fig. (7) gives computer plots
which show how two separate 2= pulsés emerge in a dislance z z-a—l from
input pulses 90 near Un. REach 2x pulse haé its own particﬁlar width and
_corre5ponding delay time proportional to the pulse width. Therefore, the
narrowver pulse always occurs earlier at the output. Fig. (16-c), to be dis-
cussed later, shows the obéerved output of what could possibly be & pulse
splittiné effect of this type in a rﬁby éxcited self-induced transparency
experiment. G. L. Lar_nb17 has andlyzed a special case of this pulse "split-
ting effect” phenbmenon under the dssumption that:a narrow line (T§=Tév= )
two level system remains stable, but it is not known that this splitting
effect applies to the case.of inhomogeneous broadening. The manner in vhich
the computed pulse splitting occurs depends upon.the initial pulse shapes.
Here a flat two level inhomogeneous spectrum with Té = o is excited with

. pulses of Gaussian shape. As the pﬁlses separéte completely they evolve

into individual hyperbolic secant pulses with separate areas of 2x.

Pulse Stripping, Superposition, and Self-Focusing

S

In the actual experimental situation the pulse entering into the
resonant medium is not uniform in intensify across its profile. For any |
position z in the sample we visualize for convenience that the pulse
intensity falls off symmetrically as some function of the radiﬁs r,
méasured normal to z and outward - from an axis in the rod.

If‘we assume that the plene wave analysis of the transparency effect is
applicable to small patches of the light wave front anywhere on the pro-
file, a modificaticn of the pulse intensity output acrqss the beam pro-
file can be described along the rod. At a particulsr radius r> T, where

the pulse area falls below 5, the light will be absorbed for all r > r,
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;ithin e few Beer's lengthsva-l. Cénsequently, the outer periphery of
the original pencil of light should_be stripped away. A
core remains which contains a distribution of pulse areas with each
pulse area approaching 2n. These have their own pulse widths and delay
times corresponding to the intgnsity assigned to each region at r < T,
The more intense becam centered about r = 0 will reach the exit end of the
rod in e certain time before the érrival time of the portion of the beam-
distributed ét r~r., SO that a form of "do-nut" shzped intensity pro-
file remaining ﬁear the entry end.of the rod would be expected on this

basis. The strong variation of delay with input intensity near r = r

[

c

"would prevent the formation of sharp outer edges in the intensity profi;e.
Also, diffraction will couple energy from thé beam at a glven radius Ty
to @ different radius r, at a disﬁance further down the rod. Tae
transparency effect must be analyzed in more detail to take these effects
into account. Our initial investigation of the effects of these additional
complications by analytic methods have been unfruitful.

If effects caused by diffraction and stripping can be.ignored,
particularly if the beam intensity falls off very slowly from r = O,
the pulse intensity Qutput 632 versus time t, as displayed from a photo-
diode, can be visualized as a superpositién of sgquares of individual
hyperbolic secant curves, where each curve is delayed by an amount pro-
portional to its own pulse width T. The total superposition of hyperbolic
secant functions would tend to display a skewed asyrmetric pulse when the
:beam is detected over a‘large aperture at the target output. Use of a

“sufficiently small aperture would give a uniform bell shaped function

approaching the h.s. shape.



Suppose the output electric field profile is given as
N 1 :
&r,t) = 5= secn T to(rn},

where T(r) is the 2x h.s. pulse width at radius r as defined by T in
" Eg. (42), and t (r) is the time of the output pulse peak at radius r
and distance z. The observed electric field 1ntenulty é& from an
aperture with radius T, at the end of the rod of length z = L is pro-

portional to

é&l(£j ~ [ c—«—~—sech-{ —(—) - aL/é} rdr. B (62)

The experimental measurements of pulse ercas, to be discussed later,
could show deviations from the ideal 2nx h!s. case, partly-because of

the superposition effect indicated by Eg. (62). Depending upon the exact
form of T(r),'tb(r), and the eperture size r_, the measured pulse areas
could bé either greater or less than 2x because of the aboﬁe effect.

An additional transverse effect is‘indicated by the”dépendence of
gé, giveﬁ by Eq. (57), upon the pulse width v. A self-focusing propervy
can be assigned to the light beam aécordihg tq;Huygeﬁs princifle ifﬁ
g; increases with increesing peak field.é;(r) =_2/kT(r), which is equiva-
lent to an increasing pulse energy or decreasing v(r) for a 2n h.s. pulse.
This will occur if the applied frequency w is on the high frequency side
of the resonance line (/w negative), and the:phase velqcity.aY(k+k'(r)) of
the periphery -of the beam exceeds that of the center of the beam. This
focusing effect will produce an instability which modifies the plane

de

wave 2x h.s. expression foraz- given by Eq. (57) to an unknown form.
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Conversely, if the applicd frequency.w is oa the low freguency side of the
resonance peak (A positive), a different type of defocusing process
will ozcur. The simultancous existence of sélf—focusing, pulse stripping,
and diffraction mzkes it questionable to consider these effects as inde-
pendent of one another. The detailed nature of transverse beam behaviour

here remains to be worked out.

Effect of a Transversc Mode on Self-Induced Transparency

If the electromagnetic field is forced to propagate in a single
mode, as in the transmission of a pulse down a wave guide, or by the
maintenance of a ﬁransverse Gaussian profile of laser light down a
cylinder, the area theorem (Eq. (36)) must be modified to take this
property into account. Consider a dispersionless wave guide which contains
a uniféfmly inverted two level ampliﬁying medium, which restricts.pulse transz-
mission to a single mode expressed by a complex orthogonal mode descridbed by

the function gﬂx,y). The electric field expressed by Eq. (19) is then

written as

i‘[wt-kz-sﬁ(Z)‘]ﬁL c

E(X,y)é,t) = ﬁ(x,y)é(z,t)e c. . (63)

Therefore in place of Eq. (22) the formal methodl8 for introducing

single mode behaviour in Maxwell's equations results in the expression

' (2;](3:1)@' dxdy [g*(x,y) ) 13]- P;(x,y,z,t)e'i[“’t-kZJ

[ﬂé(x;Y) Idedy

’ o3 ’
where a loss term Bff/2 1s introducedf =€e ¢¢(z), P (x,y,2,t) is

&
=
4

. B
2

by the form of Eq. (21), and T} now takes into account the presence of the

wave guide.
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A
The mode function z(x,y) is normalized so that p - £(0,0) = 1 at the
~ L "4

A Luxlplvy)
2'~o' "1
enter of the besm, where p =j7———-r=~1- In Eq. (A4) the phass fact
; o VTS P =|TeTy [y, 7|t T Ear (64) the phese factor

inherent in &(v,y) is cancelled by its camplex conjugate which occurs in
o

~ .

p. For the emplifying medium the modified area theorem equstion for the

pulse arca A(z) 2t the beam center (x =y = O) becomes

_ %l[dxdy{g ' ;(x:y):[sirr{:'«(Z)[i . g(x,y)]}

=4 2
l[udy[; ' 5&,3')]2_

wvhere ¢« is the linear resonent gein constant for this particular mcde.

da(z)
dz

- Bua),  (65)

The tipping angle of vector P is given by A(z) = 6(z) only at the center

of the beam. In effect the electric fileld at x = ¥y = 0 is determined by

its functional variaﬁion imposed by the mode function é(x,y); and the

dipoles at & particular transverse X,y positicn obey the torque type equastion

(Eq. (18)) vhen driven by the electric field g(x,y)éiz,t) at that position.

The net area derivative et x =y = 0 in Eq. (65) is therefore determined by
the functional veriation éf s(x;j) over all x,y. By this procedure the con-
straint imposed by the "wave guide mode" bypasses the problem of dif-
fraction, but at the expense of éssuming that the s(x,y) function helds

throughout the evolution of the pulse area A with distance z. Nevertheless,

consideration of the relation Eq. (65) is much more realistic with regard

19

1

to questiohs posed in the literature regérding the production of "sx pulses'
by laser amplifiers. In these experiments there are large transverse varia-
tions in field intensity. and the pseudo vector tipping angle has a strong
depéndence_on transver#e %,y position in the bean. l

let Eq. (65) carry over to the case of a single transvefse mode

traveling wave laser. Assume a specific Gaussian transverse function
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'g*fﬁuvexp[~(x + ¥y )/r0 , where ro is some mean transverse distance. Then

Eqg. (65)reduées to :

dA

dz

= %(l“COBA) - BAJ2. o (66)

The equilibrium area A = cos-l(l - EBA/b)z éhowéhthat in the limit of
small losses (B — 0), A — 2x in thé laser amplification process. In the
plzne wave case it is popularly expzcted thet A — x but the existence

of the chosen tranéverse mode and définition of pulse area here happens
t0 yield A = 2n. if losses expressed by the psrameter B or B/a in-
crease in Eq. (66), the corresponding pulse‘area becones less than 2x.
Thus far the pulse area referred to is the exact resonance tipping zngle
0(z) at the exact center of the beam pﬁofile, vhere a small sperture is
presumed to monitor it. If the entire beam profile is measured, the
apparent pulse area is wodified considerably from‘its value at the center
~of the beam to an apparent value which may be different from 2z, depending
upon the means of averaging. Of cdurse ﬁhié analysis is to be taken only
in a qualitalive sense, because the equation whieh should apply is

sensitive to the mode function g(x,y) wnich is actually present:

For example if we choose gﬁﬁ = 21 > 5 the area theorem would
» 1+(x"+y )/r0
be given by R
© PA_, _ : .
dd ¢ sinydy | BA - o &7
@z Ty J2 , (67)

where the integral function above is the sine integral function Si(y).
Here the equilibrium area A for firite B is entirely different from the
previous casc, and for no loss (B=0) the equilibrium area A is indefinitely

large.



