
 1 

Ribbons: Their Geometry and Topology 

 
C. K. Au1 and T. C. Woo2 

 
1Nanynag Technological University, mckau@ntu.edu.sg 
2Nanynag Technological University, mchwoo@ntu.edu.sg 

 
 

ABSTRACT 

Ribbons may be used for the modeling of DNAs and proteins. The topology of a ribbon can be 
described by the link Lk, while its geometry is represented by the writhe Wr and the twist Tw. 
These three quantities are numerical integrals and are related by a single formula from knot theory. 
This article discusses the meanings of these three quantities, offers an approach for calculating their 
numerical values, and provides some examples.  
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1. INTRODUCTION 

A curve has only length; it has no width or thickness. But 
if endowed with a width in an orthogonal direction, a 
curve becomes a ribbon.  (If the width is uniform in all 
directions, then a rope results.)  Ribbons serve as a 
convenient way to model macromolecules such as DNA 
and protein1-3.  The functions of these macromolecules 
are determined by their form, or geometry, while their 
inter-connectedness, or topology, is important to many 
biological processes4,5 such as protein folding, replication 
and transcription.   
        
Curvature and torsion characterize how a curve K 
changes with respect to the Frenet-Serret frame on the 
curve itself.  But suppose the frame of reference is on 
another curve L.  Then, two new quantities, writhe and 
twist, arise.   In a ribbon, let there be a central “spine” K.  
Also, let one of the two boundary curves of the ribbon be 
L.  Then, the “tangling” between K and L gives an 
indication of how complex the ribbon is, spatially.  
Intuitively, as writhe and twist are analogous to curvature 
and torsion, they describe the geometry of a ribbon.   
Yet, because K “threads” L, or vice versa, there must be 
another parameter that characterizes the “knottiness” of 
the tangle – called link, a topological quantity.  Indeed, 
the White formula5,6 
 

),()(),( LKTwKWrLKLk +=  (1) 

 
gives the connection.  The two geometric quantities on 
the right hand side are real numbers and the topological 
quantity on the left is an integer – in a fashion analogous 
to the Gauss-Bonnet formula (with angles and areas on 
the one side and the Euler characteristic on the other). 

 
This paper addresses the computation of the three 
quantities in (1).  Several algorithms are for computing 
the writhe of a polygonal curve7-10 and for simple 
analytic curves11.   No prior result is known for the 
calculation of twist.  More fundamentally, it turns out that 
the three quantities are rooted in the evaluation of the 

so-called Gauss Integral.  This paper offers a discrete 
computation scheme for (1).  
 
2. TOPOLOGY AND GEOMETRY OF A RIBBON 
A ribbon is characterized by two curves: its central spine 
K and one of its two boundary curves L.  An 
“equilibrium condition” in the changes of the three 
quantities in (1) comes from two pieces of intuition.  
First, topologically, the link is an invariant.  Second, 
algebraically, the derivative of a constant is zero.  
Therefore, 
  

0),()( =+ LKTwKWr δδ  (2)  

 
In other words, when a ribbon is isotropic to a new 
conformation, any change in twist has to be exactly 
balanced by the change in its writhe. 
 
Two concepts, the crossing number and the Gauss 
integral, are important for calculating the link Lk(K,L), 
writhe Wr(K) and twist Tw(K,L). 
 
2.1 Crossing 
Let a curve be represented by a series of line segments. 
When the 2D projections of two segments (of the same 
curve or from two different curves) intersect, there is a 
crossing, suggesting that in 3D the line segments pass 
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“over” or “under” each other. Three assumptions on 
projection are necessary for the computation: 
i.) that the two end points of a line segment do not 

coincide; 
ii.) that an end point from one segment will not be 

on another line segment; and 
iii.) that no three line segments intersect at a point. 
 
Crossings are signed when the line segments are 
oriented, as shown in Figure 1.  A crossing is positive if 
the angle (<π ) required to rotate the arrow (for the 
segment on top) onto the arrow at the bottom is counter-
clockwise; otherwise, it is negative.  
 

