
Proceedings of Recent Advances in Natural Language Processing, pages 423–430,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_050

423

Self-Knowledge Distillation in Natural Language Processing

Sangchul Hahn

Handong Global University

Pohang, South Korea

schahn21@gmail.com

Heeyoul Choi

Handong Global University

Pohang, South Korea

heeyoul@gmail.com

Abstract

Since deep learning became a key player in

natural language processing (NLP), many

deep learning models have been showing

remarkable performances in a variety of

NLP tasks, and in some cases, they are

even outperforming humans. Such high

performance can be explained by efficient

knowledge representation of deep learn-

ing models. While many methods have

been proposed to learn more efficient repre-

sentation, knowledge distillation from pre-

trained deep networks suggest that we can

use more information from the soft target

probability to train other neural networks.

In this paper, we propose a new knowledge

distillation method self-knowledge distilla-

tion, based on the soft target probabilities

of the training model itself, where mul-

timode information is distilled from the

word embedding space right below the soft-

max layer. Due to the time complexity,

our method approximates the soft target

probabilities. In experiments, we applied

the proposed method to two different and

fundamental NLP tasks: language model

and neural machine translation. The ex-

periment results show that our proposed

method improves performance on the tasks.

1 Introduction

Deep learning has achieved the state-of-the-art per-

formance on many machine learning tasks, such as

image classification, object recognition, and neural

machine translation (He et al., 2016; Redmon and

Farhadi, 2017; Vaswani et al., 2017) and outper-

formed humans on some tasks. In deep learning,

one of the critical points for success is to learn bet-

ter representation of data with many layers (Ben-

gio et al., 2013) than other machine learning algo-

rithms. In other words, if we make a model to learn

better representation of data, the model can show

better performance.

In natural language processing (NLP) tasks like

language modeling (LM) (Bengio et al., 2003;

Mikolov et al., 2013) and neural machine trans-

lation (NMT) (Sutskever et al., 2014; Bahdanau

et al., 2015), when the models are trained, they are

to generate many words in sentence, which is a

sequence of classification steps, for each of which

they choose a target word among the whole words

in the dictionary. That is why LM and NMT are

usually trained with the sum of cross-entropies over

the target sentence. Thus, although language re-

lated tasks are more of generation rather than clas-

sification, the models estimate target probabilities

with the softmax operation on the previous neu-

ral network layers and the target distributions are

provided as one-hot representations. As data rep-

resentation in NLP models, word symbols should

also be represented as vectors.

In this paper, we focus on the word embedding

and the estimation of the target distribution. In NLP,

word embedding is a step to translate word symbols

(indices in the vocabulary) to vectors in a contin-

uous vector space and is considered as a standard

approach to handle symbols in neural networks.

When two words have semantically or syntactically

similar meanings, the words are represented closely

to each other in a word embedding space. Thus,

even when the prediction is not exactly correct,

the predicted word might not be so bad, if the es-

timated word is very close to the target word in

the embedding space like ‘programming’ and ‘cod-

ing’. That is, to check how wrong the prediction

is, the word embedding can be used. There are sev-

eral methods to obtain word embedding matrices

(Mikolov et al., 2013; Pennington et al., 2014), in

addition to neural language models (Bengio et al.,



424

2003; Mikolov et al., 2010). Recently, several ap-

proaches have been proposed to make more effi-

cient word embedding matrices, usually based on

contextual information (Søgaard et al., 2017; Choi

et al., 2017).

On the other hand, knowledge distillation was

proposed by (Hinton et al., 2015) to train new and

usually shallow networks using hidden knowledge

in the probabilities produced by the pretrained net-

works. It shows that there is knowledge not only

in the target probability corresponding to the target

class but also in the other class probabilities in the

estimation of the trained model. In other words,

the other class probabilities can contain additional

information describing the input data samples dif-

ferently even when the samples are in the same

class. Also, samples from different classes could

produce similar distributions to each other.

In this paper, we propose a new knowledge dis-

tillation method, self-knowledge distillation (SKD)

based on the word embedding of the training model

itself. That is, self-knowledge is distilled from the

predicted probabilities produced by the training

model, expecting the model has more information

as it is more trained. In the conventional knowledge

distillation, the knowledge is distilled from the esti-

mated probabilities of pretrained (or teacher) mod-

els. Contrary, in the proposed SKD, knowledge

is distilled from the current model in the training

process, and the knowledge is hidden in the word

embedding. During the training process, the word

embedding reflects the relationship between words

in the vector space. A word close to the target

word in the vector space is expected to have similar

distribution after softmax, and such information

can be used to approximate the soft target proba-

bility as in knowledge distillation. We apply our

proposed method to two popular NLP tasks: LM

and NMT. The experiment results show that our

proposed method improves the performance of the

tasks. Moreover, SKD reduces overfitting prob-

lems which we believe is because SKD uses more

information.

