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Abstract
Self-initiation, that is the ability of a brain–computer interface (BCI) user to autonomously
switch on and off the system, is a very important issue. In this work we analyze whether the
respiratory heart rate response, induced by brisk inspiration, can be used as an additional
communication channel. After only 20 min of feedback training, ten healthy subjects were
able to self-initiate and operate a 4-class steady-state visual evoked potential-based (SSVEP)
BCI by using one bipolar ECG and one bipolar EEG channel only. Threshold detection was
used to measure a beat-to-beat heart rate increase. Despite this simple method, during a
30 min evaluation period on average only 2.9 non-intentional switches (heart rate changes)
were detected.

1. Introduction

A brain–computer interface (BCI) is a technical
communication system which transforms mentally induced
brain signal changes (electric, magnetic or metabolic) into
a control signal within milliseconds or seconds, depending
on the brain signal used (for a review, see [1–3]). One
type of input signal is steady-state visual evoked potentials
(SSVEPs) recorded from scalp electrodes placed over the
occipital area [4–7]. Shifting the gaze, or simply shifting
the visual spatial attention without moving the eyes [8], on
a flashing light source evokes SSVEPs of the corresponding
flickering frequency in the visual cortex including sub and
higher harmonics [9].

One important issue for BCI systems, in order for them to
become practical assistive devices, is self-initiation. In other
words, each time a user needs BCI-based communication,
he/she should be able to switch the system on and off
autonomously. For this purpose, patients usually need the
assistance of other people. First results, however, show that
severely paralyzed patients can learn to self-initiate a BCI by

operant feedback training and by classifying the slow cortical
potential shift [10].

It is of interest to investigate whether signals not recorded
directly from the brain, but modulated by brain activity, such
as, for example, the heart rate (HR), can be used for the self-
initiation of a BCI. The heart has a constant intrinsic rhythm
with a period of about 1 s, which is modulated especially
by respiration, blood pressure waves and ‘central commands’
[11]. This means that central processes, such as, for example,
motor preparation, mental simulation, stimulus anticipation
and translation, can result in a HR response [12–18]. If such a
centrally induced HR response can be detected in the ongoing
ECG signal, it can be used to switch on/off a BCI. Following
a preliminary test with three subjects [19], here we report on
the online detection of the respiratory HR response, induced
by brisk inspiration, and SSVEP-based control of a prosthetic
hand in a group of ten healthy subjects.

This work is subdivided into two parts. In the first part, an
off-line investigation, the threshold detection of transient HR
changes is analyzed with respect to usability as a toggle switch.
Furthermore, for each subject, from a predefined frequency
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Figure 1. (A) ECG electrode placement and R-peak detection. (B) Data collection. The upper part of the screen provided information on
the instantaneous heart rate IHRi in bpm (left) and relative changes �IHRi (right). Instructions for the subjects were presented in the middle
part of the screen. In the lower part cue information for SSVEP feedback experiments was provided. The SSVEP stimulation unit,
composed of four LEDs each flickering at a different frequency (f1, . . . , f4), was positioned beneath the screen. (C) Definition of TP/FP
periods for ROC analysis. (D) Online experiment. IHRi and �IHRi were presented on the left and right sides, respectively. The bold
horizontal line in the �IHRi window indicates to the on/off toggle switch threshold thhit. In the lower part of the screen the current status of
the SSVEP-based BCI (on/off) and the detected command for the prosthetic hand were shown. The prosthetic hand was placed on the
left-hand side of the screen.

set, the most reactive SSVEP-stimulation frequencies were
identified. The second part presents the results of an online
feedback experiment. Subjects had the task of operating a
prosthetic hand by self-initiating the BCI and executing a
predefined movement sequence by means of SSVEPs.

2. Methods

2.1. Subjects and data acquisition

Ten healthy subjects (seven male, three female, age 27 ±
5 years, right handed) participated in this study which was
conducted according to the declaration of Helsinki. The
subjects had normal or corrected to normal vision and were
seated approximately 0.5 m from the computer screen and
stimulation unit (SU). The SU, an independently working self-
constructed device mounted below the screen, was composed
of four red light-emitting diodes (LED), each flickering at a
different frequency [20].

