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Abstract: Increased demand for higher spectrum efficiency, especially in the space-limited chip, base
station, and vehicle environments, has spawned the development of full-duplex communications,
which enable the transmitting and receiving to occur simultaneously at the same frequency. The
key challenge in this full-duplex communication paradigm is to reduce the self-interference as much
as possible, ideally, down to the noise floor. This paper provides a comprehensive review of the
self-interference cancellation (SIC) techniques for co-located communication systems from a circuits
and fields perspective. The self-interference occurs when the transmitting antenna and the receiving
antenna are co-located, which significantly degrade the system performance of the receiver, in terms
of the receiver desensitization, signal masking, or even damage of hardwares. By introducing the
SIC techniques, the self-interference can be suppressed and the weak desired signal from the remote
transmitter can be recovered. This, therefore, enables the full-duplex communications to come into
the picture. The SIC techniques are classified into two main categories: the traditional circuit-domain
SICs and the novel field-domain SICs, according to the method of how to rebuild and subtract
the self-interference signal. In this review paper, the field-domain SIC method is systematically
summarized for the first time, including the theoretical analysis and the application remarks. Some
typical SIC approaches are presented and the future works are outlooked.

Keywords: interference cancellation; self-interference; full-duplex communications

1. Introduction

With the rapid growth of the modern wireless communication systems and the Internet-
of-Things technologies, wireless devices become pervasive nowadays [1]. In many space-
limited platforms, such as chips, base stations, and vehicles, the demand to achieve higher
spectrum efficiency and data rates has spawned the development of integrated transceivers,
which enable the transmitting and the receiving in a co-located system [1–4]. Full-duplex
communication, as a promising approach, provides a novel paradigm to improve spectrum
efficiency by opening up the possibility to transmit and receive signals within the same
frequency band and time slot, and even in a space-limited environment [5–8].

The key challenge of full-duplex communications is to reduce the self-interference
as much as possible, ideally, down to the noise floor. In a full-duplex transceiver, the
high-power transmitted signal propagates into the local receiver through a direct path
between the transmitting and receiving antennas, and the reflection multi-paths created
by the transmit signal scattering off nearby objects [9]. These transmitted signals combine
and modulate at the radio frequency (RF) front-end of the local receiver and become a self-
interference that is overwhelmingly stronger than the signal of interest (SoI) from the remote
transmitter. The strong self-interference would interfere or even saturate the receiving
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chain, and thus needs to be suppressed at the RF front-end before the analog-to-digital
converter (ADC) quantization process [10].

As can be seen from the above introduction, the investigation of the self-interference
suppression methods is extremely important to realize the full-duplex integrated transceivers.
Numerous self-interference suppression techniques have been reported in the literature,
from the simplest isolation to the complex adaptive cancellation [11–14]. The aim of
passive suppression approaches is to attenuate the self-interference by separating the
transmitting and receiving antennas in the way of antenna directionality, orthogonal
polarization, or simplest spatial isolation [15,16]. Another way is to use a circulator to share
one antenna for both transmitting and receiving [17,18]. Isolators, such as the parasitic
elements, metamaterial inspired isolators, and electromagnetic bandgap structures, have
also been studied in previous research [19–22]. These passive approaches can be easily
realized, but the isolation performance is normally limited, especially when the interference
channel varies in time. In addition to the passive methods, the active methods have also
received much attention. One of them is the transmit beamforming approach, which is
widely used to boost the system performance, including mitigating the self-interference [23].

Among all the self-interference suppression approaches, self-interference cancellation
(SIC) is a promising and effective technique to realize the full-duplex communications [24].
The basic principle of SIC is to rebuild a copy of the RF self-interference signal by some
dedicated methods. The rebuilt signal will be subsequently used to subtract from the
receiving signal, which combines both the SoI and the self-interference at the front-end of
the receiver to suppress the strong self-interference signal. According to different division
standard, the SIC methods can be classified into different categories. Whether the SIC
can be adaptively adjusted with the varying of the environment is used to allocate the
SIC to the active way or the passive way. In addition to this, SIC can be divided to the
field-domain SIC (FDSIC) and the circuit-domain SIC (CDSIC), from the perspective of
the signal processing domain, since the self-interference signal can be rebuilt in the field
domain, or the circuit domain. The CDSIC can be further classified as the analog SIC, the
digital SIC, and the analog–digital hybrid SIC.