The paper is organized as follows. Background

is reviewed in Section 2. In Section 3, we describe

our proposed method, SKD. Experiment results are

presented and analyzed in Section 4, followed by

Section 5 with conclusion.

2 Background

In this section, we briefly review the cross-entropy

and knowledge distillation. Also, since our pro-

posed method is based on word embedding, the

layer right before the softmax operation, word em-

bedding process is summarized.

2.1 Cross Entropy

For classification with C classes, neural networks

produce class probabilities pi, i ∈ {0, 1, ...C} by

using a softmax output layer which calculates class

probabilities from the logit, zi considering the other

logits as follows.

pi =
exp (zi)

∑

k exp (zk)
. (1)

In most classification problems, the objective

function for a single sample is defined by the cross-

entropy as follows.

J(θ) = −
∑

k

yk log pk, (2)

where yk and pk are the target and predicted proba-

bilities. The cross-entropy can be simply calculated

by

J(θ) = − log pt, (3)

when the target probability y is a one-hot vector

defined as

yk =

{

1, if k = t(target class)
0, otherwise

. (4)

Note that the cross-entropy objective function

says only how likely input samples belong to the

corresponding target class, and it does not provide

any other information about the input samples.

2.2 Knowledge Distillation

A well trained deep network model contains mean-

ingful information (or knowledge) extracted from

training datasets for a specific task. Once a deep

model is trained for a task, the trained model can

be used to train new smaller (shallower or thinner)

networks as shown in (Hinton et al., 2015; Romero

et al., 2014). This approach is referred to as knowl-

edge distillation.

Basically, knowledge distillation provides more

information to new models for training and im-

proves the new model’s performance. Thus, when

a new model which is usually smaller is trained



425

with the distilled knowledge from the trained deep

model, it can achieve a similar (or sometimes even

better) performance compared to the pretrained

deep model.

In the pretrained model, knowledge lies in the

class probabilities produced by softmax of the

model as in Eq. (1). All probability values includ-

ing the target class probability describe relevant

information about the input data. Thus, instead

of one-hot representation of the target label where

only the target class is considered in cross-entropy,

all probabilities over the whole classes from the

pretrained model can provide more information

about the input data in cross-entropy, and can teach

new models more efficiently. All probabilities from

the pretrained model are considered as soft target

probabilities.

In a photo tagging task, depending on the other

class probabilities, we understand the input image

better than just target class. When a class ‘mouse’

has the highest probability, if ‘mascot’ has a rel-

atively high probability, then the image would be

probably ‘mickey mouse’. If ‘button’ or ‘pad’ has

a high probability, the image would be a mouse as a

computer device. The other class probabilities have

some extra information and such knowledge in the

pretrained model can be transferred to a new model

by using a soft target distribution of the training

set.

When the target labels are available, the objec-

tive function is a weighted sum of the conventional

cross-entropy with the correct labels and the cross-

entropy with the soft target distribution, given by

J(θ) = −(1− λ) log pt − λ
∑

k

qk log pk, (5)

where pk is probability for class k produced by

current model with parameter θ, and qk is the soft

target probability from the pretrained model. λ

controls the amount of knowledge from the trained

model. Note that the conventional knowledge distil-

lation extracts knowledge from a pretrained model,

and in this paper, we propose to extract knowledge

from the current model itself without any pretrained

model.

Furthermore, in a recently proposed paper by

(Furlanello et al., 2018), they proved that knowl-

edge distillation can be useful to train a new model

which has the same size and the same architecture

as the pretrained model. They trained a teacher

model first, then they trained a student model with

distilled knowledge from the teacher model. Their

experiment results show that the student models

outperform the teacher model. Also, even though

when the teacher model has a less powerful archi-

tecture, the knowledge from the trained teacher

model can boost student models which have more

powerful (or bigger) architectures. It means that

even the knowledge is distilled from a relatively

weak model, it can be useful to train a bigger

model.

