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The problems of reducing the transmission delay and maximizing the sensor lifetime are always hot research topics in the domain
of wireless sensor networks (WSNs). By excluding the influence of routing protocol on the transmission direction of data packets,
the MAC protocol which controls the time point of transmission and reception is also an important factor on the communication
performance. Many existing works attempt to address these problems by using time slot scheduling policy. However, most of them
exploit the global network knowledge to construct a stationary scheduling, which violates the dynamic and scalable nature of
WSNs. In order to realize the distributed computation and self-learning, we propose to integrate the Q-learning into the
exploring process of an adaptive slot scheduling with high efficiency. Due to the convergence nature, the scheduling quickly
approaches an approximate optimal sequence along with the execution of frames. By conducting the corresponding simulations,
the feasibility and the high efficiency of the proposed method can be validated.

1. Introduction

As one of the most fundamental capability for WSNs, data
collection aims to deliver the data generated from the moni-
toring area or object to the users who have interests on them
[1]. The operations of wireless communication normally
consume the most part of energy due to the electronic char-
acteristics of sensor devices [2]. In this case, direct transmis-
sions of original sensing data which contains redundant and
noise information lead to high energy consumption and
short nodal lifetime. To overcome this problem, data aggre-
gation has been developed to merge data packets during the
phase of data transmission, so only a small amount of mean-
ingful information is conserved and delivered in the network.
Consequently, the burden of involved nodes can be eased
[3, 4]. The core concept of data aggregation demands that
multiple packets have to reach the same intermediate node
in a short period of time before performing aggregation
function. It means that a special method is required to
control the time point of communication. In the meantime,
this method should ensure wireless communication with

less conflicts and collisions, which severely impacts network
performance [5].

By being inspired from time division multiple access
(TDMA), two mainstream methods are used to achieve the
mentioned goals in WSNs [6]. The first category exploits
the global knowledge of the entire network which may be var-
iable in WSNs, such as topology information and electronic
status of sensor device. After collecting these information, a
stationary scheduling can be constructed in a centralized
manner. However, this scheduling is fragile in the dynamic
environment ofWSNs [7]. For another category, the designers
change the direction of implementation, the problem of
finding the efficient scheduling is realized by the collabora-
tion among multiple nodes, and the distributed computation
only demands the local network information. Nevertheless,
the existing methods of this category confront the problem
of lacking an efficient guidance to approach the optimal
solution [8]. For the purpose of concurrently inheriting the
positive aspects of both categories, this paper provides a
new scheduling policy, and the main contributions can be
listed as follows:
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(i) We model the problem of exploring the optimal
time slot scheduling in WSNs. Besides appending
the energy consumption on the basis of other ordi-
nary optimization objectives in wireless communica-
tion, some specific constraints are equally considered
in order to apply data aggregation in the phase
of transmission.

(ii) By exploiting the computation capability of sensor
device, the global scheduling optimization problem
can be transformed into distributed collaborative
tasks on sensors, and this feature makes the pro-
posed approach easily accommodated for dynamic
network environment conditions of WSNs.

(iii) Q-learning is used into the discovery process of the
optimal scheduling by utilizing the local knowledge
from the neighbour environment. The selection pro-
cess of the time slot is formulated as a limited state
machine [9].

The rest of the paper is organized as follows: Section 2
analyzes the characteristics of the existing approaches.
Section 3 states the problem which we are concerned and
clearly defines the problemof locating the optimal scheduling.
In Section 4, themain task is to describe the principle and pro-
cedure of a novel scheduling policy with self-learning feature.
Section 5 briefly introduces the simulation platform and
explains the simulation result in order to prove the high
performance of the proposed policy. Finally, the conclusion
and the future work are put in Section 6.

2. Related Work

Without considering applying data aggregation to save
energy, the previous slot scheduling policies focus only on
decreasing transmission delay and collision-free wireless
communications [10, 11]. To match the dynamic feature
of WSNs, a distributed self-learning scheduling approach
(DSS) is applied in [12]. The principle of Q-learning is imple-
mented with the exploration process of a near-optimal time
slot scheduling. The distributed Q-learning makes its imple-
mentation on sensor nodes very easy. Nevertheless, the
performance of this approach on energy consumption could
be unsatisfactory due to the lack of data aggregation at the
network andMAC levels. This may be unacceptable for some
applications which pay more attention on energy consump-
tion and nodal lifetime [13].