Analog SIC in the circuit domain is the most popular approach; it attempts to generate
a reference signal that is a replica of the self-interference by using the analog circuits. Digital
SIC is implemented after the ADC, where the residual self-interference is estimated and
subtracted from the received digital signal sample. The FDSIC can be easily implemented
but suffers the drawback of a relatively low interference cancellation ratio (ICR). Different
SIC methods should be adopted according to realistic situations. Normally, no single
method of cancellation is sufficient to remove the effect of the self-interference thoroughly,
and a combination of them is sometimes required.

A review paper on SIC techniques exists in the literature [25]. However, it only fo-
cuses on the SIC in the circuit domain. A review of the noise cancelling technique can
be found in [26], which reviews the development of the noise cancellation the voltage or
current domains, after frequency downconversion to baseband. However, the field domain
cancellation technique is not highlighted. The wideband transmitting–receiving coupling
reduction methods in propagation domain are reviewed in [27]. However, the circuit
domain approaches are not included. This paper, for the first time, gives a comprehensive
review of the SIC from the perspective of both the circuit domain and field domain. The
phenomenon and effects of the self-interference in a co-located integrated communication
system are at first reviewed, followed by the discussion of the conventional CDSIC tech-
niques in analog, digital, and hybrid methods. FDSIC, which has never been summarized
to the best knowledge of the authors, is then analyzed. It is similar with the CDSIC in
terms of the operating theory. However, one difference is that the FDSIC has its unique
design strategy and, thus, brings benefits of low-cost, low complexity, etc., compared with
the conventional CDSIC. FDSIC is therefore suitable for many scenarios in which simple
structured SIC devices are needed.
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The rest of the article is organized as follows: the phenomenon and effects of the
self-interference are introduced in Section 2. The classification of the SIC techniques is
given in Section 3. The CDSIC, including the analog ways and digital ways are analyzed in
Section 4, prior to the discussion of the FDSIC in Section 5. The comparison of the different
SIC approaches are shown in Section 6. Finally, concluding remarks and future research
outlooks are drawn in Section 7.

2. Phenomenon and Effects of Self-Interference

Interference is a phenomenon where received unwanted signals disturb the perfor-
mance of a communication system. The growing trend of multiple operators sharing a
common site has led to a serious interference issue. A collocated scenario of an integrated
transceiver that contains high-power transmitters and a victim receiver is illustrated in
Figure 1. A receiving antenna is mounted close to a number of transmitting antennas and
in most commercial sites the transmitting antennas carry a number of transmit channels.
These transmitted signals combine together at the RF front-end of the local receiver and
form a self-interference that is much stronger than the SoI from a remote transmitter. The
victim receiver therefore receives high-power jamming signals and these cause a number
of distortions.
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Figure 1. A co-located communication system that includes multiple transmitters and a victim receiver.

Firstly, consider blocking and desensitization. The desensitization is caused when
the interference is large enough to affect the quiescent value and the low-noise amplifier
(LNA) or the mixer in the receiver. The blocking occurs when the receiver circuits are
forced into saturation by the high-power interference signals, regardless of their carrier
frequencies [28].

Secondly, consider the radiated distortions from the co-located transmitters. They
are generated when a high-powered signal from one transmitter radiates into a second
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transmitter. The signals mix together in the non-linear output stage of the high-power
amplifier (HPA). The unwanted third-order intermodulation products can interfere with
nearby receivers operating in their frequencies.

Thirdly, consider the intermodulation (IM) distortion, which is generated within the
front-end circuits of the victim receiver. The large transmit signals from the co-located
transmitters combine at the victim receiver, and thus form IM distortions. This becomes
serious when it falls directly on the SoI frequency band. The LNA is most susceptible to
the interference signals.