2.3 Word Embedding

Word embedding is to convert symbolic represen-

tation of words to vector representation with se-

mantic and syntactic meanings, which reflects the

relations between words. Including CBOW, Skip-

gram (Mikolov et al., 2013), and GloVe (Penning-

ton et al., 2014), various word embedding methods

have been proposed to learn a word embedding

matrix. The trained embedding matrix can be trans-

ferred to other models like LM or NMT (Ahn et al.,

2016).

CBOW predicts a word given its neighbor words,

and Skip-gram predicts the neighbor words given

a word. They use feedforward layers, and the last

layer of CBOW includes the word embedding ma-

trix, W , as follows.

z = Wh+ b, (6)

where b is a bias, h is hidden layer, and z is logits

for the softmax operation.

Words in the embedding space have semantic

and syntactic similarities, such that two similar

words are close in the space. Thus, when the classi-

fication is not correct, the error can be interpreted

differently depending on the similarity between the

predicted word and the target word. For example,

when the target word is ‘learning’, if the predicted

word is ‘training’, then it is less wrong than other

words like ‘flower’ or ‘internet’. In this paper, we

utilize such hidden information (or knowledge) in

the word embedding space, while training. Fig. 1

shows where the word embedding is located in LM

and NMT, respectively.

3 Self-Knowledge Distillation

We propose a new learning method self-knowledge

distillation (SKD) which distills knowledge from

a currently training model, following the conven-

tional knowledge distillation. In this section, we

describe an algorithm for SKD and its application

to language model and neural machine translation.



426

(a) Language Model (b) NMT Model

Figure 1: Network architectures of LM and NMT.

Word embedding is presented as gray boxes in the

models.

3.1 SKD Equations

In order to apply knowledge distillation on a cur-

rent training model, we need to obtain soft target

probabilities as qk in Eq. (5) for all classes, but

they are not available explicitly. However, when

the model is trained enough, then the word embed-

ding has such information implicitly. If a word wi

is close to wj in the embedding space, the prob-

ability pi would be close to pj for a given input

sample.

When t is the target class, we calculate the soft

target probabilities qk based on the word embed-

ding. First, we assume that qt should be high, and

if wk is close to wt in the embedding space, qk
should be also high. That is, the Euclidean distance

between words is used to estimate the soft target

probability. The other class probabilities (or soft

target probabilities) qk can be obtained by

qk =
1

Z
exp{−σ‖wt −wk‖2}, (7)

where ‖ · ‖2 is l2-norm, and Z is a normalization

term. σ is a scale parameter and its value depends

on the average distance to the corresponding near-

est neighbors in the word embedding space. How-

ever, due to the expensive computational cost, we

do not calculate qk for all classes, and we choose

just one of the other classes, which is the predicted

class of the current model.

Assuming that the model predicts a class n for

a given input sample, only qt and qn are used as

distilled knowledge. We clip the qn value with 0.5,

meaning that the class n cannot be more correct

than the real target t, so Eq. (7) becomes

qn = min{exp{−σ‖wt −wn‖2}, 0.5},

qt = 1− qn, (8)

where qn + qt = 1. That is, we consider only two

soft target probabilities as shown in Fig. 2. Note

that we use Euclidean distance between wt and

wn to calculate qn, but other approaches like inner

product would be possible.

Now, the objective function of SKD becomes

similar to Eq. (5), and is defined by

J(θ) = −(1− λ) log pt

−λ(qt log pt + qn log pn), (9)

where the second term of Eq. (5) is approximated

by λ(qt log pt+qn log pn), ignoring the other class

probabilities. Eq. (9) can be rewritten simply as

follows.

J(θ) = −(1− λqn) log pt − λqn log pn. (10)

Eqs. (9) or (10) can be understood in three cases.

First, if the prediction is correct (n = t), then Eq.

(9) is the same as the conventional cross-entropy

objective. Second, if wn is far from wt in the word

embedding space, then qn is close to zero and Eq.

(9) becomes close to the conventional cross-entropy

objective. Finally, if wn is close to wt (e.g. qn =

0.4), it approximates the soft target probability with

only two classes t and n, and the model is trained

to produce probabilities for class t and n as close

as qt and qn. This approach trains the model with

different targets for different input samples.

Fig. 2 presents how SKD obtains simplified

soft target distribution based on the distance of

target and estimated vectors in the word embedding

space.