Continuous EEG signals were recorded bipolarly from
sintered Ag/AgCl electrodes placed over the occipital cortex
(2.5 cm anterior and posterior to electrode position O2, ground
Fz, international 10–20 system), filtered between 0.5 and
100 Hz (Notch filter at 50 Hz) and digitized at a rate of
f s = 256 Hz. Simultaneously the ECG was recorded from
the thorax, filtered between 0.01 and 100 Hz (Notch at 50 Hz)

and sampled at f s (figure 1(A)). ECG electrodes (sintered
Ag/AgCl) were placed on the thorax at the level of axilla and
below the last rib (ground right hip, figure 1(A)).

The recording equipment consisted of one 16-channel
amplifier (gBSamp, Guger Technologies, Graz, Austria),
one data acquisition card (E-Series, National Instruments
Corporation, Austin, USA) and a standard personal computer
running Windows XP (Microsoft Corporation, Redmond,
USA). The open source packages BIOSIG [21] and rtsBCI
[22], both based on MATLAB/Simulink (MathWorks, Inc.,
Natick, USA) in combination with the Real-Time Windows
Target and Real-Time Workshop, were used to store and
process the data in real-time, and for feedback generation.

2.2. Feature extraction and classification

2.2.1. Transient heart rate changes. The instantaneous heart
rate (IHRi ) was computed by the detection of beat-to-beat
intervals in the ECG. Simple threshold detection (thECG) was
used to identify the R-peak (R-wave) of the QRS complex.
As a characteristic point from each segment exceeding thECG

the maximum value at time tRi
was selected (figure 1(A)).

The resulting IHRi in beats per minute (bpm) was computed
according equation (1). Transient IHRi changes (�IHRi ) were
calculated according equation (2). Each time the �IHRi

increase, induced by brisk inspiration, was higher than a
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subject-specific value (thhit), an on/off (off/on) state switch
of the SSVEP-based BCI was triggered. After each switch,
no other switch command was accepted for a period of 3 s
(refractory period):

IHRi = 60
/(

tRi
− tRi−1

)
(1)

�IHRi = 100 · (IHRi − IHRi−1)/IHRi−1. (2)

2.2.2. SSVEP. The power density spectrum (PSD) of the
past 1 s EEG segment was estimated every 250 ms by
means of a 4 · f s-point-discrete Fourier transform (DFT,
zero-padding, rectangular window, PSD frequency resolution
�f = 1/(4 · f s) = 0.25 Hz). The three spectral components
(fi −�f, fi, fi +�f ) around each stimulation frequency (e.g.
6.00, 6.25 and 6.50 Hz at a stimulation frequency of fi =
6.25 Hz) as well as for the second and third harmonics were
averaged, summed up and weighted. Weighting was necessary
to level higher and lower power spectrum values due to the
1/f α scaling of the EEG power spectral density (decrease in
log power with increasing log frequency) [23]. The weighting
coefficients were computed from a 60 s EEG segment where
subjects were not focusing on the flickering lights. The
flickering light source with the highest weighted sum was
selected if detected continuously for a predefined period of
time (Nd · 250 ms, with Nd being the number of continuous
detections) (harmonic-sum-decision classifier, HSD [7, 20]).
To increase the robustness of SSVEP detection, i.e. to reduce
the number of false positive activations, in this study the
parameter Nd was defined for each subject individually. Each
detection triggered a corresponding prostetic hand movement
followed by a refractory period of 8 s (the duration of
movement execution).

The method of inverse filtering was applied to detect
muscle artifacts by estimating the autoregressive parameters
of EEG without artifacts [24]. Autoregressive parameters are
considered the coefficients of a digital filter. Applying the
filter inversely (inverted transfer function) to the recorded
EEG provides a white noise process. Any superimposed
EMG artifact increases the root mean square (RMS) of the
inversely filtered process [25]. Here, each time the value
exceeded 5RMS from the artifact-free EEG the BCI suspended
working (‘freeze’ mode). Only after 1 s of artifact-free EEG
the BCI resumed working. To set up the filter coefficients at
the beginning of each session 60 s of artifact-free EEG was
recorded [25].

2.3. Off-line investigation

2.3.1. Data collection. To examine the IHRi (�IHRi )

variability and find reactive SSVEP-frequencies to operate the
prostetic hand, the following datasets were recorded.