The distortion generated with in the receiver is well studied and modeled by the
receiver’s third-order intercept point. It can easily affect the active devices, such as the LNA
or mixer, especially when it falls in the SoI channel. Blocking does not require interference
transmitters to operate at specific frequencies, but can be caused by just one high-power
transmitter. In order to mitigate the interference signal, and protect the receiver from
performance degrading or even damaging, the SIC methods should thus be introduced.

3. Classification of the SIC Techniques

The operating mechanism of the SIC techniques is illustrated in Figure 2. The core
concept of the SIC technique is to cancel the self-interference signal by rebuilding a copy
of the reference self-interference signal. Based on different methods of how to rebuild
and subtract the copy of the self-interference signal, the SIC can be classified to the circuit
domain approach or the field domain approach. The distinction of the CDSIC and the
FDSIC is shown in Figure 3. The CDSIC rebuilds the copy of the self-interference signals
via analog circuits or digital circuits. The FDSIC rebuilds the self-interference signals in the
field domain and cancels the self-interference at the antenna terminal. By introducing the
control methods to the FDSIC, the adaptive SIC can be realized. The classification of the
SIC techniques is summarized in Figure 4.
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4. SIC via Analog and Digital Circuits
4.1. Analog SIC

Among all the SIC methods, the analog SIC has been widely recognized as one of the
most effective schemes published, since it is particularly critical to prevent the ADC from
becoming saturated [29–31]. A typical analog self-interference cancellation system (SICS) is
illustrated in Figure 5 [30]. The transmitted signal at the input of the transmitting antenna
is sampled and used as the reference signal. The reference signal is delayed and multiplied
by the amplified and looped-back residual self-interference with a vector modulator. The
product of the residual self-interference signal and the delayed reference self-interference
signal is then filtered with a pair of low-pass filters (LPFs) to update the complex weighting
coefficient, which, in turn, modifies the delayed reference signal at the vector modulator.
The synthesized cancellation signal is obtained by combining the output signal of the
SICS and the received signal of the receiving antenna. After cancellation, the residual
self-interference is amplified by the LNA.

The presented single-tap topology shown in Figure 5 is suitable for narrow band
interference cancellation. It has been shown that cancellation techniques using a single-tap
structure can only operate over narrow instantaneous bandwidths and inherently cannot
address reflection paths from the environment [32]. In order to achieve wideband inter-
ference cancellation, the multitap configuration should be included to mimic the realistic
interference channel, which considers the multi-path effects [8,33,34]. The multitap design
in [34] passes the coupled RF-transmitted signal through a more complicated circuit that
consists of 16 parallel fixed lines of different delays and tunable attenuators to reconstruct
the multipath self-interference signal. However, this method dramatically increases the
complexities in hardware design and requires sophisticated algorithms for attenuation
tuning instead of more general gradient descent approaches [8]. Other different aspects
of the analog SIC have been studied by many other researchers, in terms of the matching
strategy [35], the performance bound [29,36,37], and the SIC performance under complex
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circumstances, i.e., the Doppler effects, the channel fading effects, and the nonlinear distor-
tion effects [38,39]. All these studies from various perspectives form a relatively mature
research framework of the analog SIC compared with the digital and hybrid approaches.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 17 
 

 

vector modulator. The synthesized cancellation signal is obtained by combining the out-

put signal of the SICS and the received signal of the receiving antenna. After cancellation, 

the residual self-interference is amplified by the LNA. 

SoI

TX

LNA

LNA

90°

RX

Interference signalTransmitted signal

Sampling 

coupler Combining 

coupler

Error 

coupler

Vector modulator

Control loopHPA

LNA

 

Figure 5. A typical analog SIC topology. 