Orientation and Degencracy Effects

So far the analysis of sélf~induced transparency has assumed that
all dipole matrix elements are singularly defined for a simple two
level system, and that the dipoles'are oriented in a common direction
throughout the sample. In a gas the direction of light polarizstion of a
plane wave will specify a corresponding dipole moment polarization direction
et any time if the induced dipole moment is obtained from the excitation |
of ground Symmetric_states. There are caseé%ohowever, in which the
induced dipole moment will not océur in a unigue direction specified
by the abplied'field; instead, there masy exist projections of dipole moment
matrix elements upon the incident optical fiéld polarization direction
" which are necrly random in value.

Aﬁ instructive way to iook at the above problem is to say thnst the
dipole monerts are apparently different for different molecular orienta-
tions. This can be illustrated by a simple example in which two in-
dependent dipole species withidipole matrix elements pl and P, interact
independently with é light pulse. -Here pl and P, are not r;ndomly
oriented but are each polarized in the ssme direction. Only one mode
of electric field polarization will result, and the previousveréa
theorem analysis can be spplied to give
Py

(0 .
2. T |
Zr, 31n‘pzéplA¥. _ ' (68)

é‘—iﬁ = - (al/Z)sinA -

1, 80 that 6, = (pz/pl)A, and o and

a, are the absorption coefficients for each type of dipole. Eq. (68)

o ‘ dA | 1w <- aa _ 5
must reduce to g~ = - 2(01*02)A for A small. For az 0, the pulse

The pulse area is defined as A = @
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area will no longer be at 2rn. For (plaz)/p2 << al, the species pl will

dominote, and to first order in plqéﬂbzaf a stable pulse area

PO ] . '
A= 21 - lofsirw(Eg 2::> : : - .ot
AN |

will result. : | - L s
Now conside; gasvmolecules in which the dipole moment p is

induced only along & particular molecular axis. For lincarly polarized

light let Q denqte the éngle betweennéiand.fy’so that the effecﬁive field

acting on the dipole is EcosQ; An equivalen£ of this projection pro-

cedure is to specify that the effective dipole moment Pepp = pcos) inter-

acts with é; Hence the srea theorem is derived for such & system by

summing over all poséible vaiues of peff ﬁhich-ipteract with the uniquely

determined field.éfwhich is a consequence of the sum of all the dipole

interactions. Iet the pulse area A be defined as the tipping angle at

- resonance for all dipoles with @ = 0. The area derivative with respect

to distance, a&s expressed by Eq. (36), Yecomes the sum of all sin<%e§fé>
contributions over a unit sphere, expressed as'
aA 3 n By - 3 ‘ ,
= = - (£2)| sinQcosQsin(Acosn)dQ = - (==,)(sinA-AcosA). (69)
az e 2
~ (o} o 2A
The separate éosg'factor in the integral expresses the reprojection of
the field radiated by p_., back onto the applied field 5 Eq. (69) in-
dicates that no stable pulse condition exists in which complete trans-
parency occurs. If circularly polerized light is applied instead of
linearly polarized light, then with 0 = cos-l(peff/p) defined as the

angle betwveen the polarization direction and the propzgation direction,
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. .
aa %gklj sindQSin(ASiDQ)dg

| S Ipneq(A)
3y (8) + S57y(e) + g‘gz(?!n-l)(zgiﬂ(m-;-ﬂ ; (70)
S n=2 g

il
1
IR

where Jn(A) is the Bessel functior®’ of order n, finite at A=0. ' In the

limit of small A, Bgs. (69) and (70) reduce to the linesr  limit which
requires that %% = - %A.
For a.rigorous guantum description of orientation effects as they
‘affect transperency in a gag.the problem must be expressed in terms of
angular momentur Statésf Suppose the ground and excited states are
characterized rcspectively by a multiplicity of 2J + 1 and 2J' + 1, with
anguléf momenta J and J'. The dipoie-matrix elements involving trans-
itions between such states have been catalogedzz. Generally, thé con-
© tribution to the pulse area derivetive di/dz (essuming equal initial
ground state populations) from allcwed transitions between the states
lJ,mJ) and IJ',m ,) is proportional to Ip(@J,mJ,)Isin Ip(mJ,mJ,)[A/p;},
for the seme reasons leading to Eq. (36), where ]p(mJ,mJ,ﬂ is defined

as the dipole matrix element for the transitions m. «>m.,. The matrix

J J'
elements are assumed to refer to either n optical transitions, or o+
optical transitions. The dipole factor Po is formally arbitrary, but to

be specific it is chosen to be the largest of the lp( ,mJ,)l involved.

My

Generally the pulse area derivative may be written as
Ll
.>~J”|p(mJJmJt ) I Sin Ip(mJJmJl ) lA/pO}

) . » (71)
le(mJ,InJ.)l2 |

which is derived in the same way as Eg. (36). The summation is over

i
2

Si=

m_ and m

3 gt restricted either to all ¢+ transitions or to all r transitions,
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where each of mJ and mJ‘ can appear only once in the summation. The

factor o from Eq. (36) is defined here with pz replaced.tw'Ejip(mJ,mJ,)lz,

2p o
and A = 2 f Elz, 10 )t
h -0

Referring to the tabulﬁted matrix-elementézz, the numbers !p(mJ,mJ,)l
are either zero, or eqﬁalnto p,, for = end ¢ trahsitions if J=0, J'=1; J=J'=1;
J=1, J'=0; or J=J'=3. For these transitions the above formula reduces to |
-2asinA for which 2z h.s. pulses should be formed snd display the trans-
parency effect. The same remarks apply to =x transitions for Jzé; J'=3/2 or
vice versa. But for J=3, J'=3/2, the matrix elements for ¢ trensitions
are in the ratio of 1W3, resulting in Eq. (68) with pz/plrJé. The
femilisr form of - %SiﬁA is not repcroduced for larger J andHJ’- It is
curious that for J or J'=3 or 3/2 the analysis holds for x transitions,
but not for o transitions. If e circularly polarized light pulse enters
such a medium the result may‘bé that the system will be unstable against
the formation of lineafly polérized 2n h.s. pulses. .

For large J, J', the results degenerate into tﬁevclassically derived’
formulae. Specifically for large JEJ'il in the preSenge of n transitions,
or for large J=J' and in the breéence of ¢ transitions, Eq. (69).results;-
and for large J=J'+l in the presence of ¢ transitions, or for J=J' in
the presence of transitions; Eq. (70) results. It must be emphasized that
along wiLh J muét also be included the effect of hyperfine interactions,
unless fhe resultaht hyperfine splitting is‘characterized by.an energy
<L h/T. if a magnetic or electric field is applied to remove the degeneracies
in the above problem, the results are unchanged providing that the frequency
splitting of the degeneracies is small compared to the'inverse‘pulse width
-1

7! both and the inverse Doppler linewidth ~ T
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Iv. EFFEC Ob RELAXATION TIMES ON PULSE TRANSMISSION

The effects of weak damping upon the plane wave 2x . h.s. pulse
are now assesced for the condition.T/Té << 1. It will be shown that
the pulse eneryy decays linearly with distence, the pulse area deviates

“to a value‘slightjy below 2x, and the pulse delay time can deviate

considerabiy from the previously derived value.

Pulse Energy Dzmping

With the pulse energy per cmz defined by Eq. (41), integration of
Eq. (22), and use of Egqs. (24), (25), and (26), leads to the resulting

expression of energy conservation:
al ” |
@ f [0, - V(o) Is(aw)aze

- pt 40 [W(Aw,z,t)‘- W (iw)] o .
. f °dtf ‘ O T (rw)a(ew). (7:2)

T
The time to is defined after the 1ight pulse has decayed to zero. fhe
first term represents the residual energy stored in the two-level system}
whereas the second term represents the energy that was téken from the light
pulse and te@porarily stored in the systeﬁ, but whiéh hes deczyed by a Tl
relaxation précess (e.g. spontaneous emission). |
To assess the pulse energy decsy behaviour with T and I% finite,

2 K2 2

it is convenient to consider the modified fcrm of u2+v + - = wi, a consequence
w

of Eg. (lB}when relaxation processes are introduced. Upon multiplying
(24), (25), and (26) bty u, v, and W, respectively, adding and

performing a time integration, then



2
fw—w (ow,z,t) + uz(mu,z,t) + vz(mu,z,t)

2 t 2 2
= ‘—c—'Wz - F d‘t'[u (AN,Z,t'? + vo(w,2,t')]
w'o J...m Tg
2 t , 1 1 *
) 2<n_2 )f.dt'w(‘.“”z’t Yu(a,z,8%) - W ]
(V) -0 - -
. Tl

At t = =, u, v, and W will have relaxed by damping to their

equilibrium values u=v=0 and w:wo, reSpective]y, which they had at ¢ = - «.

Therefore, Eq. (73) implies that

SN!?‘

1
T2 T

o0 ,z(a;c,z,t')wz(m,z,‘t') 2 W(ow,z,t ") [w(ow,z,t') - wo]
f as’ +
-l l

In Eq. (72), we may choose to anytime after the pulse has subsided at a

given position z. The dominant contribution in Eg. (72) is then the

integral for t_ >>T,. However, since w(to) - W~ exp(—t/Tl), the sum
of the two integrals must be independent of to. Having chosen to >> Tl,
only the second integral necd be considered. Using Eq. (74), Eq. (72)

reduces to

2
00 -0 -l
al _ .2 +.dJ(m)de[vl(m’z,t) o]
dz T T wwd Y8 { T,
N gi' [u(ALo,z,t)2 + vQ@sz,t)Z]
2 T '

This formula is independent of the épproximations TXKT Té, and is true

1

for pulses which are not necessarily 2n h.s. pulses. Upon traveling

through the slightly lossy medium, an electric field pulse which deviates

Ly

(73).