 
   Fig. 1.  Signed crossing  

 
Crossing number is the sum of the signed crossings 
occurring in a curve or between two curves. Clearly, 
crossing depends on the direction of projection; so does 
the crossing number.   
 
2.2 Gauss Integral and its Geometric Meaning 
Some preliminaries for calculating the Gaussian Integral 

are necessary.  Suppose two oriented segments 
1+jj

pp  

and 
1+kkqq  cross each other.  Let p  and q  be any two 

points on the segments 
1+jj

pp  and 
1+kkqq  respectively. 

The mapping 3

11
: Rqqpp →×Ψ ++ kkjj

 such that 

pq

pq
qp

−

−
=Ψ ),( , produces a region on a unit 

(Gaussian) sphere characterized by four vertices 

),(
kj
qpΨ , ),(

1 kj
qp +Ψ , ),(

11 ++Ψ
kj
qp  and ),(

1+Ψ
kj
qp . 

These vertices are arranged in the counter clockwise 
direction, and the area of the region denoted by 

),(
11 ++ kkjj

S qqpp  is positive, as shown in Figure 2. If, on 

the other hand, the two oriented segments cross 
negatively, then the arrangement of the vertices would 

be 
jk

Ψ ,
kj )1( +Ψ ,

)1)(1( ++Ψ
kj
and

)1( +Ψ
kj
, in the clockwise 

order and the area ),(
11 ++ kkjj

S qqpp  is negative.  Note 

that the vertices on the sphere, in Figure 2, are the four 
pairs of normalized distances between the four end 
points of the two line segments.  
  

 
  Fig. 2. Crossing and unit sphere 

 
The shaded rectangle in Figure 2 warrants some 

explanations. Consider two small elements pd  and qd  

on 
1+jj

pp  and 
1+kkqq . The segments cross when the 

component of the area qp dd ×  is perpendicular to the 

projective direction pq . Hence its area 
jk
A  is given as 

 

pq

pqqp )( dd
dA

jk

×
=  (3) 

 

Since both area 
jk
A  and its pull back area 

),(
11 ++ kkjj

S qqpp  on the unit sphere subtend the same 

solid angle, it follows that 
 

),(
112 ++=

kkjj

jk
dS

dA
qqpp

pq
 (4) 

 
while it is understood that the radius of the sphere is 
unity. 
 
Substituting (3) into (4) and integrating yields 
 

∫ ∫
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=
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j
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k
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(a) positive crossing (b) negative crossing 
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),(
11 ++ kkjj

S qqpp  is the signed area on the unit sphere 

signifying all the directions from which 
1+jj

pp  crosses 

1+kkqq  when projected along pq.  Hence, the Gauss 

Integral is given by 
 

=
⋅×

∫∫ ×LK

dd
3

)(

pq

pqqp
∑ ∑ ++j k kkjjS ),( 11 qqpp  (6) 

 
 

3. LINK, WRITHE, AND TWIST 

Details on the terms in (1) are now ready. 
 

Definition 1  

The link between two oriented curves K  and L  is 
defined as 
 

∫∫ ×

⋅×
=

LK

dd
LKLk

3

)(

4

1
),(

pq

pqqp

π
 (7) 

 

where p and q are two points on the curves K  and L , 
respectively. 
 

Definition 2  

The writhe of a curve K is the average value of the 
signed crossing number, over all possible projection 
directions:  
 

∫
⋅×

=
K

dd
KWr

3

)(

4

1
)(

pq

pqqp

π
 (8) 

 

Definition 3  

The twist of a curve L  (parameterized by arc length s ) 
around another curve K  is defined as 
 

∫ ⋅×=
L

dsLKTw ')(
2

1
),( vvt

π
 (9) 

 

where t is the unit tangent vector of K  at s  and v  is 

the unit vector perpendicular to the unit tangent vector t  

pointing from K  to L .  
 