The presented single-tap topology shown in Figure 5 is suitable for narrow band in-

terference cancellation. It has been shown that cancellation techniques using a single-tap 

structure can only operate over narrow instantaneous bandwidths and inherently cannot 

address reflection paths from the environment [32]. In order to achieve wideband inter-

ference cancellation, the multitap configuration should be included to mimic the realistic 

interference channel, which considers the multi-path effects [8,33,34]. The multitap design 

in [34] passes the coupled RF-transmitted signal through a more complicated circuit that 

consists of 16 parallel fixed lines of different delays and tunable attenuators to reconstruct 

the multipath self-interference signal. However, this method dramatically increases the 

complexities in hardware design and requires sophisticated algorithms for attenuation 

tuning instead of more general gradient descent approaches [8]. Other different aspects of 

the analog SIC have been studied by many other researchers, in terms of the matching 

strategy [35], the performance bound [29,36,37], and the SIC performance under complex 

circumstances, i.e., the Doppler effects, the channel fading effects, and the nonlinear dis-

tortion effects [38,39]. All these studies from various perspectives form a relatively mature 

research framework of the analog SIC compared with the digital and hybrid approaches. 

4.2. Digital SIC 

The cancellation that occurs in the digital domain after the received signal has been 

quantized by an ADC is called the digital-domain SIC. Examples of full-duplex systems 

where digital-domain SIC has been implemented are presented in [40,41]. A typical digi-

tal-domain SIC is shown in Figure 6 [42]. Both the sampled reference self-interference sig-

nal and the received signal of the receiver are downconverted to digital signal by using 

Figure 5. A typical analog SIC topology.

4.2. Digital SIC

The cancellation that occurs in the digital domain after the received signal has been
quantized by an ADC is called the digital-domain SIC. Examples of full-duplex systems
where digital-domain SIC has been implemented are presented in [40,41]. A typical digital-
domain SIC is shown in Figure 6 [42]. Both the sampled reference self-interference signal
and the received signal of the receiver are downconverted to digital signal by using the
ADC and the downconverter. An equivalent discrete-time coupling channel is estimated to
rebuild a digital self-interference signal. Then, the rebuilt self-interference signal will be
subtracted from the digital received signal.

Given that the cancellation process is performed in the digital domain, digital SIC
techniques are some of the least complex among all active cancellation techniques [43,44].
The digital-domain SIC is carried out after ADC, and many highly efficient digital signal
processing algorithms can be utilized, which brings more degrees of freedom to the SICS
design. However, as mentioned above, when the interference power is too large to saturate
the front-end of the receiver, the interference cancellation performance of the digital-domain
SIC will decrease significantly [45]. The analog SIC can solve this problem. However, the
suppression performance of the analog SIC is normally subjected to the accuracy of the
delay unit and attenuator of the vector modulator. As a result, the digital-domain SIC
is commonly implemented together with the analog-domain SIC, i.e., the strong self-
interference is at first suppressed by the analog SIC, and the residue self-interference is
then cancelled by the digital SIC [14,46,47], see Figure 7.
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4.3. Analog–Digital Hybrid SIC

As discussed above, the analog SIC is able to suppress the high-power SI, while the
digital SIC allows a more complex adaptive algorithm. It is quite a consequential idea to
combine the advantage of both methods. The analog–digital hybrid SIC is thus proposed.
This approach is performed by building a digital copy of the self-interference signal from
the baseband-transmitted signal and then transmitting the digital copy through an auxiliary
analog transmit chain to reconstruct the RF self-interference signal [48–52]. In this approach,
a finite impulse response filter is implemented in the digital domain to characterize the
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self-interference propagation channel to generate a reconstructed self-interference signal of
multipath components.

A typical analog–digital hybrid configuration is shown in Figure 8 [51]. The high speed
ADCs are utilized to directly sample the self-interference signal and the error feedback
signal. The control loop is, therefore, realized in the digital domain, and then connected
to the analog vector modulator by the digital-to-analog converters (DACs). The adaptive
control algorithm of the SIC can, thus, be implemented in the digital circuits, which enables
a more efficient, more complex, and high-performance algorithm.
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4.4. Passive SIC

If the SIC can be adaptively adjusted to optimize the ICR in a time-varying environ-
ment, it is defined as the active SIC. Otherwise, it is featured as the passive SIC, which
is also useful for many scenarios [53]. From the circuit perspective, the passive SIC is
based on the use of passive circuits or components, e.g., resistor, capacitor, inductor, cir-
culator etc. [54–56], and active passive SIC always contains active components [29,30,51].
Similar to the adaptive SIC, passive SIC techniques extract the reference signal from the
transmitter, and cancel the interference signal at the receiver. The signal modulation can
be implemented by the analog resonant circuits. The main difference is that the control
circuit is omitted in the passive SIC, which will tremendously decrease the complexity of
the SICS. Thus, this method is suitable for a situation in which the coupling path between
the transmitter and receiver is (quasi) static. Note that the passive SIC so far is not realized
in the digital domain.