}=0-'UM

(75)



from the ideal 2x h.s. form, only because Tl and Té are finite, will

induce a polarization for whiéh the above formula can be evaluated to
first order in T/Té. Ve may for'eiémple vrite u = u(s)sin(@/z) + Au,
where u{s) is the coefficient of sin(¢/2) in Bq. (52), 2nd Au is a
small correction of order T/Té. The integration over u2 in Eq. (75)
will yield terms at leasﬁ of the ordér (T/Té)2 from the integrand
terms (Au)u(s)sin(@/Z)/Té aﬁd (éu)z. Since only the first order cor-
rection is desired these may be dropped and we may replace u in Eq.
(75) by u(s)sin®/2. Similarly v and W may be replaced by the zero

order solutions given by Egs. (53) and (5L). Then after performing the

time'integrations in Bq. (75) we obtain

-] [ (4[] oo

-0

For the extremely narrow line case, the spectral distribution may be
defined as a delta function (%% = ©, no inhomogeneous broadening)

% : . .
g{aw) = 5(&w), and Eq. (76) becomes

‘9_71__%1&@1{; +E]=-@I_‘w<& CENL, @
dz 3 ‘I‘2 Tl 3nn2 I, i 7"’
since

7&: ch/(;sz) . (78)

by letting C(t) = E?ucch( ) in Eq. (41). For the inhomogeneous broad

line case, g(Zin) is constant over the region of excitation and
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The pulée energy loss rate expressed by Eq. (79) is plausibly expressed as the
product of the number of quanta Nhamg/T absorbed from the pulse and given back ‘
to it, the damping rate 1/T1 + 2/Té, and -thé time T. We must keep in mind that
Eas. (77) and (79) are valid only for T << T4, T,
If several 2= h.s. pulses are propagating through a slightly damped medium,
the above formulae apply to each of the individual pulses. Situations may arise
in which the number of 2x h.s. pulses is so large, thgt the additive effect of
preceeding pulses cannot be ignbred. Tmagine a train of n2xn h.s. pulses, and

suppose that T. is much longer than the total time required for the train of

1

pulses to pass a point z. Té, however, still is required to be much longer
than an individual pulse width, but no restrictions need necessarily be
Placed upon the time span of the total train as compared with Té.

Under such conditions, the first several of the train of 2x h.s. pulseé lose
energy as dictated by Eq. (76), whereas another 2% h.s. pulse loses energy as
dictated by an equation similar to Eg. (76), but with g(Aw) appropriately
modified to take into account the change in spectral population due to the
action of all preceeding pulses. The first pulses in the train éach therefore
lose more energy than the trailing pulses. Since the velocity of a 2ﬁ h.s. pulse
increases with its energy, aﬁd also increases as g(Aw) decreases (Eq. (56)); the
trailing pulses will tend to overtake the first pulses in the train. How
pulse splitting effecfs, illustrated in Fig. (7), countéracts this tendency for

pulses of similar initial time widths to converge is n?t yet known.

Effect of Relaxation Upon Pulse Delay

The effect of damping upon the pulse delay time can be calculated on

the basis of assumptions used for pulse energy damping. Define the delay time
: zZ
_ dz . . _ R .
as t, = Jqo Ok repla01ng'%71n Eq. (42), where we assume V = V(z) is a slowly

1 at(z)
varying function of z: and let V(z7'= > e for a 2n h.s. pulse. Therefore,
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_ar 1 .
using T expressed by Eq. (78), and N 0] together with EqQ. (79) and the

dz
definition of a (Eq. (36)), we obtain

4T 1 _ ' ‘
Er : | (80)
d e

where %- = ( ) T, * 5 ) and 1(z) < T . The form of Eq. (80) implies that it is
e
the result of a flrst order correction perturbati7n evaluation. For a given delay
-t /T

a’' "e

time t., Eq. (80) states that T(td) = T(td=0)e © ~, where the 27 h.s. output pulse

d’
energy is evaluated at different distances z, corresponding to a given delay time td'
If we define td = T when.z = I, the length of the medium, and if we assume td=O at

z=0, then

£y, L (&)
t., /T
Since 1T is constant from Eq. (78), then from Eq. (80), T(td) =Te d €, where T
is the input pulse width. Finally, Eq. (81) expresses
aLiT ’
T = - T log <1 - ———ETE) _ (82)
as the total delay time. From Eq. (8l), the final pulse width (z=L) becomes

T(L) = Tb/(l - aLTb/QTe)' The net delay may be therefore written as

T = T log(t/T,). o (83)
From the llmltatlon that 1< T o? the maximum expected delay time for parallel
beam conditions may be estimated to be about Telog(Te/Tb)'

Stable Pulse Propagation Solution with Damping

Loss of pulse energy in a passive homogeneously broadened medium caused by
Té and Tl damping can be compensated by focusing the light beaq down the rod.
-Formally this is accomplished by adding a term o€ to the righf side of Eq. (43),
which will then cancel out an expected loss term from the integral over
v(Aw,z,t). The constant g is ideally determined by parameters consistent with
the pulse solutions to the optical Bloch equations. In practice deviations

of the focusing parameter from
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¢ will occur over sufficiently long distances z, so that the balance
provided by @f is actually unstable, end the pulse will eventually
decrease or increase because of’thé instability. -Assuming the ideal
balance condition réasonabiy applicable to a short sample rod,
we consider a soluble casé where the
szmple is purely homogeneously broadened by l/Té (with l/T% = 0 and
l/T 0), and optical excitation is at exact resonance.

Solutions which satisfy Eq. (43) (with mf added to it) and Egs.
(24), (25), end (26) are found on the basis that the stable pulse with

area @ = 2x is expressed by
éiz t) ——51n[¢(z £)] = ——ucbh~(-t— z/V ), - (84)

and

X % | (@)

The inverse pulse velocity is now

(86)

‘B _ ExumNpT_Td
C

1/vd = o

where T, is given in terms of the actual pulse width T by:

d
2 | |
=r/< %TT- =) (87)

and the focusing parameter is given by ¢ =(1/Vd-ﬂ/c)/3Té. The Bloch

equation solutions on resonance sre
u=2~0

v = [Npsinp + Npsin(@/z)](fd/T), (88)

2T
3T
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‘end W = - X [cosp + %%; cos L + ;‘—5 ] (x /), ‘ (89)
where ¢(t,z) is given by Eq. (30).?

These solutions apply as well to the dynamics of the polarization in a
cavity, as given by J. Bloom6 relative to a radietion damping problem

in ndclear.induction. .We have not solved the above case when the line

is also inhomogeneously broadened (T§ finite).

Effect of Relaxation Upon Pulse Area

In the limit that Té and Tl are very short compared to pulse width
7, ordinary rate equations would apply to give a "hole burning"” or non-
linear saturation solution to the pulse propagation probleri. The inter-

mediate case of T ~ T! has so far been analytically intraclable, but an

2
explicit small correction to the guasi-steady state hyperbolic secant’
solution can be made in the case of T < Té, Tl by a slight alteration of the
25 condition. The "2r" area condition for the h.s. pulse is altered to

first order and is diminished slightly to the value (see Aprendix B)

\

A 2x(1 - T/Té)'. | (90)

Appendix B presents a generalized form of'the area theorem‘which includes
demping. It is not valid simply to replace g(0) by Té/x in @, which 6ccurs
in the area theorem expressed by Eg. (36), if homogeneous broadening is

the sole cause of the line yidth.
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V. EFFECT OF DOPPLER VELOCITY SHIFTS IN GASES

For gascous particles, which at rest would be at exact electric

dipole resonance with the applied optical frequency w,'a Doppler fre-- . : .

quency shift .
Mo=w - w=kv, | | | (91)

is present for those dipoles moving with velocity v, along the propagation
direction z of the light pulse. In this section it is shown that most of
the properties of self-induced transparency which have been discussed will
epprly to resonant gases, except that the pulse velocity and area undergo

2 transformation when the spectral line is excited off-resonance. This
transformation consﬁitutes Lhe principle difference between the resonsnce
response of dipoles fixed in a solid (e.g. rubylo) aﬁd dipoles moving in

a gas (e.g. sulfur hexafluoridelz). In the gas the dipoles can move in the
z direction through a slowly moving pulse envelope ékz,t) (of low pulse
velocity V) in & time comparable to the pulse width T. .

Consider an atom which is‘originally at position z0 at t;o, which
interacts with the electric field E(zo+vzt,t)=(f(zo+vzt,t‘)exp[i(w—kvz)t-kzol,
where z = z_+ v t and the phase term #(z) in Eq. (19) is absorbed into
the modulus é; making it s potentially complex quentity. Relaxation by
coilision is neglected by ascsuming that.T is short compared to the‘time
between collisions. We first show that the motion of the dipoles has negli-
gible effect in the evaluation of 6 vhen the spectral line is excited at
the péak of its resonance. For an inhomoggnéously broadened Doppler
spectral frequency width greater then the inverse pulse width L/T, only
those atcms ére excited wnich have a range of Doppler velocities extending

from VZ=0 to v, ~ + Eﬁ" Therefore, the dipoles can move et most through a

distance vzf¥k during a pulse width time T. Since the spatial extension along the

<«
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‘z direction of a transparency type pulse is spproximately o l, and

because the condiﬁion a—l >> x'holq§ in.order to avoid strong coherent

backscattering, thé small displacement of atoms through a distance A will

_not impose any significant variation upon the field modulus(f (z0+Vzt,t).
The Hamiltonizn for a pérticle dipole of the gaseous system should

be written as
: o ﬁ2
=M -p - w(mt) - 59, (92)

where the kinetic energy opefator of the particle of mass m is added to
the static Hemiltonian, Eq. (3); and we define z = Z4 + vzt, I the center
of particle mass L, My = ﬁkm, and ¥ the particléAvector velocity. Negligible
particle recoil effects may be ignored, and tﬁe dipole two level wave
function ¥ is therefore sevarasble from the particle weave function. The

2
latter is assigned a kinetlic phase factor expi(bhfz - E%EE)’ but this
factor has no effect upon the optical pulse resonance behaviour of the two
level systen.