• Cue-based brisk inspiration (CBI). Four cue-based
training runs (CBI1,2,3,4) with 20 trials of brisk inspiration
each were recorded. At t = 0 s of each trial a cross
was displayed in the middle of the screen and a warning
tone was presented. Subjects were instructed to take a
brisk breath after cue presentation at t = 1 s (arrow

pointing upwards). At t = 6 s the screen was cleared
and a randomly selected inter-trial period between 4 s and
17 s was added before the next trial started.

• Periods of rest and tasks of everyday life (TEL). One
15 min dataset, subdivided into 1 min of rest, 5 min of
reading aloud a newspaper, 3 min of rest, 3 min of small
talk with the experimenter and another 3 min of rest,
was recorded. The instructions were presented on the
computer screen (see figure 1(B)). During rest, subjects
were instructed to sit relaxed and calmly.

• SSVEP feedback experiments. Eight feedback training
runs with 40 trials each (10 per flickering light source)
were performed. The trial duration was 6 s. Subjects
were instructed to focus on the light source according to
the cue (figure 1(B)), a marker (horizontal line) placed
above the light source to focus, shown from t = 2 s to
t = 6 s. Additionally at t = 2 s a beep was presented. At
t = 6 s a high warning tone was presented each time the
detected SSVEP and cue were corresponding. Nd = 4
was selected as the default value for SSVEP detection.
The order of appearance of the cues was randomized.
Preliminary investigations showed that individual subjects
have different reactive SSVEP frequencies. Therefore
each subject performed the feedback experiments with
two different sets of flickering frequencies. For the first
four runs (SSVEP1,2,3,4) frequencies of f1 = 6.25, f2 =
7.25, f3 = 8.00 and f4 = 13.00 Hz (frequency set LOW)
were used; runs 5–8 (SSVEP5,6,7,8) were performed using
f1 = 11.75, f2 = 13.00, f3 = 15.25 and f4 = 17.25 Hz
(frequency set HIGH).

The datasets were recorded in the following order:
CBI1, SSVEP1, SSVEP2, SSVEP3, SSVEP4, CBI2, SSVEP5,
SSVEP6, SSVEP7, SSVEP8, CBI3, TEL, and finally CBI4.
Before SSVEP1 and SSVEP5 60 s data were recorded (INIT1,2)
to set up the weights for the HSD [20].

2.3.2. Off-line analysis and online simulation. The subject-
specific R-peak detection threshold thECG was defined as 80%
of the smallest R-peak amplitude in dataset CBI1. The
amplitude was identified by visual inspection of the data.
Before further analyses were carried out, R-peak detection
was applied to the remaining datasets and the correctness of
the detections was checked. No erroneous detections were
found.

To estimate the performance of the threshold detector thhit

receiver operating characteristics (ROC) analysis was applied
to the first two cue-based training runs without feedback
(CBI1,2). By depicting the tradeoff between true positive (TP)
detections and false positive (FP) activations, ROC analysis
is useful for selecting classifiers based on their performance
[26]. In this work the best possible threshold for classification
was selected. A TP detection was counted each time �IHRi

(beat-to-beat based) exceeded the thhit at least once within
the 4 s period following the cue (from t = 0 s to t = 4 s).
Each exceeding of thhit outside this period was counted as
one FP detection (figure 1(C)). The ROC graph was generated
by varying the researched thhit from �IHRi = −100% to
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Table 1. Off-line investigation. The mean IHRi before (ref) and mean maximum �IHRi (max) after cue-based inspiration (CBI1,2,3,4), the
averaged SSVEP classification accuracies for the two stimulation frequency sets (LOW and HIGH) and the selected off-line �IHRi

detection threshold thhit with corresponding TP, FP and prediction rate PR = TP/(TP+FP) for training (TPtr, FPtr, PRtrain) and online
simulation (TPsim, FPsim, PRsim) dataset are presented for each subject (Id).