4.5. Features of the Circuit-Domain SIC

As we can see from the above analysis, for all the CDSIC techniques, including both the
active and passive SICs, extracting the reference self-interference signal from the transmitter
is mandatory. This will inevitably decrease the transmitting power and, thus, degrade
the transmitter performance. In the case that the coupling between the transmitting and
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receiving antenna is very strong, the loss of the transmitting power will be significant,
because a high-power reference signal is needed to cancel the strong interference signal.
On the other hand, since the CDSIC is realized by circuits, it can be integrated with the
transceiver, and thus, the shielding can be easily implemented. As a result, the radiation
patterns of the transmitting and receiving antenna will not be affected.

5. SIC in Fields Domain
5.1. Operating Mechanism of the FDSIC

Most of the previous SICS is realized in the circuit domain through analog or digital
approaches. The advantage of this method is that a high ICR can be obtained. However,
the CDSIC is complex and costly, since many basic components are mandatory, such as the
sampling coupler, the vector modulator, and the combining coupler. Compared with the
CDSIC, the FDSIC normally has a simpler structure [57–59].

The operating mechanism of the FDSIC is illustrated in Figure 9. The current excited
in the transmitting antenna is described by I. Through the direct coupling path, a current αI
is induced on the receiving antenna, where α is the coupling coefficient. By adding a FDSIC
system, a new situation is generated, the coupling situation of which can be worked out to
the first order. A current β1I is now also induced in the FDSIC system, generating in its
turn an induced current β1β2I in the receiving antenna, where β1 is the coupling coefficient
between the transmitting antenna and the FDSIC system, and β2 is the coupling coefficient
between the FDSIC system and the receiving antenna. The total induced current in the
receiving antenna is αI + β1β2I. When the FDSIC system is properly designed, the FDSIC
system creates reverse coupling, meaning that the total induced current approaches zero:

αI + β1β2I = 0 (1)

The self-interference is cancelled in the field domain like this. In essence, the FDSIC
system is designed with a scatterer, which can generate rich scattering characteristics to
rebuild the copy of the SI.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 17 
 

 

5. SIC in Fields Domain 

5.1. Operating Mechanism of the FDSIC 

Most of the previous SICS is realized in the circuit domain through analog or digital 

approaches. The advantage of this method is that a high ICR can be obtained. However, 

the CDSIC is complex and costly, since many basic components are mandatory, such as 

the sampling coupler, the vector modulator, and the combining coupler. Compared with 

the CDSIC, the FDSIC normally has a simpler structure [57–59]. 

The operating mechanism of the FDSIC is illustrated in Figure 9. The current excited 

in the transmitting antenna is described by I. Through the direct coupling path, a current 

αI is induced on the receiving antenna, where α is the coupling coefficient. By adding a 

FDSIC system, a new situation is generated, the coupling situation of which can be 

worked out to the first order. A current β1I is now also induced in the FDSIC system, 

generating in its turn an induced current β1β2I in the receiving antenna, where β1 is the 

coupling coefficient between the transmitting antenna and the FDSIC system, and β2 is 

the coupling coefficient between the FDSIC system and the receiving antenna. The total 

induced current in the receiving antenna is αI + β1β2I. When the FDSIC system is properly 

designed, the FDSIC system creates reverse coupling, meaning that the total induced cur-

rent approaches zero: 

αI + β1β2I = 0 (1) 

The self-interference is cancelled in the field domain like this. In essence, the FDSIC 

system is designed with a scatterer, which can generate rich scattering characteristics to 

rebuild the copy of the SI. 

Transmitter Receiver

RF Self-interference

Field domain 

SIC

I αI+β1β2Iβ1I

β1 β2

α
Direct coupling path

Scattering path

Tx antenna Rx antenna

 

Figure 9. Operation mechanism of the FDSIC. 