Now define an observer at rest with respect to the dipole in a
Galilean frame of reference moving with Vglocity Vg’ and write z:%g:zg+vgt,
where %Z and zg are respect%vely laboratory and Galilean coordinatgs,
and Vg:vz fof the single particlé. The laboratory Hemiltonian Eq. (92)
will satisfy the time &ependent Schroedinger eqguation when the respective

laboratory and Galilean frame wave function qneand‘vg are related by the

transTormation

aw.z(z,t) a»'-g(zg.t) avg(z ,t)

3t 5o " Vg e | - (93)

g




The density matrices pz(z,t) and pg(zg,t) are related to one snother in
the same way. To evaluate the Spatial derivative in Eq. (93), let us
inspect the-electric fields E(zg,t) and E(zg+éz,t) vhich interact
feSpectively with two dipoles having the same Doppler frequency shift 4w
or velocity Vg, but are separated by a swall distance £z. It was pointed
out earlier that the greatest distance &n excited dipole would trave;
during the pulse time 7 is of the order of A, so that the scparation Oz

-

under consideration is governed by the relation A ~ &z << a-l. One sees
therelfore that any variation with &z of the field modulus éng,t) experi-
enced by dipoles, moving toward or away from poéition zg at which the
pulse is defined, may be neglected. The only difference in_the value of
the electric fjeld at the .positions separated by Az is imposed by the
phase difference.of the light taking place over a wave length. Therefore,
with the condition that @\ << 1, the relationshp E(zg+ém,t) = E(zg,t—éz/c)
holds, which signifies that the two dipoles havé experienced the same

"history of excitation by the field except for a time delay Lz/c. Therefore

the relation
Oz,
V(2 + 02,t) = v (2,0 - ) | - - (9%)

will apply, and a Taylor expansion of both sides of Eq. (94) yields

LAY 1 9V (z,5t)

IR At e )

to order o\ << 1. Use of Eg. (95) in Eq. (93) 2llows the tine dependent

Schroedinger equation to be written as
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iy {7, 1)=1h( 1+v£,/c M zg,t)--lf Sty z,t):(1+vg/c >.Hg( 7 U, (75)

where3{€(z,t) is given bty Eq. (3)with ® =gwn With W£(z,t) = Wg(Zg,t), therefore

’

g (2,) = H‘g(z,t) Wl(z,t) (96)

wherelﬂg(z,t) = (1 + Vg/chg(z&;t). The small term in Vg/c << 1 may be droppcd
as a factor of the(&;-'gaterm.jn the Galilean Hamiltonianlﬂg(zg,t)? so that
h%(z,t) is éiven by Eq. (3) with aB”a(1+Vg/c)' Subscqguent steps in the amnlysis Dlasir:
Eq. (3) will therefore include in a natural way the inhomogeneous broasden-
ing contributed by the Qﬁpﬁ?er frequency shift M = ng, which follows
. by virture of the term ~§ﬁ19- intrcduced in Eq. {96).

The speetral integration in Eq. (21) applies with g{iw) now to be
defined o5 the normalized Maxwell-Boltzman velocity distribution function,
and v, = Vg pertains to any one of the ﬁelocities in the Doppler spectrum.
The eleciric field E acts at position 7 upon dipoles with a renge of
velocities v, wvhich started from different positions zg at t = 0. If the
phase Tactor expi[(wmkvz)t - kzg] is chosen in EBq. (21), integrztion over
a distribulion of positions zg wvonld be cancelled by integration over
velocities v, contained in this phase facto;. This property of cancella-
tion is expressed by retaining the equivalent phase fTactor expi(wt-kz),
vhere z is a constant of the integration. However, the polarizaztion
u 4 iv still remains as a function of AW = kvz, to be integrated over
g{w), now defined as the Maxwell-Boltzmen distribution qf.velpcities.

The area theorem given by Egq. (36) remains unaffected by Dopﬁler frequency
shifts, or by any efTects these may bhave on the pulse shapes themselves.
The area theo;cm derives from those dipoles having zero velocity (Aw=0)

in the Boltvman distribution, ard it is only these dipoles which con-

tribute to the polarization v(0,z,t).
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Although the snalysis above is not generally applicable to the
case where g(/w) is asymnetrically éxcited of f-resonance, it can be
applied to the anslysis of the 2x h.s. pulse sclution expressed earlier
by Eg. (L2). 1In this case the conditions given by Eq. (94) znd (95) are
again valid if the problem is analyzed in & reference frame moving with
a velocity Vg chosen to coincide with the veldcity of dipoles at exact
resonance with the applied pulée. Relative to this moving freme the pulse
may be considered to excite a Sufficiently small bend of Dopopler broazdensd
frequencies so thzt Vg - inT << a-l, wvhich is a consequence of a-l >> A.
Let the peak of the distribution g(4w) be excited off-resonance by en

amount (. The resonant dipoles move with an average laboratory velocity.

Vg = c/u (91)

The analysis of the off-resonance
.excitation of ah inhonogeneous Doppler broadeoned system, which leads to
a 2n h.s.vsolution of the form §f Eq. (42), now fequires that. v, be re-
?laced by v, + Vg in Eq. (91).

The pulse velocity V

ol in the laborstory frame is now defined as

V =V +V . ' 8

where vpg is the pulse velocity in the Galilean frame. The 2x h.s.

field pulse in the Galilean frame is express=d as

(99)



with T defined as the Galilean frome pulse width, and Vpg = 2/(aTg).

>

The observed pulse in the laboratory freme is obtained from Eq. (99)

by substituting Zg =z - Vgt 'so that

é(z t) = -——J—’-“— Peuh[T (t - \—,—?——)], | (100)
2L PL
T, = TSVPU/V p is the laboratory pulse width, end sz = 2/(GT£)

A curious properiy arises if we imagine that the pulse giveu by Eq.
(100) excites the gas. Iet the gas be given a real flow velocity Vg in

the negative z direction so that VPE = Vpg - |Vg| passes through zero

and Vpg becomes negative, @s seen from Eq. (98). At sz—O the pulse will

momentarily stop, suspended in space, and escquire an "infinite width".
As sz becomes negative the pulse moves backwards toward the entrance
window from which it came.

At t = o the laboratory fram° pulse area is A ( = 2n(V /V ), which

is not equal to A (m) 2r for the pulse in the Galilean frame. However,

the tipping angles @ for the polarization P(0,z,t) are the seme in both
frames. The tipping angle is given by the pulse area in the frame moving

at the velocity of exactly resonant atoms

= x‘{ E”_(zg,t)dt =2n

Equally well we may find 6 in the laboratory frame by calculating
the time integral of the electric field modulus at the site of a moving

atom:

+00 +00
j & )at J B8 geon L (s - E - £ ap
6= x Az_+V t,t = sech — - - ) .
o L 8 o T pg Ty YRS

This quantity is equal to (1 - Vg/VpL)_lAﬂ(m), which, in view of Eg. (98),
reduces to O = 2n. The addition k’/ = O04/Oz to the propagation vector is

unchanged by the transformation.
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Vi, AMPLIFIED n PULSE SOLUTION WITH NO DAMPING
23

A nunber of authors - have inv%stigated the probiem of a propagating
amplified,ligh£ pulse. Hop? and Scullyzu, in particular, havé treated the
problen for an inhonogeneously broadened line. An analyﬁic description of a
continually amplified pulse is difficult to obtain, but we can present onc

on £he basis that the pulse leading edge is nearly infinitely steep, and

fhat it tra?els essentially st velocity c/ﬁ. As previously noted the area
theorem {Eq. (38)) states that a pulse in an amplifying two level system evolves
toward a s pulse. Aithough the area is fixed at n the pulse width T shortens
with increasing distance as long as T >> T%, vhere Tg is the ?nversc inhomo-
geneous line width. The pulse energy therefore must increaézf?]at a rate which
would slacken as the pulse shortens to thé point vhere T ~ Tg. The pulse shape

would correspondingly undergo a radical change. We present a solution for the

pulse shape in the range where 7 >> TE -~ a pulse function which is essentially

invariant for all z and satisfies the combined Maxwell sand optical Bloch ecuations.

If the leadirg edge of the pulse is defined analy%ically it would be im-
possible to obtain en overall pulse function which would describe both the
linearly amplified leading edge, governed by the power gain factor ~ exp(a),
and the ﬁain profile of the pulse of width T which follows at a lesser gain.
The smaller gain fof the lagging portion bf the pqlse is expressed by the
factor ¥ in Eq. (40), which is less than unity. The sharp front of the pulse
will be given a finite rise time short compared to 7, but comparéble to or
long compared to Tg. These.restrictions on the rise time will allow the pulse
edge té be described as almost infinitely sharp. The pulse peak at the leading
edge will be given an amplificaﬁion ~ exp(az/z), whilevthe n area of the de-
clining pulse envelope which follows is maintained by requiring that its pulse

width decrease as ~ exp(-az/z). The resulting pulse will have an energy gain
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~ exp(oz/2). The sharp edge ou the pulsc will be formed and will per-

sist by the action of saturable Tilters placed within the amplifying
mediun in order to stabilize it.

