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The purpose of this article is the proof of the following theorem. F

will always denote a ring with identity, and R(S) the semigroup ring

(contracted if 5 has a zero) of a semigroup S over R.

Theorem. Let S be a finite inverse semigroup. Then R(S) is self-

injective (s.i.) if, and only if, R is s.i.

This is an extension of Theorem 8.3 in [3], of part 1 of Theorem 4.1

in [2], and of the corollary to Theorem 1 in [4]. The results in [2]

and [3 ] are used in its proof. As F has an identity, 5 is assumed em-

bedded in R(S). |X| will denote the cardinality of the set X and

X\F will denote the complement of a set F in a set X. Terminology

and definitions are given in [l].

1. An identity for R(S) and the main theorem. Let 5 be an inverse

semigroup, i.e. a regular semigroup in which idempotents commute.

Let £ be the set of idempotents in S. Then £ is a commutative idem-

potent subsemigroup of 5 and each principal left (right) ideal of 5

has a unique idempotent generator [l, Theorem 1.17, p. 28]. Then

R(S) has an identity if F(£) has one. If Z denotes the ring of integers

and Z(E) has an identity, then F(£) has an identity. Note that £

has a zero if | £| is finite.

Theorem 1. If E is a finite commutative idempotent semigroup, then

Z(E) has an identity.

Proof. The proof is by induction on ] £|. If | £| is 1 or 2, the result

is clear. Since | £| is finite there exists an element u (s^O) in £ such

that «£={«, O}. Then 7= {m, O} is an ideal of £. \E/l\ <\e\ and
E/I, the Rees factor semigroup, is a commutative idempotent semi-

group. Let ci' : £—>£// be the natural homomorphism and extend <b'

linearly to the ring epimorphism <b: Z(E)—*Z(E/I) with kernel Z(T).

Let <p(a) be denoted by a. E and E/I are assumed embedded in Z(E)

and Z(E/I) respectively. Let e* = Zoe^V a(ä)ä> a(a) €ïZ, be the iden-

tity of Z(EjT) insured by the induction hypothesis. Let e' =Zas£\r a (a)a
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EZ(E). Then cp(e')=e* and e*x = x for xEE so e'xGx+Z(7). For

xEE, let f(x)EZ such that e'x = x+/(x)M. If xu = u and yu = u, then

f(x) =f(y) since

(e'x)y = (a; + f(x)u)y = xy -f- f(x)u

and

(e'y)x = (y + f(y)u)x = yx + f(y)u

and £ is commutative. Thus there is an aEZ such that/(x) =a for

each xEE such that xk=w. If /(x) 5^0 there is a wEE such that

xw = u so xm = m as £ is a semigroup of idempotents. Let e = e'—au.

If xEE, then ex=e'x—awx = x+/(x)w—awx. If xm=m, then/(x)=a

and cx=x. If xu =0, then/(x) =0 and again ex = x. Hence, Z(E) has

an identity and the induction argument is complete.

This result can be extended somewhat. In what follows, E and E'

will denote commutative idempotent semigroups. Let M(E)

= {a: aEE and x G£, ax = a imply x = a}. Suppose M(E) nonempty

and M(E)E=E. Then for each xEE there is an aEM(E) for which

ax=x. This condition is satisfied, for example, if in the set P(E) of

principal ideals of E, each chain has an upper bound (with respect to

the partial ordering of P(E) by set inclusion). If E is finite Af(£)£

= £. Af(£)£ = £ will be assumed for each idempotent semigroup in this

article. Clearly, Af(£) is contained in any set of generators of £. £

is said to be unrefined if M(E) is a set of generators for £. A semi-

group £' is called a refinement of £ if £ is a subsemigroup of £' and

Af(£) = Af(£'). In general, £' is a refinement of the subsemigroup £

generated by Af(£') and £ is an unrefined semigroup with Af(£)

= Af(£'). If eEZ(E) is an identity for Z(E)QZ(E') and xG£',there

is an aEM(E') = Af(£)Ç£ such that ax=x. Then ex = e(<zx) = (ea)x

= ax = x, so e is an identity for Z(E') also. Thus, only unrefined semi-

groups need be considered in order to seek the existence of an identity.

For example, let £' = {k: k a positive integer} and define k*m

= max {k, m}. Then Af (£') = {1} and £' is a refinement of £ = {1}.