5.2. Features of the FDSIC 

Compared with the CDSIC, the FDSIC is relatively simple, since some components 

that are necessary in the CDSIC can be omitted. The reference signal is extracted from the 

radiation of the transmitting antenna directly in the space, while the interference signal is 

cancelled at the receiving antenna terminal. In this way, the sampling coupler and the 

combining coupler are not needed, which greatly decreases the complexity of the SICS. 

Different from the CDSIC, the transmitting power will not be decreased when the FDSIC 

system is utilized, since the radiated power of the transmitter is “captured” by the FDSIC 

system in the space. 

The drawback of the FDSIC is the distortion of the radiation patterns. When intro-

ducing a FDSIC system between the transmitting antenna and the receiving antenna in 

the space, the SIC is inherently coupled with the transmitting and receiving antenna, and 

thus affects the radiation patterns. However, through careful design, this effect can be 

Figure 9. Operation mechanism of the FDSIC.

5.2. Features of the FDSIC

Compared with the CDSIC, the FDSIC is relatively simple, since some components
that are necessary in the CDSIC can be omitted. The reference signal is extracted from the
radiation of the transmitting antenna directly in the space, while the interference signal
is cancelled at the receiving antenna terminal. In this way, the sampling coupler and the
combining coupler are not needed, which greatly decreases the complexity of the SICS.
Different from the CDSIC, the transmitting power will not be decreased when the FDSIC
system is utilized, since the radiated power of the transmitter is “captured” by the FDSIC
system in the space.
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The drawback of the FDSIC is the distortion of the radiation patterns. When in-
troducing a FDSIC system between the transmitting antenna and the receiving antenna
in the space, the SIC is inherently coupled with the transmitting and receiving antenna,
and thus affects the radiation patterns. However, through careful design, this effect can
be miniaturized and will not impact the system performance. An example is shown
in Figures 10 and 11 [58]. The coupling is suppressed, while the radiation patterns are
slightly affected when the SIC isolator is introduced. The ICR of [58] is limited compared
with many CDSIC [29,30,51], since it is a great challenge to rebuild a perfect copy of the
self-interference signals via the simple scatterer.
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lines indicate the measurement results, the solid lines indicate the simulation results.
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6. Comparison of the Circuit- and Field-Domain SIC

The key performances of some typical SIC systems in the circuit domain and field
domain are compared in Table 1. The characteristics of the CDSIC and the FDSIC are
summarized in Table 2. In terms of the transmitting power, the CDSIC will result in a
high power loss, while the FDSIC does not have the power loss theoretically, since the
transmitting power of transmitting system will be sampled by the CDSIC, see Figure 12.
However, the radiation patterns of the transmitting and receiving antenna will be affected
to some extent when introducing the FDSIC system. This problem will not happen for the
CDSIC. Note that the CDSIC will affect the received SoI and the noise floor. The typical
receiving system and the receiving system containing an SIC are presented in Figure 13a,b,
respectively. In the latter case, the receiving signal is delivered to the combining coupler via
the cables. Then, the combined signal, which contains the reference signal and the receiving
signal, is sent to the receiver via the error coupler and an LNA. The receiving transmission
link of the SoI contains the receiving antenna, the cables, the combining coupler, the error
coupler, the LNA and the receiver. This will inevitably increase the noise figure of the
receiving system [60]. Given that the combining coupler and the error coupler are inserted
in the receiving transmission link, the SoI will also be attenuated.

Table 1. Key performance comparison of typical circuit and field-domain SIC.

Ref Category Complexity ICR Bandwidth

[29] CDSIC-analog High 30–40 dB narrow
[30] CDSIC-analog High 60–80 dB narrow
[32] CDSIC-analog High ca. 30 dB narrow
[35] CDSIC-analog High ca. 30 dB wide
[43] CDSIC-digital High 25–60 dB narrow
[46] CDSIC-hybrid High 30–40 dB wide
[53] CDSIC-passive Low 12 dB narrow
[56] CDSIC-passive Low 60 dB narrow
[58] FDSIC-passive Low ca. 8 dB narrow
[59] FDSIC-active High 40 dB narrow

Table 2. Comparison of the circuit domain SIC and the field-domain SIC.