A pulse which salisfies the above limiting behaviour is the "half-

hyperbolic secant solution", where the leading edge travels along the line
t = MNz/e:

(f (0 for t - 37/c <0
(Z7t) =
-“2 — ey avel ..-_:.!—,..,.., v - B_'L. * > » -~ ‘Du'é
(K.T(E—)OLCII T(z)(t - )} for t ~ -=2>0,

(101)
and the inverse pulse wiath is given by
TH(z) = T-l(z:O)exp(%gi)- (202)
The corresponding solutions to Rgs. (24), (25), and (26) are now
for t > Tz/c respectively ' |
0 2 i i 2 . ' - )3 S
u = Wp £ [-20wrcos(luwt ) -b(our ) “sin(Awt)tanh(t/7)+ 2(awr) cos(Lmt)
- (Awr)?’tcé + Ap!n:é], (103)
vV = prz[l-a:.oz-rd)sinfp - )4-/'_\1:32 12tanh(t/7)cosawt
- 2m31~3s;j_;1/.\_:ot 4+ 2AwTcospsinAuwt ], (10k4)
2 2. '
-':jx-r = prz [—ACDQTe(l-Aa?'za) - (l-Adz2'r )coscp+2Am2121€cosAc0t (105)

+ 2AwT sin Awt sing]

if t above is replaced by t-Tiz/c, £ = £(A®w) is given by Eq. (51), and
P =4 tan-l(et/ %). For a Lorentzian 1ihe_r;rshape ,

(T%/x)

g(tw) = —-" 5, ond therefore
Yoy
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o ey T 2
f g(rw)v(rw)o(tw) = - NpT# Cc,(l - = tanh -) + s AP - t/T"

+ terms of order T%Z/Tz.; ’ (106)

It can now Bg verified that Eq. (22) is satisfied, except for the negli-

gible last tvo terms in Bq. (1C6) ebove. PFig. (8) shows a plot of the .
change with disﬁance of & | pulse shape-injected at z = 0. It

is assumed thot a satursble filter imunediately absorbs encugh of the lead-

ing edge of the pulre to form a shafp leading edre which begins to grov;
therefore; the pulse evolves into a half-hyperbolic secant n pulce shape.

The beginning oscillations of the pulse are drawn in gualitstively. Only

after the pulse leading sharp edge develops and the oscillations subside

does the amplified half 2% h.s. pulse conform to the analysis given above.

VII. EFFECT OF TRANSPARENCY ON PHOTON ECHOES

The area theorem given by Eq. (38) specifies that a given input area
60 evolves' into a final area 8(z) at position z, ﬁut it cennct predict
a photon echo7 since the theorem does not give any.infonmation about pulse
‘shape. Nevertheless, in an extended medium some 1mportant propcrtxes of
the photon echo can be deduced from the theorem; namely, it can describe
some aspects of the echo pulse area and support the justification that
the echo peak will not necessarily occur at times ZTS at th¢ output positicn
Z, where T is the separation time between 1nput pulses at z = 0. OSuppese
a /2 - n pulse sequence, corresponding to input pulses 8 (0) and 8 (O),
is 1nJeC9ed at z = 0, where T is sufficiently large so that the two pulses
do not overlap. The area theorem requires that the n/2 pulse will decay

to zero for z.i a-l. This condition applied in the gaseous uF6 photon
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éecho experinent of Patel and Slushérzs. Since the total injected area

is al(o) + 92(0) = 3r/2, the final 2rea in the output becomes Zﬁxez(z)-i-ﬁ)e(z),
where ee(z) is the sum of areas of possible multiple echoes following the
62(2) pulse. The most important first echo folloﬁing the ez(z) pu;se will
tend to be delayed and wiil occur at a time > Zg-because the aggregate of
all pulses ﬁill broaden as the sum of pulse areas increase together toward
2. Of course in the output the predominant echo following the 92(2) pulse
may have an amplitude greater than the first el(z) pulse since the latter
tends to diminish t&ward zero amplitude.

For any somple thickness, the dependence of the echo area ee is ob-

tained from Eq. (38) as

Ge(z) = 2tan~l{ [tan%(el(o)‘+ Oz(o)i}xp(- %E)}'- el(z) - ez(z) (207)
where ‘ : .

Gl(z) = Ztan-l{ [tan%@lgo)Jexp(- %E{}

del(z) N
is the solution of —5—— = - (q/5)51nel§z); and
-1 1 T 2 a -]

62(2) =2tan {l:tan—aﬂz(O):]exp[[ (- -z-cosel(z)dz_I }, (108)
. - deZ(Z) a i . ; . " 1
is the solution of —a— = " {Ecosel(z)J51n92(z). The effective "¢

for the second 92 pulse is given as acosal(z), which is proportional to
the number of on-resonance dipoles that remain in the ground state after

the 6, pulse has subsided. Therefore Eq. (108) gives
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ez(z) = 2tan ta ‘) . For small z, the small echo area is given

Lvlne ZO)
by © (z) alna (0)[1 cosé (O)]z, whlch is a maximum for 6 (0) = 90° and
92(0) = 180 , the same optimum condition which applies for obtaining a

. . 8 _.
maximum spin echo  signal.

VIII. EXPERIMENTAL RESULTS

The preceding analysis is based upon two important assumptions:
(1) the propagating light pulse contains no frequency modulation, and
(2) the pulse is described in terms of a plane wave. Computer calculations
contain these assumptions and reveal that a 2n h.s. pulse continues to
propagate. Yet the basic character of such e pulse shows up in actual
experinent where the pulse input is undoubtedly frequency modulated, and
the pulse is not in the form o{ a plane wave. The observed self-induced
transparency pulse appears to stabilize against frequency modulation, and
the pulse persists in spite of non-plané wave conditioné. In the previous
analysis sﬁall deviations from ideal assumptions do int;oduce small
'iosses, but the deviation which is most serious is any departure from the
plane wave condition. Transverse mode effects (as introduced by Eqgs. (64)
and (65)) or diffraction effects cause strong deviations vhich are not
completely understood. Transverse deviations in beam behaviour will grow
seriocusly with path distanceé exceeding a few Beer absorption lengths.

The purpose of our experiments with ruby is to check how far the
éxperimeﬁtal results conform to the phenomenological predictions of the
plane wave transparency model, and to set forth those observed pulse
characteristics which are in disagreemegt vith the predictions. Fig. (9)
indicates a particular expgrimental arrangement for measuring pulse de-
lays, but applies as well to a number of other measurements. A Q-switched

liquid nitrogen-cooled laseroscillator is followed by a ruby laser



smplifier which selects and amplifies the plane polarized E(2E) e»ahAz(i3/2)
output laser liﬁe, as indicated i:kthé energy level diagram of of Fig.
(20a). Tﬁe laser amplifiér scheme is shown in Fig..(ll). By thermal
tuning} the passive target ruby sample cooled at liquid helium'tempera-

ture to reduce phonon relaxation presents the hAz(i%) efaﬁ(ZE)‘trans—
ition which is tuned to the‘dfiving laser pulse. The target sample

(0.05% cr*3 1n A1203) is 0° ¢ axis oriented, of } in.diameter, and 2 and 3/4
in. length along the z a#is. The input pulse to the smplifier was of
multimode character‘longitudinally, but was of a selected single trans-
verse mode. Defocusing of theAtransverse beam profile by ébberations

in the amplifier ruby rod was compenséted by converging the amplifier

input ;d that when the emplifier output was recollimated (~f - 25 syétem)
an imege of the amplifier rod was formed near the Saméle. Péék outputs
between 1 and 10 megawattis ngé available,

For nén—]inear t;ansmission measurements of deviations from Beer's
law, the siﬁplest possible arrangement of source, sample, and detector
. wvas used. Corning glass filters, qhecked for linearity, were put behind
end in front of the sample. The output light was photographed with Polaroid
Type W7 £ilm at the.image plane of the exit end of the szmple replacing the
mirror in Fig. (9); .
The simplest demonsiration of non-linear trensnission

is: to move attepuators from behind the sample to in front of the semple,
_while keeping the totél filtgr attenuation constgnt. If the sample re-~

sponds linearly, then the placemént of attenuators would make no differ-

ence in the total transmission. If the sample transmits non-linearly, then

-more energy should be transmitted with attenuators behind the sample. Figs.

(12a) and (12b) show reproductions of the photographed transmitted output,

61
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with the input end output ettenuntions indicated. ¥Fig. (12s) resulted

from uoe of a multi-trensverse modeﬁlaser, and Fig. {(12b) involved the

use of a leser oubput with transverte mode control. Fig. (13)

is a grvaph of results obtained by observing the amount of attznuation
behind the sample necessary for the film to be unexposed. Each error

bar includes four or five such measurements. The finite steps of attenua-
tors and Tluctuations in the transmission resulted in about a x2 resolution.
The vertical axis is more properly called the peak encrgy/cmz.

The non-linear trancmission results zre in agreement with the ides of
low loss sclf-induced transparency propagating pulses, but could also be
explained by other mechanismsu such as "hole burning". With increascd
accuracy of theory and experiment, such measurements can perheps be more
indicative of whal is happening$ but iﬁ the experiments here, there are
other meore stringent and conclusive tests available to reveal the real
nature of non-linear transmission. The self-induced transparency effect
is unigquely distinguished by the observation of large pulse time delay and
pulse reshaping effects. By a 'time deley it is not meant that the pulse
peak merely shifts;'but instead that if Iin(t) and Iout(t) are input and
output intgnsitieé respectively, then Iout(t + %E) > Iin(t) is observed
to be the case for some time t, which would not be exhibited in the case
of "hole burning”. Here L is the sample length. This inequality implies
that enErgy has been stored temporarily in the dipole Systcm; and then
returned to the field pulse. The large delay time L/V which occurs for
on-resonﬂﬁce trensparency signifies that the geometric length of the pulse
in the pediuwm is of the order of VT.N a‘l for ¢ >V, and the medium

storce mont of the original pulse encrgy.