3.2 SKD Algorithm

Since SKD distills knowledge from the current

training model, at the beginning of the training

process, the model does not contain relevant infor-

mation. That is, we cannot extract any knowledge

from the training model at the beginning. Thus,

we start training process without knowledge dis-

tillation at first and gradually increase the amount

of knowledge distillation as the training iteration

goes. So, our algorithm starts with the conven-

tional cross-entropy objective function in Eq. (3),

and after training the model for a while, it gradually



427

Figure 2: Given a target class t, a soft target prob-

abilities are obtained based on the distance in the

word embedding space. However, only the target

class and the predicted class have soft target proba-

bilities in SKD.

transits to Eq. (10). To implement the transition,

another parameter α is introduced to Eq. (10), lead-

ing to the final objective function as follows.

J(θ) = −(1− αλqn) log pt − αλqn log pn, (11)

α starts from 0 with which Eq. (11) becomes the

conventional cross-entropy. After K iterations, α

increases by η per iteration and eventually goes up

to 1 with which Eq. (11) becomes the same as Eq.

(9). In our experiments, we used a simplified equa-

tion as in Eq. (12) without λ so that the objective

function relies gradually more on the soft target

probabilities as training goes.

J(θ) = −(1− αqn) log pt − αqn log pn. (12)

Table 1 summarizes the proposed SKD algorithm.

Table 1: Self-Knowledge Distillation Algorithm

Algorithm 1: SKD Algorithm

Initialize the model parameters θ

Initialize α = 0 and σ

(See the experiments for σ values.)

Repeat K times:

Train the network based on the

cross-entropy in Eq. (3)

Repeat until convergence:

Train the network based on

the SKD objective function in Eq. (12)

Update α with α+ η

(See the experiments for η values.)

3.3 NLP Tasks

SKD is applied to two different NLP tasks: lan-

guage modeling (LM), and neural machine transla-

tion (NMT). Although LM and NMT are actually

sentence generation rather than classification, they

have classification steps to generate words for the

target sentence. Also, the sum of cross-entropies

over the words in the sentence is adapted as an

objective function for them.

In addition, to check if SKD is robust against

errors in the word embedding space, we also evalu-

ate SKD when we add Gaussian noise in the word

embedding space for target words in the decoder.

4 Experiments

To evaluate self-knowledge distillation, we com-

pare it to the baseline models for language model-

ing and neural machine translation.

4.1 Dataset

For language modeling, we use two different

datasets: Penn TreeBank (PTB) and WiKi-2. PTB

was made by (Marcus et al., 1993), and we use the

pre-processed version by (Mikolov et al., 2010).

In the PTB dataset, the train, valid and test sets

have about 887K, 70K, and 78K tokens, respec-

tively, where the vocabulary size is 10K. The WiKi-

2 dataset introduced by (Merity et al., 2016) con-

sists of sentences that are extracted from Wikipedia.

It has about 2M, 217K, and 245K tokens for train,

valid, and test sets. Its vocabulary size is about 33K.

We did not apply additional pre-processing for the

PTB dataset. The WiKi-2 dataset is pre-tokenized

data, therefore we only added an end-of-sentence

token (<EOS>) to every sentence.

For machine translation, we evaluated models on

three different translation tasks (En-Fi, Fi-En, and

En-De) with the available corpora from WMT’15
1. The dictionary size is 10K for En-fi and Fi-En

translation task, and 30K for the En-De translation

task.

4.2 Language Modeling

Language modeling (LM) has been used in many

different NLP tasks like automatic speech recogni-

tion (ASR), and machine translation (MT) to cap-

ture syntactic and semantic structure of a natural

language. The neural network-based language mod-

els (NNLM) and recurrent neural network language

model (RNNLM) catch the syntactic and seman-

tic regularities of an input language (Bengio et al.,

2003; Mikolov et al., 2013). RNNLM is our base-

line, which consists of a single LSTM layer and

1http://www.statmt.org/wmt15/translation-task.html



428

single feed forward layer with ReLU (Le et al.,

2015).

We evaluate four models: Baseline, Noise (with

Gaussian noise on the word embedding), SKD,

and Noise+SKD. To show that the information by

SKD is more knowledgeable than random noise,

we tested a noise injected model which injects only

Gaussian noise to the word embedding space. The

word dimension is set to 500 and the number of hid-

den nodes is 400 for all models. We set the σ and

η in the SKD algorithm in Table 1 0.1 (both PTB

and WiKi-2 dataset) and 0.0002 (PTB), 0.00011

(WiKi-2), respectively. We applied the SKD object

function after 500 batches for PTB and 900 batches

for WiKi-2. Note that Wiki-2 data is larger than

PTB.