CBI1,2,3,4 SSVEP Off-line ROC analysis

ref max LOW HIGH TPtr FPtr TPsim FPsim

Id bpm % % % thhit no. no. PRtr no. no. PRsim

s0 80.3 10.1 36.9 44.4 39.1 1 1 0.50 0 17 0.00
s1 77.6 9.2 41.3 46.9 13.1 7 1 0.88 12 23 0.34
s2 72.5 15.2 88.1 85.0 8.5 35 1 0.97 38 51 0.43
s3 84.6 3.8 77.5 68.8 5.9 21 1 0.95 20 198 0.09
s4 68.9 10.9 48.9 45.0 7.5 34 1 0.97 33 113 0.23
s5 68.8 9.6 46.3 40.6 19.4 2 2 0.50 1 17 0.06
s6 65.9 7.9 59.4 67.5 82.3 3 2 0.60 0 2 0.00
s7 74.5 16.3 34.4 74.4 10.0 33 1 0.97 37 117 0.24
s8 89.4 5.8 35.6 51.9 4.8 5 1 0.83 22 128 0.15
s9 55.2 12.4 46.3 61.3 16.0 5 1 0.83 6 1 0.86

x 10.1 51.5 58.5 16.1 1.2 0.80 18.8 72.2 0.24

�IHRi = +100% in steps of 0.1%. For each step the numbers
of TP and FP detections were calculated.

The thhit with the lowest number of FP and at the same time
the highest number of TP detections was selected and threshold
detection was applied to the remaining datasets CBI3,4, TEL
and SSVEP1,2,3,4,5,6,7,8 (online simulation).

2.4. Online experiment

The duration of the feedback experiment, recorded on a
different day, was about 1 h. During the first approximately
20 min subjects could get familiar with the system and subject-
specific parameters were fine-tuned. At the beginning 60 s
of data were recorded to set up the weighting coefficients
for the averaged spectral components, to compute the inverse
filter coefficient for EMG detection and the R-peak detection
threshold thECG (80% of the amplitude of the smallest R-peak).
For each subject the LEDs of the SU were blinking with the
frequency set (LOW or HIGH) identified during the screening
experiment. The first issue was to adapt thhit. Subjects were
instructed to switch on/off the SSVEP-based BCI by brisk
inspirations. In doing so, thhit was decreased/increased (the
starting value was thhit = 10%; see the mean x of column max
in table 1) in order to reduce FP activations during periods
of non-control (about 60 s). At the same time, however,
subjects needed to be able to voluntarily switch the SSVEP-
based BCI on/off. The second issue was to find Nd in a way
to obtain reliable classification when focusing the flickering
lights. Subjects were also instructed to focus the middle of the
screen for 20 s. During this period no FP SSVEP detection
was allowed. The value for Nd was stepwise incremented by
1 starting from Nd = 4 (1 s). All identified values were fixed
for the rest of the experiment.

The evaluation of the system consisted of one 30 min
recording. Subjects were instructed to switch on the SSVEP-
based BCI according the verbal instruction (start command)
from the experimenter, execute a predefined sequence with the
prosthetic hand, and turn the BCI off again. The following
sequence had to be performed: hand open (O), turn left (L),

turn right (R), close hand (C), R, O, C and L. A modified hand
prosthesis (Otto Bock Austria, Vienna, Austria) was used for
the experiment. Additional to the available hand open/close
grasp function, a wrist rotation was incorporated [20]. The
prosthetic hand was working in the ‘error ignoring’ mode and
was consequently accepting only the predefined command
sequence. The aim was to repeat the whole procedure four
times. The timing of the instructions was randomly chosen
by the experimenter, who was talking and interacting with the
subjects during periods of non-control (e.g. handing a glass of
water to drink). The hand sequence had to be performed as
fast as possible. The feedback screen presented to the subjects
is shown in figure 1(D).

3. Results

3.1. Off-line investigation

The results of the off-line investigation are summarized in
table 1. Cue-based brisk inspirations (runs CBI1,2,3,4) resulted
in an average �IHRi increase of 10.1%. For each subject the
mean heart rate IHRi in the 3 s interval before cue presentation
and maximum �IHRi changes within the 4 s period following
the cue are shown in columns ref and max, respectively.
SSVEP-feedback runs SSVEP1,2,3,4 with the low frequency
set (column LOW) achieved an average classification accuracy
of 51.5%; the performance of the high frequency set (column
HIGH) was 58.5%.

The results of the ROC analysis are summarized in the
remaining columns. The selected detection threshold thhit,
corresponding TP, FP and prediction rate PR = TP/(TP+FP)
for the training (CBI1,2) and simulation dataset are presented.
For the training dataset the average number of TP detections
was 16.1 (out of 40.0, 40.3 %) with 1.2 (0.16%) FPs and a
corresponding mean PR of 0.80. The mean number of true
negative (TN) heart beats for each subject was 772.6. The
average area under the ROC curve was 0.98. Due to the
unbalanced ratio between TP and FP a value close to 1.0 was
expected. The average TP, FP and PR for the simulation dataset
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were 18.8, 72.2 and 0.24, respectively; the mean TN number
of heart beats for each subject was 4226.3.