 
4. DISCRETE RIBBON MODEL 

A ribbon is characterized by two curves K  and L  as 

shown in Figure 3(a). Curve K  represents the central 

spine of the ribbon while its boundary is the curve L . 
Any curve M on the ribbon parallel to K and L is 
represented by  
 

RttLKtM ∈∀+−= ,)1(  (10) 

 
A complicated conformation can be simplified into the 
discrete ribbon model by representing its spine and the 
boundaries by a series of line segments. Let 

nK ppp L21=  and 
nL qqq L21=  be two such series. An 

illustration is given in Figure 3(b) which relates all the 

points on the curve K  to those on L . When the two free 
ends of the ribbon are connected into a closed knot, then 

121 pppp nK L=  and
121 qqqq nL L= . 

 

 
Fig. 3. A ribbon and its model 

 
In a discrete ribbon model, the integrals expressed by 
(7), (8) and (9) can be computed more efficiently, and 
with nearly equal effectiveness, by considering their 
geometric meanings.  
 

5. GEOMETRIC MEANING OF THE INTEGRALS 

Let 
121 pppp nK L=  and 

121 qqqq mL L=  be two non-

intersecting closed line segments running from 1 to n and 
m in the space for a discrete ribbon model. 
 

Lemma 1:  
The link of a ribbon conformation is 
 

∑∑
= =

++=
n

j

m

k
kkjj

SLKLk
1 1

11
),(

4

1
),( qqpp

π
 (11) 

 
Proof.  

By definition, ∫∫ ×

⋅×
=

LK

dd
LKLk

3

)(

4

1
),(

pq

pqqp

π
. 

Discretizing it gives  

=),( LKLk  ∑∑
= =

++

n

j

m

k
kkjj

S
1 1

11
),(

4

1
qqpp

π
  

 

Corollary 1.1  

curve K  

curve L  

j
q  1+jq  

1−jq  

j
p  1+jp  

1−jp  

(b) a discrete ribbon model (a) a ribbon 
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The link of two curves is the number of times that the 
area of the unit sphere covered by the image of the two 

curves under the mapping Ψ . 
  
Proof.  

Since K  and L  are closed, identify 1+n  with 1 and 

likewise 1+m  with 1.  Hence the expression 

∑∑
= =

++

n

j

m

k
kkjj

S
1 1

11
),( qqpp  covers the whole unit sphere. 

Dividing ∑∑
= =

++

n

j

m

k
kkjj

S
1 1

11
),( qqpp  by the unit sphere 

surface area ( π4 ) gives the number of times that the unit 

sphere is covered.   
 

Corollary 1.2  

The link is an integer when K  and L are closed curves. 
 
Proof.  

Since ∑∑
= =

++=
n

j

m

k
kkjj

SLKLk
1 1

11
),(

4

1
),( qqpp

π
 where 

),(
11 ++ kkjj

S qqpp  is the pull back area on the unit 

sphere. The link is the number of times that the unit 

sphere being covered by ),(
11 ++ kkjj

S qqpp  which is an 

integer.  
 

Lemma 2: 

 The writhe of a ribbon is 

∑ ++=
kj

kkjj
SKWr

,
11
),(

4

1
)( pppp

π
 and 1, ±≠≠ kjkj  (12) 

 
Proof.  
By definition,  

∫
⋅×

=
K

dd
KWr

3

)(

4

1
)(

pq

pqqp

π
. Discretizing the integral 

gives 

∫
⋅×

K

dd
3

)(

4

1

pq

pqqp

π
= ∑ ∫ ∫∑

+ +

±≠≠

⋅×

k

j

j

k

k
kjkj

j

dd
1 1

3

1,

)(

pq

pqqp
. 

When 1±= jk , the region produced on the unit sphere 

is the great circle in the plane containing the two 

segments; the area 0),( 11 =++ kkjjS pppp .  When jk = , 

the area degenerates to a point on the unit sphere.  