63

The initial delay observationé vsed & more prjmiﬁive form of the
laser thzn an improved version to be described later. There was no trans-
verse mode control, and the output pulse went diréctly through the Kerr
Cell into the sample as shown in Fig. (9). Detectors uscd wvere an 5-20IT
phototube and a Philco semiconductor photodiode. The output from the
sample was given an extra time delay by passage through thirty fect before
striking the phototube. The nonitor beam excited the phototube Tirst in
time. With the use of & scmicohductor dctector the sequence was reversed.
The semiconductor detector was placed in a plane which coincided with the
image of the output surface of the ssmple formed by a positive lens
(mognification x1k).

The non-linear transmicsion measurements indicated a transmiesion
loss éf about 75%. The largest pulse delay should occur vhen the pulse
width 7(z) is large, comparable té Té, and if it is held épproximately
constant in distance. Slight convergence of the incident lighit beam
sllows a nearly constont T(z) by increasing the beam energy per sz in order to
compensate for beam losses. Therefore the net delay tiﬁe would be given

by al T/Z, which is greater than-the longest delay time ~ Telog(Te/%o),

given by Eq. (83), for a collimated beam. -.

This situation was arragned so tlmt the beam diamtere converged
by a factor of about 2 1/2 through the length of the sample. Delay
observations under these converging beam conditions aré described in Ref. 10.
Figs. (1k2) and (1hb) 1llustrate éxampies of the first observétionslo ﬁnder
parallel beon conditions Qf pulse delay and reshaping with the simplest ar-
rangeuent in Fig (9) of source, stmple, and detector. A semi-conductor de-
tector was used in the earlier converging beam investigations which

detected a maximum delay of
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about (0 nsec. later delay observations vere made with a new ruby luscr-
amplifier system which produced shorter input pulses (~ U nsecs). With

parallel beam conditions, delays of about 10 nsec were observed.

2n_Pulse Measurcments

The delay measurcments, referring to Figs. (1llic - g) output signals,
were made with a new arrangement shown in Fig. (15). The detector measured
.the light intensity which weﬁt'through_a mask in the image plane of the
output end of the sample, of which a 59 micron cirele was brought into focus by
an f-2 lens. :
With the seme new arrangement, the laser-amplifier output was directed
into the sample, and a filter which trensmitted only one sensc of circular
polarization'was put between the aperture stop above and a ITT 5-20 photo;
tube.. Two ground glass surfaces in front of the phototube, combined with
careful positioning of the detector, renoved the possibility of serious
dependence of sensitivity upon the orientation and position of the detector.
Measurements of the pulse heigﬁt and half-width werec made of sample outpubt
pulses. Prior to these messurements the phototube was calibrated by ob-
serving the output current produced by a weak incident incoherent light
bean which.was spectrally filtered (6940OA - 200A wide band pass filter).
The input intensity was measured with‘a calibrated Epply thermopile. The
calibration was checked by measuring output currents produced by the photo-
tube when'irradiated by a Q-switched laser pulse.' The meacvrements vere
comparea with ballistic ;alorimeter measurements with agreement within 20%.
The meesurements of the Epply Fhermopile were chosen. The final calibra-
tion was estimated to be accurate to within 10% and was represented in
terms. of the vertical displaccment of a 519 Oscilloscope trace, measuring

" 71.5 watts/em. The time resolution of the ITT photodetector was judged

to be adequate for thesc measurcments by virtue of the observed 0.5 nsec
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half-width pulse response of the detector to a mode locked Nd laser pulse.
Transmission through the various oPtical elements was calculated to be
59.5%. The effect of the sampie end reflection was tasken to.be a trans-
mission 10ss of T.5%.

Vith the sample temperature near h.2° K a number of sample output
pulses were recorded. Fig. (16) illustrateé typical output signals which
provide data for the graph in Fig. (17). The graph plots pulse height vs.
pulse width for pulsgs'selected by the following criteria: the pulse
had to have precisely two points of inflection, one on the lecading edge,
one on the iagging edge. For example, the pulse in Fig. (16b) was accepted
but a pulsc shown in Fig. (16a) was not accepted. The value of pz/q for Cr+3
in ruby was cmnpﬁted from the integral abscrption cross-section data by Nelson
and Sturge26 (their Table I) to be 13.3k x 10-1{2 cgs vnits. The effective
dipole moment p in the measured gquantity pz/n is not the isolated dipole
moment of hAz(i%) <> E(2E) transition in Cr+3, but is instead its shielded
value. Use of this valve 1s the eqﬁivalent of expressing the interacting
field.é,as the local Tield at the site of the dipole in thevhost medium

A1203. With this value of pz/n the relation between pesk power S_ in mega-

P
watts and the pulse width THW (full width at half maximum intensity) of a
circularly polarized output 2x h.s. pulse is SP = é%léMW/cmz, where THW
. !
HW

is the number of nanoseconds which defines the full width of the observed pulse
at half-naximm intensity. The pulses have o measured area always less than the ideal 2x _
value, roughly between s and 2x. The theoretical logarithmic plot of SP versus.
THW is shown in Fig. (17). It is also significent that no unique relationship

is measured boetwesn the peak pulse energy and pulse width, as showm in Fig.

(17), =althousn | the product of peak pulse heights over a broad



range of values, with their corresponding pulse widths, still yield a

restricled range of areas. .
Within the planc wave model a nwaber of causes con be invoked to
account for deviations from the ideal 2x zrez value. In ruby both the

+3

right and left circulserly polarized traveling waves interact with Cr
the

ions. Comnsider, for exawvle »~ circularly polarized input pulse of a given

sense of rotation (g+), which is above the n area threshold condition. It

will partially convert to the opposite sense of rotation (6-) because of
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birefringence (the ¢ axis of the ruby crystal deviates from the cylindrical aiis
throughout its length by several degfees). The small pulse area asscciated with the ¢
component will be below the x area threshold for self-induced transparency

and be absorbed. This constitutes a loss mechanism whiéh drains energy

awvay from the o+ component vhich initially exhibits the transparency. In

ruby additional complications result from the dynsmic mixing of magnetically

3

degenérate states of the Cr+ optical levels, where the mixing is caused
by the local magnetic fields of neighboring A127 nuclear moments. Another
contribution to non-ideal 2x area behaviour is the fact that planc vave
conditions did not persist in view of the properties of pulse stripping
and diffraction effects discucsed previously. The lack of uniform pulse
intensity profile, even for plane wave behaviour, is also a contributing
fector, as mentioned previously in regard to Eq. (62).

The major cause of the consistent deviation of measured output pulses from the 2% area

in Fig. (17) is the fact that the output pulses exist in the form

of small filements, smaller than indicated in Fig. (12). The aperture stop

sreas used to calibrate the response of the detecting System were not in

general completely covered by the output pulse cross—sectional profile aress.

The filament areas were less than the stop area, and sometimes a fraétion

of the filament area would Tall outside of the stop area boundary. An in-

spection of the situnation would account for measured pulse-area angles

less than 2x and for the deviation of the average slope of measured points

in Fig.‘(l7)away from the line slope in the case of 8 = 2x.

~ ifention should pe made of some of the uncontrolled experimental aspects
of the ruby laser scurce and sample system. It was noticed that strain in-

duced birefringence of the ruby sample at liquid helium temperatures was
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considerable in its influence uponlthe transPafency effect. When the
strains were reduced by mechanicall& clamping the gample less tightly

at the exit ené, the transparency threshold condition was increased. With
strains minimized asvmuch as possible, the sample output ieam appeared to
be quite uncollimated and the beam came out in & cone of about S5 to io°.
At a minimum sample straih a higﬁ‘resélution photogréph of ﬁhe fransverse
variation of the output is shown in Fig. (18). The inputvcdntained fila-
ment dismeters typically about 10 to 30 microns. It is clearly seen that
the planc wave conditions in the experiment arc violated to some degree.
In the presence of high sample mechanical strain, it is suspected that the

3ions and the light took

primary interaction region gt resonance between Cr+
place near fhe output end of the sample where the end clamp produced 2
predominant mechanical strain. Mechanical ccmpressive strain on ruby shifts
the ebsorption line toward lower frequencies. This probably allowed the
sample resonance at the fod exit end region to be more easily tuned to the
lacer source, because the laser socurce frequency always tends to be on the
‘low side of exact résonance because of flash lamp heating. Wheﬁ the strain
is relieved, the light interacts with eésentﬁally the entire sample length,
aﬁd Eecause the beam forms small diameter filaments, difffaction effects
then become more impbrtant. The diffraction effect reduces the power along
the filaments, and therefore demaﬁds a higher driving power in the input
to achieve the transparency thresﬁoid condition.

fhe question as to why small filaments persist in these preliminary
transparency effects over long distances may possibly be answered in terms
of pulse stripping, focusing, and diffraction effects vhich are present

simultaneously. The power levels in a filament in these experiments are small



compared with that required for self-trapping in sapphire. Nevertheless,
8lthough the conditions for plane wave propzzation in the experiment are
violated, yet the gross experimental results are predicted by the plene

wave theory of self-induced transparency.