3.2. Online experiment

Each subject succeeded in switching on and off the system
by transient IHRi changes induced by brisk inspirations and
operate the prosthetic hand by means of SSVEP.

Figure 2 gives an overview of the 30 min feedback
experiment. System parameters and online results are
summarized in table 2. In total the paradigm required eight
�IHRi-triggered BCI state switches (four times on and four
times off). Seven subjects successfully performed four times
the prosthetic hand movement sequence. Due to a time-out
three subjects were not able to finish the fourth sequence
(column TP). The average number of FN detections, i.e.
the number of brisk inspirations which erroneously were not
detected, was 4.9. The mean/median number of FP detections
during the 30 min experiment was 2.9/2.0. After each FP
detection, subjects were instructed to switch the BCI system off
again. With 8 TP, 1 FN and zero FP subject s4 achieved the best
performance. The mean prediction rate PR = TP/(TP+FP)
was 0.76. The average mean/median duration in seconds
needed for each switching operation was 37/12 s.

Column Cl shows the number of SSVEP classes subjects
were able to elicit and use for control. For subject s5 only two
out of the four flickering light sources could be detected; for
subject s4 only three out of four. The overall mean numbers
of correct SSVEP detections (CD), wrong detections (WD)
and corresponding performance index PI = CD/(CD+WD)
were 30.1, 12.9 and 0.72, respectively. Without considering
subjects s4 and s5 the values were 29.6, 11.3 and 0.74. The
minimum time needed to complete one movement sequence
was tmin = (Nd ·0.25 + 8) ·8s. For Nd = 6 the resulting tmin =
76 s. With the mean Nd = 6.2 the maximum selection speed
was 1 command every 9.55 s or 6.3 commands per minute.
Without considering subjects s4 and s5, the mean number of
erroneous detections was 11.3. Consecutively the error rate for
each of the four movement sequences was err = 11.3/4 ≈ 2.8.
This means that with a mean/median time of 180/168 s for
one sequence one wrong SSVEP detection occurred every
64.3 s/60.0 s.

4. Discussion

The aim of this work was to investigate whether transient
heart rate changes �IHRi can be used as an additional
information channel in BCI research. Here a toggle-switch
was implemented and used to turn on and off a SSVEP-based
4-class BCI.

The results of the cue-based inspirations experiments
CBI1,2,3,4 show, as one could expect, that brisk inspiration
causes an increase of the IHRi . On average over ten subjects
an increase of 10.1% was found compared to the 3 s reference
period prior to cue presentation.

The cue-based SSVEP feedback experiments confirmed
the need of finding subject-specific reactive SSVEP-
stimulation frequencies. Compared to the LOW frequency
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Figure 2. Schematic overview of the feedback experiment. Gray
areas show the duration of each trial. After each start command
(bold vertical line), subjects had to switch on the BCI (on-state
colored in light gray) and to perform a predefined movement
sequence with the prosthetic hand (commands: open (O), close (C),
turn left (L) and turn right (R)). Markers during BCI ‘on’-state
represent times of SSVEP selection; letters above indicate correct
selections. Activations outside the trial duration period are false
positive detections.
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Table 2. Online experiment. The identified detection threshold thhit, the number of consecutive SSVEP detections Nd , the number of TP, FN
and FP detections, and prediction rate PR = TP / (TP + FP) for self-initiation with corresponding mean/median duration in seconds
(mn/md, column 5), the number of correct SSVEP detections CD , wrong detections WD and the performance index PI = CD/(CD + WD),
the mean/median time needed to trigger a movement (mn/md, column 12) and the used number of SSVEP classes are summarized for each
subject (Id).