The evaluation metric is the negative log-

likelihood (NLL) for each sentence (the lower is

the better). Table 2 presents NLLs for the test data

of two datasets with different models. It shows that

our proposed methods (both noise injection and

self-distillation knowledge) improve the results in

the LM task. Note that SKD provides more knowl-

edgeable information than Gaussian noise.

Table 2: NLLs for LM with different models on

PTB and Wiki-2.
Model PTB Wiki-2

Baseline 101.40 119.49

+Noise 101.28 118.70

+SKD 99.38 116.85

+Noise+SKD 97.41 116.60

4.3 Neural Machine Translation

NMT has been widely used in machine translation

research, because of its powerful performance and

end-to-end training (Sutskever et al., 2014; Bah-

danau et al., 2015; Johnson et al., 2017). Attention-

based NMT models consist of an encoder, a de-

coder, and the attention mechanism (Bahdanau

et al., 2015), which is our baseline in this paper

except for replacing GRU with LSTM and using

BPE (Sennrich et al., 2016). The encoder takes the

sequence of source words in the word embedding

form. The decoder works in a similar way to LM,

except the attention mechanism. See (Bahdanau

et al., 2015) for NMT and the attention mechanism

in detail.

In the experiments, we check how much SKD

can improve model’s performance using the simple

baseline architecture. Since SKD modifies only

the objective function, we believe that the improve-

ment by SKD is regardless of model architectures.

Table 3 shows that our proposed method im-

proves NMT performance by around 1 BLEU score.

For qualitative comparison, some translation results

are presented below. The overall quality of transla-

tion of the SKD model looks better than baseline

model’s. In other words, when the BLEU scores

are similar, the sentences translated by the SKD

model look better.

• (src) Hallituslähteen mukaan tämä on yksi monista
ehdotuksista, joita harkitaan.
(trg) A governmental source says this is one of the
many proposals to be considered.
(baseline) According to government revenue, this is one
of the many proposals that are being considered to be
considered.
(SKD) According to the government, this is one of the
many proposals that are being considered.

• (src) Meillä on hyvä tunne tuotantoketjunvahvuudesta.
(trg) We feel very good about supply chain capability.
(baseline) We have good knowledge of the strength of
the production chain.
(SKD) We have a good sense of the strength of the
production chain.

• (src) En ole oikein tajunnut, että olen näin vanha.
(trg) I haven’t really realized that I’m this old.
(baseline) I have not been right to realise that I am so
old.
(SKD) I am not quite aware that I am so old.

• (src) Ne vaikuttavat vasta tulevaisuudessa.
(trg) They’ll have an impact in the future only.
(baseline) They will only be affected in the future.
(SKD) They will only affect in the future.

Fig. 3 shows a trajectory of the qn values and

scheduling of the α value during training the En-Fi

NMT model described in Eq. (12), respectively.

As expected, the qn value becomes larger than 0.5
which means that wn (the predicted word vector)

is close enough to the wt (the target word vector).

Fig. 3(b) shows the scheduled value of α in Eq.

(12). The α value starts from 0 and increases up to

1 while training. The model is trained with only the

cross-entropy for K iterations, and then when the

model captures enough knowledge to be distilled,

α increases to utilize knowledge from the model.

Also, as in Fig. 4, the SKD models are not (or

more slowly) overfitted to the training data. We be-

lieve that SKD provides more information distilled

by the training model itself to prevent overfitting.

Note that there is no significant difference in the

improvements by SKD and Noise, but Noise+SKD



429

(a) qn value during NMT model training

(b) Scheduling of α value of NMT training

Figure 3: (a) Change of qn value during NMT

model training for En-Fi translation task, and (b)

scheduling of α value in Eq. (12) of NMT training

for En-Fi translation task. (a) shows that when the

model is trained more, the qn value become more

close to the target.

improves further. It implies that SKD provides dif-

ferent kinds of information from noise, while the

synergy effect between SKD and noise needs more

research.

Table 3: BLEU scores on the test sets for En-Fi,

Fi-En and En-De with two different beam widths.

The scores on the development sets are in the paren-

theses.