Figure 4 shows the degenerate area ),( 11 ++ kkjjS pppp  in 

both situations. Hence, 

∑ ++=
kj

kkjj
SKWr

,
11
),(

4

1
)( pppp

π
1, ±≠≠∀ kjkj .  

 

 
Fig. 4. The pull back area on the unit sphere, when jk =  or 

1−= jk  

 

Lemma 3:  
The twist of a ribbon is  
 

∑= j

j
LKTw

π

α

2
),(  (13) 

 
where α is the dihedral angle as shown in Figure 5. 
 
Proof.  

From equation (9), ),(
2

1
),( vKddsLKTw

L

+= ∫τπ
. 

Therefore, 

∑ ∑ ++ +⋅=
j j jjjjjj

dLKTw ),(
2

1
),(

11
vppqqτ

π
 where 

jjj
qpv = . Referring to Figure 5, ),(

1 jjj
d vpp +  = 

π

α

2

j
. 

Hence, ∑= j

j
LKTw

π

α

2
),( .  

1+jp  

j
p  

(a) jk =  

),(
11 ++ kkjj

pppps  

degenerates to two points 

1+jp  

j
p  

1−jp  

(b) 1−= jk  

),(
11 ++ kkjj

pppps  degenerates to a 

great circle 
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Fig. 5. The twist of segment 

1+jj
qq  around 

1+jj
pp  

 

Lemma 4:  

Let 
121 pppp nK L=  and 

121 qqqq mL L=  be two non-

intersecting closed line segments running from 1 to n and 
m; then 
 

∑
++

→=
j

jjjj
t
S

LKTw
π4

),(lim
),(

11
0

rrpp
 (14) 

 
Proof.  

Consider the jth segment 
1+jj

pp  and 
1+jj

qq  of the curves 

K  and L , respectively.  Without loss of generality, 

assume that 
1+jj

pp  is vertical.  The jth  segment 
1+jj

rr of 

curve M , that lies between K and L, is shown in Figure 
6(a). Figure 6(b) depicts the locations of 

),(
1 jj
rp +Ψ , ),(

11 ++Ψ
jj
qp  , ),(

1+Ψ
jj
rp  and  ),(

jj
qpΨ on 

the unit Guassian sphere. As the parameter t→0, 

jj
pr →  and 

11 ++ →
jj
pr ; 

hence ),(),(
11 jjjj
pprp ++ Ψ→Ψ and 

),(),(
11 ++ Ψ→Ψ

jjjj
pprp   which are the south pole and 

north pole of the unit sphere, respectively. Therefore, 

),(lim
11

0
++

→
jjjj

t
S rrpp  is the area of the shaded region on 

the unit sphere which is 
j

α2  

or
jjjjj

t
S α2),(lim

11
0

=++
→

rrpp . From Lemma 3, 

),(lim
11

0
++

→
jjjj

t
S rrpp = ),(22

jj
Tw qp⋅⋅ π ),(4

jj
Tw qp⋅= π . 

Therefore, ∑
++

→=
j

jjjj
t
S

LKTw
π4

),(lim
),(

11
0

rrpp
.  

 

 
Fig. 6. Twist of 

1+jj
qq  around 

1+jj
pp  and its image on the 

Gaussian sphere. 

 
6.CONCLUSION 

The geometry and the topology of a ribbon 
conformation are related to each other by link, writhe 
and twist. Gaussian integrals are involved in these three 
quantities.  These integrals can be very complicated and 
are hard to compute for a complex ribbon conformation, 
since no analytic expression is available for the curves. 
The calculation are shown simplified by considering the 
geometric meanings of these integrals.  This paper 
reveals the assumptions and details the steps.  
 
In order to understand the related biological processes, 
two issues deserve further exploration in the future: 

i.) the reason that drives the macromolecules 
transforming from one conformation to 
another; 

ii.) the process of transforming. 
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1+Ψ
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