To achieve themediumaccess control for single-hopwire-
less sensor network, frame-based ALOHA protocol is firstly
proposed in [14]. By importing the concept of Q-learning,
the communication slots of each frame can be selected in
an intelligent manner. The slot selection naturally migrates
from random access to perfect scheduling in steady state
conditions. The convergence property of this method is val-
idated by a Markov model of the learning process. Neverthe-
less, the assumption of single-hop communication severely
restricts the application range of this method. Data aggrega-
tion function is not considered during data transmission as

well, then this method only attempts to save energy by
decreasing the communication collision.

A centralized aggregation scheduling policy called
Peony-tree-based data aggregation (PDA) is proposed in
[15]. In the network, nodes are subdivided into multiple
levels based on the hop count information, where the base
station is located at the first level, and the leaf nodes stay at
the bottom level. By abstracting the wireless sensor network
as a graph, a maximal independent set can be created in order
to help constructing the data aggregation tree. Besides the
aggregation efficiency, the most important mission is to
reduce the aggregation latency. In this case, the leaf nodes
have to be first scheduled, and then the dominator and con-
nector in maximal independent set are scheduled level by
level. Although the aggregation freshness and data accuracy
can be ensured in PDA, the construction of maximal
independent set demands extra overhead of computation
and communication.

In a large number of WSN application cases, the energy
consumption and transmission delay are normally two con-
flicting optimization objectives, and an efficient scheduling
is supposed to achieve a good trade-off between them. Nearly
constant approximation (NCA) for data aggregation sched-
uling in WSNs is developed to solve this multiple-objective
scheduling problem [16]. It assumes the network is static
and collects the necessary global environment information.
After obtaining these information, a powerful node executes
the search algorithm to find out a high efficient solution.
However, the assumption cannot be always met in WSNs
due to the change of the network state.

Even though the problem to be solved is the same as
NCA, distributed delay-efficient data aggregation scheduling
(DAS) provides a complete different approach [17]. The
computation capability of each sensor device is exploited,
and they coherently cooperate to find a near-optimal slot
scheduling. The construction process of scheduling is inde-
pendent with the phase of data transmission, and a sensor
node forcedly maintains a limited state machine with at least
five states to realize its construction task. In addition, the
usage of tree level as the main index to reduce the aggregation
delay could be inaccurate in some application cases, and it
may make the final solution far away from the theoretical
optimal solution.

3. System Model and Problem Statement

3.1. System Model. Let us consider a WSN as a directed
incomplete graphG N→ E , whereN is a finite set of sensor
nodes, which are uniformly or randomly distributed in the
areas of monitoring regions and responsible to generate mea-
suring data. If the sensor nodes ni ∈ N and nj ∈ N have a direct

communication, the directed links Ei,j and E j,i both existed

due to the symmetric communication. In order to realize a
duty cycle WSN, we assume all nodes in the network have
appropriate clock synchronization. The lifetime of each node
consists of multiple frames with the same length, and each
frame is composed by F time slots. Based on the rule of time
slot scheduling, a node can switch its own state between
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ACTIVE and SLEEP. If a node keeps ACTIVE in a certain
time slot, then one transmission or reception can be per-
formed. Otherwise, a node temporarily switches off its
power supply for primary electronic units in the SLEEP
state, and this behaviour contributes to effectively save
more energy.

According to the feature of wireless communications, if
there is a transmission performed on the link Ei,j , then the
length of this link r = ni, nj is actually the radius of the

transmission disc of node ni and nj. The other nodes or

neighbours located in this disc are interfered by this commu-
nication. If any other transmission is occurring in this area,
the communication collisions will subsequently happen.
Besides, one node can only choose to transmit or receive data
packet in one ACTIVE slot. Once a data packet is successfully
transmitted to a receiver, the corresponding transmitter is
supposed to get an ACK message from this receiver in the
same slot. However, if the transmitter does not obtain
ACK, then this packet will be combined with the packet in
the next frame and retransmitted. Since the WSN routing
protocols do not belong to the research scope of this paper,
we assume that the routing structure of data aggregation
has been already constructed. The nodal relationship is deter-
mined for each node, which means that a node has the
knowledge about its upstream and downstream nodes. To
simplify the model definition, the complete aggregation func-
tion which could combine multiple packets into a single
packet is applied in this paper. Therefore, only one transmis-
sion can be performed in one frame.