IX. CONCLUSIONS AND DISCUSSION

The self-induced transparency effect has been eXperimentally confirmed,
and has been analyzed mainly on the basis of ideal assumptions. An un-
damped ensemble of dipole oscillators is chosen as representative of an
inhomogeneously broadened two level quantum mechanical system which is
al or near resonance with a_pulse of plane wave radiation. The effect of
phenomenological relaxation damping times is accounted for to first order
in the ratio of short pulée width times to long damping times. Experi—
ments with ruby indicate that the plane wave condition is violated, end
that transverse instabilities exist in the beam. Intensity variations-
acrossvthe profile of the pulsed laser input beam are possibly assoéﬁated
with these instzabilities and impose further devistions from the predicted
2 h.s. area and shape of output pulses. These complications arise from a
number of simultanecous effects such as beam diffraction, ffequency ard
phase modulation, anderratic laser pulse outputs. Future investigations of
of the transparency effect must cope with deviations Trém plane wave con-
ditions, particularly with regard to the influence of transverse properties
of the beem as discussed, for example, cbncerning a single transverse mode
relatihg to Eq. (65). Of course the plane wave condition is more easily
-satisfied in transpareﬁéy experiments with systems where the dipole moment
p is large, and promises to be a reasonably obeyed condition in experi-
ments where the power required for a 2n h.é. pulse is not too large, as

-

12
in the work of Patel snd Slusher™ .
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In spite of a number of unéontrolled aspects mentioned sbove, the
-experimental resulis indicate that prépagating transparency type pulses
do exist as strikingly Symmetric'output shapes which are remarkably stable
sgainst non-linear disturbances caused by frequency modulation, phase
shift, and amplitude modulation. A rigorous mathematical proof of the stability of the
2 h.s. pulse with these peftﬁrbations‘taken into accoaount is, however,
presently lackingl

‘There are indications that there‘ﬁay be breakup of'input pulses of
area A > 3n into separate 2x pulses. The nature of the frequency mode
dlstrlbutlon of the inJjected pulses may also give rise to separate 2x

(e.g. the output illustrated by Fig. 16-d).
pul%eu, where each pulse has a different center flequency/ Single output
pulse areas are measured to be in a range between n and 2m, but this
range may be attributed to the difficulty of averaging the pulse inten-
sitics over a sufficiently small region. The final pulse outputs are con-
sistent with the notioh that they are made up of a superposition of several
25t h.s. pulses if the plane wave cbndition is{obéyed, whether or not the
input is frequency modulated. The nature of‘%he trensverse output varia-
tians is not yet understood.

The Faraday rotation effect has been diécuSSed27 in its relation to
transparency in ruby. This effect recsults from the dependence of the wave
vector k, given by Eg. (57), upon the shift of the spectrum g(/w) with an
externally applied magnetic ficld, if the optical levels are made up of
Zeeman degenerate states. In ruby each part3c1p¢t1nn level is doubly degen-
erate. If the degeneraci¢s are slightly lifted by a magnetic field, and the
center of the g(ém) line is tuned previously in zero field to the applied

optical frequency w, a plane polarized inpht pulse should transform into a

“planc polarized output pulse with, however, the plane of polarization rotated_through e
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* anomalously large angle. It is instructive and realistic to point out

what the actusl experimental condiﬁions would impose upon this effect.
Exact tuning at the center of sPectrél distribution was not the case
in our ruby experiments. If. the light freguency drives the resonance on
one side of the peek of g(ém), the plane wave model predicts that right
and lefi circularly polarized 2z h.s. pulses will experience different
wave vectors, leading to a Faraday rotation, and will also travel aﬁ
different pulse velocitiés. Consequently, the right and left circularly
polarized 2% h.s. pulses will possib]y.dverlap at the output so that the
tail of one pulsé overlaps with rise of the other pulse. The output
would then first appear as a function of time to be circularly pélarized
in one sense, become eiliptically polarized as the two pulses‘begin to
overlap, become linearly polarized when the two pulse intensities are
simultaneously egual, again become elliptically polarized, and finally
become circularly polarized. The two pulses would become well separated
when aﬁout_a radian of rétation ié achieved. If the field intensity is
ﬁot uniform across its profile an added complication is introduced be-
cause of pulse self-focusing which the above argument ignores.

A number of special cases of asynptotic pulse behaviourvin an in-

23

verted two level amplifying system have been exsmined by others™ -, and

the one case by us in this paper. The transperency mechanism plays a

role in the pulse shaping and steepening process before asymptotic limits

are réached, and should serve to predict as well certain asymptotic
limits within the scopz of its assumptions.

We conclude by posing the question: Are there ahy unknown long term
transient effects conceriing the interaction of coherent radiation with

metter which may reveal themselves only after very careful experiment?

[
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%It is not inconceivable, for exampie, that some aspect of self-induced
transparency might exist in interstellar space, where particle densities
are very low (see Appendix A), and relexation times are very long.
Questions of this nature must foliow if.care is taken not to accept the

predictions of rate equations under conditions where transient coherence

effects may be important.
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For the induced electric poiarization to be represented by a
continuwn, the relevanlt volume to be used for averaging muast con-
tain o large number of radiating dipﬁles s0 that the fractional
statistical variation of this number is then small. A simple argu-
ment shows thst a volume ~ XQ-Z should bé chosen. Consider a small
region in the plane wave where a coherent source of dipoles is spread
over a circle of dismeter d which radiates into a diffraction‘cone of
apex angle ﬁ =~ x/ﬂ. The electric field envelope é.changes appreciably
in a length a—l. The pertinent averaging volume ié therefore determined
by the distance a-l over vhich diffraction occurs, and the condition
that the beaﬁ spread in diameter, given by ﬁd—l, is approximately equzl
to d itself. Thus d a=4&78: which determines an effectivevradiating

-2

volune = Ax . The effective number/v of radiating dipoles in this

volume is not NXa—Z, but must be given by
N - NM-ZTE/T > 1, : o (1-4)

which is to be_large. The extra factor T%/% arises because the band-

width l/% of the driving pulse excites the fraction T%/% of all dipoles
_ 3ﬁc3

in the spectrum. One can define 7T =——= to be the inverse of the
- lse 8p2w3

Einstein spontancous emission rate. Upon applying the definition of «

in Eg. (36) to Eq. (1-A), the inequality becomes

e ' ‘ (2-4)
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It is already assumcd that

oh << X | : (3-4)
becausc of small backscattéripg, and furthermore
(4-A)

so that chtaJn]y it is true t‘at T LT , because of the condition

inequality lee
T' < T]S . Thercforyl(? -A) is a consequence of these assumptions. The
inequalities (3-4) end (4-A) limit the maximun value that one can
choose for N, which, surprisingly, makes the inequality (1-A) less

strong as N increases because o is proportional to N. Conversely,
(1-4) |
the 1neou~11py/hrconps greater as N decreases and the relevant radiating

volume becomes larger. The approximation that the light is a piane wave,
hbwever, brezks down if N becomes too small. |

An alternative to the expression Eq.(E-A) is to note that we can
write Eq. (1-A) as N = (NA T*/T) ( )2 >> 1. From Eq. (3-A) the factor
'(xa) represents approximately thexvery small fraction of the total
propagating energy which is backscattered, although NA Tg/m'may represent
és little as one or a fraction of a radiating dipole, on the average,
within a wave length. In the experiments 6f Patel and Slusher,lg’25
‘the continuum description possibly applied to as few as one radiating

3

;SFB molecule per A\~ volumn.



APPENDIX B

The effect of Té and Tl upon the pulse area is now considered. In
Egs. (22), (24), end (25) replace v by v exp(t/Té), u by u exp(t/Té),
and ({by éexp(t/’l‘é).. Thus, Egs. (24) and (25) are unchanged but Eg.
(26) ic not. With no demping the area theorem proof used Egs. (26)

only to evaluate v(A#=0, t —»®). A similar derivation before this

final evaluation now yields

“{f t' /} t",‘Té.
C(t z)e . dt} <2Np llm [v(aw—o, 2 t)e 1, (lj-B)

where t in this appendmtis the retarded time t-T] z/c.

/ Ifl:left hand side of'Eq. (1-B) converges; vhich requires
that émust decrease faster than e-t/'I , then this result may be regarded
as an exact generalization of the area theorem to account .for homogeneous
broaden.ing. Eqg. (1-B) can be expanded in powers of l/T vhere only the ‘

first order correction will be considered. let a delay time tc(z) be defined

. such that

f é(t 2[4 -t ( )]at’ = o, - (2-B)
prOportlon 3 to o
where t (z) ispthe first moment of t relative to t = 0-

Then to first order in ‘I‘é -1

© t' /1! : dt
4 2.0 _ vy GA A c _
—_{dz I;o Kf(t;z)e _ dt'} = (1 + tc/Té)« 3t ——-—Té TR (3-8)

Furthermore, it may be verified that the following is the solution, at
exact resonance =0, to the optical Bloch Eqs. (25) and (26) to first

order in 1/T}, 1/'rl!.



t '_.
-‘-J-f) = {l +f [KC(t )<%v - -,-I;])USin?(p (t')

-t/T)
+ = é(t Jttsing(t' )JCL} e / “sing(t)

»+ co-:u\(t){'[; Lxé(t )Q %l\)t'cos?:cp.(t')

C:t )t! cos$(t')Jdt }e /12; (4-B)

*-BII--‘

: : -t/T tr .
. »] l A f [ g2 l l 3 ' o ]
(We 72y = - l+e - cosg(t)ql + kA" N5 - 5 sin2g(t
: ) - /Tl
-—; nC(i )t'sing(t’ )jdt'}c

+ sing (’r){j; (e )\T' ;;, >t'c052<p(t')

-t/T
+ k(") -% t'cos&p(t')—ldt'}e 1
1

Combining Eds. (4-B), (3-B), and (1-B) leads to the result

t E dt
da A
(} + ﬁﬁ Iz + —éazu = = —alnk{l-+Jr <;” - l/u,é;1n2¢dt

[ B -
f (—- -—-s_mcp dt} - %cos;—k{f {:KC (—]:é - \tc032(p + ﬁéicosq)Jdt}
-0

/ T
Eq. (5-B) is a generalization of the arca _theorem to first order in T/Té

(5-B)

H3| -

and T/Tl. We now restrict our discussion to a pulse which has evolved
to nearly a 2x h.s. pulse form. A deviation from this form will occur

only because Tl and Té are not infinite. The pulse arez A will differ



from 2w by a negative increment to first order in.l/Té. The pulse
itself differs from the ideal hyperbolic secant shape to order L/Té.
In the various integrals on the right hand side of Eq. (5-B) é and ¢

may be taken to zero order. The above Eq. (5-B) then reduces to

L dt
. c VdA |, A o . hor . 2o .
(} + TE.) 52 TZ Tt 251nA t 3Té.JlnA + §TI - sinA. (6—3)

For the nearly 2ix h.s. pulse, let A= 2x+OA, vhere M is an area incre-
nent. To zero ordey dtc/dz = or/2, for T >> T%, as seen from
(transforming ©o the retarded time drops the T)/¢ term).
Eq.(56)/ Since AA is of order y[Té, keeping only terms of first order

in l/Té in Eq. (6-B) leads to

a(M RO a ;
gz Lo - mi T g (7-B)
' 2

r(z) = - I /nzdz'e 2(z2") 0y, (8-B)

which states that M relaxes toward the value 42nT/Té. The fractional
change & M tofirst order in 7 in an absorption length a_l is of order
Té-l. Therefore, to first order,

A= 2x(l - T/11), (9-B)

which is indepcendent of Tl, in contrast with the pulse energy loss result

of kq. (9) which dcpends upon both 1. end Té.