Lemma 1. If E is unrefined, then E is finite if, and only if, M(E) is

finite.

Proof. If | M(E)\ =m, \E\ ^2m-l.

Lemma 2. If Af(£') is finite, then £' is a refinement of a finite unre-

fined semigroup E.

Corollary (to Theorem 1). Z(E) has an identity if, and only if,

M(E) is finite.
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Proof. Assume M(E) is finite and let £' be the subsemigroup

generated by M(E). Then £' is unrefined and Z(E') has an identity

by Lemma 1. Then Z(E) has an identity by the remarks above as

M(E)E=E.
Conversely, suppose e= Zf-i w'a» niEZ, fl;G£, is an identity for

Z(E). Then it is an identity on M(E). If there exists an aEM(E) with

a^at for each i, then a,a^a for each i so eay^a; a contradiction. Thus,

M(E) is finite. (Note that if M(E) is finite and e is the identity of

Z(E), then each aEM(E) occurs with a nonzero coefficient in e.)

Theorem 2. Lei 5 be an inverse semigroup with idempotent semi-

group E. Then R(S) has an identity if, and only if, M(E) is finite.

Proof. If M(E) is finite, Z(E) has an identity, say e' = Zf-i w»a»

ntEZ, a{EE. Let 1 be the identity of R and let e — Z?-i (w<l)a<. Then

e is an identity for R(E). If sES, there are elements a and è in £ such

that as = s and sö = s so e is an identity for R(S). Conversely, if

e= y,f_i r¿x¿, r¡ER, XiES, is an identity for R(S), then, in particular,

ea = a for each aEM(E). Thus M(E) must be finite by the argument

used in the proof of the corollary.

Theorem 3. Fei 5 èe a finite inverse semigroup. Then R(S) is s.i. if,

and only if, R is s.i.

Proof. Let 5 = 50Z)FO • • • Z)Sn+i be a principal series for 5 with

S„+i = {0} if 5 has a zero and Sn+\ empty otherwise. 5»/5<+i is a

Brandt semigroup by [l, Exercise 3, p. 103], for each i = 0, 1, • • • , n.

The proof is by induction on n. If w = 0, S=.So/S\ is a Brandt semi-

group so S=M°(G; m; m; A), an mXm Rees matrix semigroup over

a group with zero G° and with the mXm identity matrix A as a sand-

wich matrix [l, Theorem 3.9, p. 102]. Then R(S)^Mm(R(G)), the

ring of mXm matrices over R(G). Mm(R(G)) is s.i. if, and only if,

R(G) is s.i. by [3, Theorem 8.3]. As G is finite, R(G) is s.i. if, and only

if, F is s.i. by [2, Theorem 4.1].

As suppose n>0. Then R(S/Sn) is s.i. if, and only if, F is s.i. and

S/Sn is a finite inverse semigroup and has a principal series of length

less than n. S„ is a Brandt semigroup (so an inverse semigroup) so

R(S„) (CJ?(S)) has an identity, say/. If xER(S), xf and fx are in

R(Sn) so xf=f(xf) = (fx)f—fx and / is central in R(S). Let e be the
identity of R(S) insured by Theorem 2. Then R(S)=R(S)(e-f)

®R(S)f, a ring direct sum. F(5) is s.i. if, and only if, both R(S)(e—f)

and R(S)f are s.i. [4, Lemma l]. R(S)f = R(Sn) so R(S)(e-f)2é

R(S)/R(Sn)^R(S/Sn)- H F is s.i., then R(S/Sn) and R(S») are s.i.

so F(S) is. If R(S) is s.i., then R(Sn) is s.i. so F is s.i. as 5„ is a Brandt
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semigroup and the argument used in the case w = 0 applies. This

completes the induction.

Note that M(E) finite is not sufficient to yield this result [2,

Theorem 4.1].

A group G is an inverse semigroup; so if G is finite, R(G) is s.i. if,

and only if, R is s.i. This is part of Connell's result. Utumi's result is

that Afm(7?), the ring of mXm matrices over R, is s.i. if, and only if,

R is s.i. But Mm(R)=R(S), where 5= {e<,-: lgi, jg,m}\j{0} with

eijepq = djpeiq, 8jP the Kronecker delta, is an inverse semigroup.
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