Self-initiation SSVEP

Id thhit Nd TP FN FP PR mn/md CD WD PI mn/md Cl

s0 10 4 8 8 6 0.57 31/21 32 12 0.73 185/175 4
s1 15 8 7 7 2 0.78 61/59 25 7a 0.78a 206/202 4
s2 20 10 8 10 0 1.00 32/12 32 1 0.97 162/160 4
s3 25 6 7 5 9 0.44 20/16 26 18a 0.59a 173/139 4
s4 15 5 8 1 0 1.00 4/4 32 9 0.78 126/134 3
s5 23 5 8 0 3 0.73 12/11 32 30 0.52 322/259 2
s6 20 6 8 2 3 0.73 13/13 32 11 0.74 163/161 4
s7 23 6 8 2 2 0.80 7/7 32 13 0.71 184/183 4
s8 9 6 7 11 2 0.78 170/9 26 10a 0.72a 145/141 4
s9 15 6 8 3 2 0.80 17/19 32 18 0.64 219/214 4

x 6.2 7.7 4.9 2.9 0.76 37/12 30.1 12.9 0.72 188/168
xs4,s5 29.6 11.3 0.74 180/168

a Time out.

set, the HIGH frequency set revealed an overall improved
classification accuracy of 7%. In one subject (s7) this increase
of classification accuracy was even 40%.

For the off-line analysis the �IHRi detection threshold
thhit was selected in such a way as to maximize the number
of TP and at the same time to minimize the number of FP
detections. One possible consequence of these strict selection
criteria is a low number of TP. When applying selected thhit

to the remaining data and computing an online simulation on
average 18.8 (46.9%) TP were detected. At the same time the
overall FP rate was 72.2 (1.59%). This TP rate was higher than
the TP rate of 16.1 (40.3%) of the training data. The reason was
that since the subjects were sitting relaxed and calmly in front
of the computer screen, the IHRi decreased over time. This
decrease, however, increased the number of FP detections.
One possible option to overcome this problem is to provide
additional information to the classifier, e.g. a combination of
IHRi and �IHRi . During the online experiment we did take
care about this fact by choosing the largest possible thhit value
for each subject.

After only 20 min of parameter setup and subject training
by means of one bipolar EEG and one bipolar ECG channel,
subjects were able to self-initiate and operate the SSVEP-
based BCI. Of interest is that during relatively long periods
(minutes) when no control was intended, only a mean/median
of 2.9/2.0 false positive �IHRi was detected. The aspect
of relative insensitivity from verbal interactions and muscle
activity (e.g. drinking a glass of water or talking during
the experiment) is an important issue. The results show
that subjects with higher �IHRi changes in the cue-based
inspiration task achieved better self-initiation results than the
others. This value therefore seems to be a performance
predictor. The number of FN detections across subjects varied
between 0 and 11. Mostly the cause of misclassification was
related to the simple detection method used. The �IHRi

increase did not occur from beat to beat, but was achieved
after 2 beats (e.g. instead from 60 bpm to 74 bpm, first from

60 bpm to 68 bpm and then from 68 bpm to 74 bpm; thhit =
72 bpm). It is important, and left to future work, to improve
the detection of the IHRi response.

The total number of SSVEP-based hand operations to
perform was 32. Table 2 shows that subject s2 performed
the predefined sequence without any error. Only after the
sequence was completed did 1 FP detection occurr. This
subject also achieved the highest classification accuracy during
the SSVEP screening (table 1). The mean SSVEP-detection
error rate of approximately 1 detection (out of 6.3 possible
detections) every minute was satisfactory and enabled subjects
to autonomously choose the timing (speed) to operate the
SSVEP-based BCI.

During the setup of Nd we found that not all subjects were
able to operate the 4-class BCI (table 2). This, however, could
be expected considering the SSVEP classification accuracies
achieved during the preliminary investigation (table 1). For
these subjects we chose to reduce the number of classes by
discarding non-reactive stimulation frequencies. To further
increase the SSVEP classification accuracy, a more time
consuming screening procedure (subject-specific stimulation
frequencies) and/or more feedback training is necessary.

In this study we used very basic signal processing
methods. Using more sophisticated methods for R-peak
detection, SSVEP classification and artifact rejection might
result in an improved performance. From the practical point
of view, 1 bipolar EEG and 1 bipolar ECG channel are a
minimum.

The results of this study suggest that transient HR changes,
induced, for example, by brisk inspiration, can be used as a
toggle switch. It could be shown that the heart rate response, in
this work detected from the ECG, can be used as an information
carrier and can contribute to the creation of BCI-based assistive
devices. The next consequent and important step is to analyze
whether mental simulation of action can induce a detectable
HR response and be used as a switch in order to create a fully
brain-actuated system.
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electrical üprosthesis with an SSVEP-based BCI IEEE
Trans. Biomed. Eng. in press
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