1
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- FIGURE CAPIIONS
Fig. 1. Pulse srea plots of self~inéuccd transparency arce theorcm.
(a) Branch solutions to Egq. (36) are plotted. The entry face of the
mediun ma& be ot any valve of z. For an absorbing (amplifying) mediun
with g > 0 (« <(O), the pulse-area evolves in the direction of increasing
(decreasing) distence z toward the néarest evén (0dd) multiple of =.
Even and odd multiples of = aréa solutions are respectively stable and

unstable. The distance z is marked off in units of x ¢ = om for Figs.

(1-8) end (1-b).

(b) Computer plots of evolution of input 60 = 0.9 and Oo = 1.1x
pulses vith distance and time. The time scale may be fixed throvgh an

arbitrary choice of electric units and the assignment of 90.

Fig. 2. Computer plot of function F (Eq. (40)) versus arca 6. A

2

The trend of oscillations toward F = O appears as shapes chosen approach

flat spectrum g(/w) = constant is assumed with the condition T >> T%.

that of a smooth symmetric pulse. Incoherent demping because of finite
Té will tend to average out the oscillations and increase the oversll

value of F for 8 > x. A flat spectrum g(A®) = constant is assumed.

Fig. 3. Sketch of rigid pendulum solutirns of.Eq. (47) closely
. related to the 2x h.s. case.

(2) The tipping angle @ oscillates about the equilibrium position

= 5 for the rigid pendulum, which ié given an initial potential plus

kinetic energy slightly less than the critical energy (the potential encrgy
in the upright position). The electric field éf-é is shown:.with its cor-
recponding oscillations.

(b) For the initial energy preciscly equal to the critical potentiazl
encrgy, the period of oncillations is infinite, and the pendulum yie}ds

L J
one oscillation with i)proportional to a sirgle 2x h.s. field pulse.
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(¢) 7he tipping angle ¢ increases indefinitely for the initial
total enerpy slightly exceeding the critical potential enérgy of the

upright position.

Fig. 4. Computed absorbed cnergy by @ thin sample from a Goussian
pulse of Tixed pulse width as a function of pulse arez 0. A flat spectrum

g(fvw) = constant is assumed..

\

Fig. 5. Trajeétories of the pseudo-vcctor g(ﬁwr), driveun by a 2x h.s.
field pulse, for various values of Mwr. The radius of the ephere is

|p(awr)| = Np. Units of W are x/o.

Fig. 6. Computer plots of ebsorbed energy and é{field pulse shape,
versus distence and time, for a 60 = 2.9z input pulse as it evolves toward
& 2x pulse. The area theorem Eq. (36) requires a pulse width narrowing
and_peakbpower amplification by almost a factor cf two. The absorbed energy
_represents energy stored in the two level system. The units are the seme

as in Fig. 1.

Pig. 7. Computer plots of bulse shapes versus z and t for initial
input pulse areas 90 near 4x. Final indiyiduai pulée areas,.which split
away fron the initial pulse, evolve toward 0(z) = 2n for z >> a—l. The
energy absorbed in the case of 60 = b is plotted in Fig. (7—;). Pulse
separatiohs at a given z, and final 2x h.s. pulse widths T, depend upon

) . {
the input pulse areas 90 and shapes chosen. Units of (, z, and t are as

in Fig. 1.

Fig. 8. Plot of = pulse solution of Eq. (99) for the case of an

N . . - -1 -1
amplifying medium, valid for z 2> 4.16c: . For z < 4.16a = the pulses are
sketched in qualitatively to show trailing oscillations which finally dis-
appear before the "half hyperbolic secant” solutions are reached. Betueen

labeled distance points the peak pulse umplitudes approximately doublos.



Fig. 9. Experimental arrangement for monitoring self-induced trans-

.
-

parency pulse delay and transmission intensity.

Fig. lOﬂ

(2) Energy ievel diagram of r&by laser pulse source and the tergct
ruby sample. The hAz(i%) level is represented as broadened to account
for the inhomogeneous g(lw) spectrum. Phonon relaxation betwcen the
26(28) and E(2A) level is suppressed at 4.2° X to avoid Té << Ty where
T is the input pulsé width. The ruby laser E(2H b~>hA2(i%)) cutput is
suppressed. |

(b) Sketch of ruby two level system inhomogencous spzctrum g(Am)l
The relative magnitudeé of homogenédus (l/Té) and inhomogenous broadening

(%*) are schematically shown.
2

Fig. 11. Ruby leser amplifier system. The oscillator cavity was
formed by the curved mirror CM and the flat feedback mirrﬁr FBM. The
~o§cillator beam path, indicatéd by the single dashed line, went throuch
the laser rod LR, the Brewster angle calcite polarizing prism CPP, the
Brewster angle Kerr cell KC and the polarizing Rochon Prism RP.. Two
stops S force single transverse mode operation. Due to the high gains

available (~ 10°

with double‘pass), an 85% reflective mirror RM was used
inside the éavity to couple ocut energy. The Kerr cell was éperated at a
voltége so that the net feedback ﬁas about 1%, thus suppressing the unwanted
hAz(i%) e E(24) transition. The output was focused'with a lens I, through
a very dense saturable dye.solﬁtion SD, and the beam was expaﬁded in
diameter by lenses L to fill the laser amplifier rod IA. The a@plifier
output was recollimated to form the final output. Miriors FM served to

. Told the beam back onto the bench used to suppori the system. Flashlamps

are designated by FL.
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~Fig. 12a - b. Trensmitted output intensity photographs of pulses
indicating non-linear transmission, with indicated input and output attenua-
tion factors. Outputs in (12-2) and (12-b) are without and with transverse

mode sclection respectively.

Fig. 13. Energy output versus input ruby-light trenemission through
sample (arbitrary units). The megnified (x1lt) output is attenuaied until
Polaroid Type-47, 3000 speed film is unexposed, thus determining peak
transmitied encrgy/cma. Error bars represent output fluctusiions pre-
sunably caused by several uancontrolled characteristics of the ruby-laser
source and the finite steps in the output c¢alibrated attenuvation. The
dotted datun is the transmission with the sample(at room temperature, and

the dashed line represents a linear transmission law.

Fig. 14. Pulse delay observations with a collimated input..

(2) 1Input and output laser pulses with semple at room temperature.
"An optical delay served to separate the two pulses. The second pulse has
traveled through the sample. Sweep speed is 20 ns per division with
signel from a FW 114 Model ITT vacuum photcodiode.

(b) same as (a) excépt that the sample is thermallyvtuned by cooling
- to liguid helium and a x20 attenuator in output beam path is renoved.
Pictures (a) end (b) use the system shown in Fig. 9.

(¢) 1In picturés (c) - (f) the laser amplifier system of Fig. 11 was
used. Different detectors were used for observing sample input'and output, with
cables and a "tee" used to séparate the respective signals. Sample detuned at
room temperature with output magnified x5.05 and stop diameter 12 mm (2.4 mm at the
sample output face) attenuated x11,2000. Time scale: § nsec/div.

(a), (), (£), (g). Somple tuned at temperature ~ 4.2° K with stop

diameter 0.85 mn {0.17 mn at the samole output face) and no attenuation.
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The first pulse is the monitor output: The second pulse is the detector
output. Cable and distance delays amounted to 13 nsec. Cable reflections

occur at the far right. Time scale: 5 nsec/&iv.

Fig. 15. Apparatus used for pulse area measurements. The sample
output passed through lens 1 which formed anAimage of the sample output
end E in the plane of the stop. The output’through_the stop aperture
was collimated and passed through a circular wave polarizing system with the -
mask M blocking the unwanted component. The f-number of the system was

limited by the output dewar windows to a value of about f = 2.

Fig. 16. Typical oscillographs of trensmitted light pulses. Oscil-
lograph (a) was not acceptable for pulse arca measurements, while oscillo-~
graphs (b) and (c) were acceptable. Oscillograph (c) was considered to
be two separate pulses. When two separate pulses were observed, the tfailing
puise alweys had a smaller @eaSured pulse area. Occasionally an oscillio-
graph éimilar to (d) was recorded. (d) agreed well with the idea that the
'output was two 2x h.s. pulses of different fréquencies. Time scale:

1

5 nsec/div.

Fig. 17. Logarithmic plot of peak power versus pulse width. The
circles represent points obtained from measured pulse widths and areas.
The experimental error, apart from averaging over the 59 micron circle,

is small in comparison with the data scatter.

Fig. 18. Photographs of the sample output intensity. The photograph
in the upper left corner is the reéult of a resclution test. The other
three photographs are output intensity photographs. The scale represents

59 microns at the photographic magnification of x90.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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