Transmitting
Power Loss

Attenuation of
the SoI

Effect on the
Noise Figure

Radiation
Pattern

Circuit
domain

Analog Yes Yes Yes No effect

Digital Yes Yes Yes No effect

Field domain - No loss No attenuation No effect Distortion
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Summarily, compared with the CDSIC, FDSIC has a relatively low complexity and
smaller effects on the receiving system. However, CDSIC normally has a high ICR, since it
is easier to precisely reconstruct the self-interference via circuits.
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7. Conclusions
7.1. Concluding Remarks

A comprehensive review of the SIC technology for integrated transceivers from circuits
and fields perspective is presented in this paper. It has been shown that the performance of
the receivers will degrade due to blocking or distortion when the co-located transmitters
exist. In order to protect the receiver and improve the system performance, SIC techniques
are required. According to the methods of how to rebuild and subtract the copy of the
self-interference signal, the SIC can be classified as a CDSIC or a FDSIC. The former can
be further divided to the analog SIC and the digital SIC. The CDSIC and the FDSIC have
the same basic operating mechanism, however, the design strategies and implementation
approaches are different. In real applications, the implementation of the SIC methods
depends on the specific scenarios and the targeted requirements. The analog way is
particularly critical to prevent the ADC from becoming saturated. However, implementing
SIC in the analog domain is normally challenging and highly complex, so the analog CDSIC
is normally chosen when the self-interference is strong and a high ICR is required. In
contrast to the analog CDSIC, the digital CDSIC deals with the self-interference signals in
the digital domain, after the self-interference signal has been quantized by an ADC. The
digital CDSIC technique has a lower complexity compared with the analog approach, and
many high-performance SIC algorithms can be easily implemented. However, this method
is always limited by the hardware performance. To reduce the self-interference power
below the noise floor, the dual-stage interference cancellation, which combines both the
analog and digital CDSIC, is commonly used. A high ICR can be obtained if the strong
self-interference is at first suppressed by the analog canceller, and the residual interference
is then cancelled by the digital canceller. However, obviously, this kind of cancellation
is very complicated. The FDSIC has a much simpler structure than the CDSIC, since the
sampling coupler is on the transmitter side, and the combining coupling on the receiver
side can be omitted. What is more, the power of the transmitting signal and the received
SoI will not be attenuated when implementing the FDSIC. Although the radiation pattern
will be affected, the FDSIC is suitable for the application scenarios in which the cost and
complexity are strictly limited.

7.2. Future Outlooks

As a promising technique, artificial intelligence (AI) receives much attention at present,
and plays a very important role for both signal processing and electromagnetic designs [61].
It also holds great potential for the future of SIC design in terms of two aspects: (1) AI-based
high-performance algorithm for SIC signal processing [62] and (2) automatic AI-driven
design for SIC topologies [58]. For the first aspect, more effective models for the digital
canceller with fewer parameters and low-complexity optimization algorithms are needed,
which will trigger the application of the AI approaches. For the second aspect, it is an
advantageous idea to propose a generic SIC method for diverse configurations serving
complex applications, without requiring extensive experience from the designers. The
AI-driven design automation is quite promising for this scenario, especially for the design
of the FDSIC system. Beyond that, the idea of combining the AI concept and the SIC
techniques can be stretched to more applications, such as the reference-less SIC.

This paper provides a broad overview of the SIC techniques from the perspective of
the circuit domain and field domain, and paves a way for the future explosive research.
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Abbreviations

ADC analog-to-digital converter
AI artificial intelligence
CDSIC circuit-domain self-interference cancellation
DAC digital-to-analog converter
FDSIC field-domain self-interference cancellation
HPA high power amplifier
ICR interference cancellation ratio
IM intermodulation
LNA low noise amplifier
LPF low pass filters
SIC self-interference cancellation
SICS self-interference cancellation system
SoI signal of interest
RF radio frequency
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