Model
Beam width

1 12

En-Fi

Baseline 7.29(8.28) 9.01(9.85)

+Noise 7.68(8.50) 9.35(9.53)

+SKD 8.36(9.43) 9.87(10.30)

+Noise+SKD 8.81(8.95) 10.13(10.47)

Fi-En

Baseline 10.42(11.39) 11.89(12.78)

+Noise 10.74(11.80) 12.39(13.35)

+SKD 10.70(12.52) 12.43(13.82)

+Noise+SKD 11.87(12.92) 13.16(14.13)

En-De

Baseline 19.72(19.28) 22.25(20.91)

+Noise 20.69(19.68) 22.40(20.92)

+SKD 20.29(20.41) 22.59(21.75)

+Noise+SKD 21.16(20.34) 23.07(21.64)

Figure 4: BLEU scores of validation data while

training on En-Fi corpus with four different mod-

els: Baseline, +Noise, +SKD, and +Noise+SKD.

The vertical axis indicates BLEU score and the

horizontal axis the number of training iteration.

5 Conclusion

We proposed a new knowledge distillation method,

self-knowledge distillation, from the probabilities

of the currently training model itself. The method

uses only two soft target probabilities that are ob-

tained based on the word embedding space. The

experiment results with language modeling and

neural machine translation show that our method

improves the performance. This method can be

straightforwardly applied to other tasks where the

cross-entropy is used.

As future works, we want to apply SKD to other

applications with different model architectures, to

show that SKD does not depend on tasks nor the

model architectures. For image classification tasks,

if we abuse the term ‘word embedding’ to refer to

the layer right before the softmax operation, it may

be possible to apply SKD in a similar way, although

it is not guaranteed that comparable image classes

are closely located in the word embedding space

for image related tasks. Also, we can develop an

automatic way for the parameters like α in Eq. (12),

and generalize the equation for qn in Eq. (8).

Acknowledgement

This research was supported by Basic Science Re-

search Program through the National Research

Foundation of Korea(NRF) funded by the Ministry

of Education (2017R1D1A1B03033341), and by

Institute for Information & communications Tech-

nology Promotion(IITP) grant funded by the Korea

government(MSIT) (No. 2018-0-00749, Develop-

ment of virtual network management technology

based on artificial intelligence).



430

References

Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and
Yoshua Bengio. 2016. A neural knowledge language
model. CoRR abs/1608.00318:1–10.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proc. Int’l Conf.
on Learning Representations (ICLR).

Yoshua Bengio, Aaron C. Courville, and Pascal Vin-
cent. 2013. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 35(8):1798–1828.

Yoshua Bengio, Réjean Ducharme, and Pascal Vin-
cent. 2003. A Neural Probabilistic Language Model.
The Journal of Machine Learning Research 3:1137–
1155.

Heeyoul Choi, Kyunghyun Cho, and Yoshua Bengio.
2017. Context-dependent word representation for
neural machine translation. Computer Speech and
Language 45:149–160.

Tommaso Furlanello, Zachary Chase Lipton, Michael
Tschannen, Laurent Itti, and Anima Anandkumar.
2018. Born-again neural networks. In Proceedings
of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018. pages 1602–1611.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016. pages 770–778.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR abs/1503.02531.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B. Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2017.
Google’s multilingual neural machine translation
system: Enabling zero-shot translation. TACL
5:339–351.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton.
2015. A simple way to initialize recurrent networks
of rectified linear units. CoRR abs/1504.00941.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The Penn Treebank. Computa-
tional Linguistics 19(2):313–330.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. CoRR abs/1609.07843.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013. Efficient Estimation of Word Repre-
sentations in Vector Space. In Proc. Int’l Conf. on
Learning Representations (ICLR).

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In INTER-
SPEECH 2010, 11th Annual Conference of the Inter-
national Speech Communication Association. pages
1045–1048.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). pages 1532–1543.

Joseph Redmon and Ali Farhadi. 2017. YOLO9000:
better, faster, stronger. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017. pages
6517–6525.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2014. Fitnets: Hints for thin deep nets.
CoRR abs/1412.6550.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In 54th Annual Meeting of the Asso-
ciation for Computational Linguistics. pages 1715–
1725.

Anders Søgaard, Yoav Goldberg, and Omer Levy. 2017.
A strong baseline for learning cross-lingual word
embeddings from sentence alignments. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL 2017, Valencia, Spain, April 3-7, 2017, Vol-
ume 1: Long Papers. pages 765–774.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems (NIPS).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA. pages 6000–6010.