3.2. Problem Statement. From the viewpoint of the entire
network, each node in the routing structure is supposed to
perform transmission once in one frame, let us assume Fa

denoting the actual number of slots used for data transmis-
sion in one frame, and then, a sequence of the transmitter sets
AS = TSt1 , TSt2 ,… , TStFα

can represent a data aggregation

scheduling, where TSi denotes the nodes that need to trans-
mit data in the slot ti. Fa also means that the base station will
receive all data at the Fath slot. For the purpose of decreasing
the aggregation delay, we have to let the user acquire all
the demand data as soon as possible. Reducing Fa

becomes one of the optimization objectives for aggregation
scheduling policy. The number of communication colli-
sions Cn should be minimized as well, and the ideal con-
dition is collision-free where this number is equal to zero.
In the meantime, a sensor device is sensitive to its own
energy consumption. Therefore, an efficient scheduling pol-
icy should make the average value of energy consumption
Eavg
c as small as possible, and its value normally depends on

the number of SLEEP slots and the number of communica-
tion collisions:

arg min f Fa AS , Cn AS , Eavg
c AS

Constraints

TSi ∩ TS j = Ø, ∀i ≠ j,

ST ni >max SR ni , ni is not leaf node

1

In addition to the optimization objectives, there are still
some constraints for constructing an efficient slotted sched-
uling of data aggregation. Based on the property of single
transmission in one frame at each node, any TSti should

be disjointed. Besides this, for a node ni, let us suppose that
the active slots for data aggregation and transmission is ST
ni , and the set of active slots for reception is SR ni .
Depending on the principle of data aggregation, transmis-
sions have to be activated after the last reception slot. In the
case when an aggregation scheduling is defined as AS, the
theoretical optimal aggregation scheduling can be expressed
as shown in 1. Parameter f denotes the evaluation function
of aggregation scheduling, and the first constraint corre-
sponds to the limitation of transmission number on each
node, and the second constraint matches the requirement of
data aggregation. In order to clearly explain the mentioned
concepts of aggregation scheduling, we use an example in
Figure 1. A routing structure rooted from the sink terminal
T is constructed before exploring an efficient scheduling.
F = 6 means that one frame is composed of 6 slots, and
Fa = 4 means that data can be transported to the sink
node only by using 4 slots. TSt1 = na, nd because the termi-

nals Ea,e and Ed,f have no conflicts during the simultaneous

transmission. The last reception slot of nf is max SR nf =

t2 which is smaller than its transmission slot ST nf = t3.

3.3. Distributed Solution Based on Q-Learning. The problem
of discovering the theoretical optimal aggregation scheduling
has been proven as NP-hard [18]. Plenty of existing methods
are utilizing the global knowledge of the entire network to
find an approximate solution. But, in order to collect the
necessary knowledge, it will violate the dynamic nature of
WSNs, and it will make these methods inapplicable in many
cases. Once the value of any main parameters in network
environment makes some changes, new information has to
be gathered again and this process cost too many resources.
Instead of that, we introduce a new distributed aggregation
policy which benefits from the idea of reinforcement learn-
ing. The exploration burden has been assigned to sensor
nodes. Decision of whether a time slot is active or not is
described as a Markov decision process (MDP). By using
the local knowledge such as feedback from neighbours, an
approximate optimal scheduling of data aggregation can
be found.

4. Dynamic Aggregation Scheduling Policy

4.1. Preliminaries on Reinforcement Learning. The goal of
reinforcement learning is to guide the selection of ACTIVE
slots for either reception or transmission without a priori
knowledge. To follow this idea, a scheduling process of slots
should be expressed by using the MDP model. According
to the definition of MDP, there is a tuple with four elements
(S, A, P, and R), where S is the state space, and A contains all
potential actions at each state. P∶S × A × P→ 0, 1 denotes
the transition probability of states by taking a certain action.
R is the reward function which depends on S × A→ R. In the
original Markov model, the final goal for an agent is to
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maximize the expected discounted reward or state-value, and
it can be expressed as

vπ s = R s, π s + γ〠
s′

pss′ π s vπ s′ , 2

where vπ s represents the value of objective function, π is
the adopted action policy, R s, π s = E r s, π s denotes
the expected value of reward, γ is the discount factor and s

to s′. In our case, it is difficult to find out pss′ π s as the
transition probability from state pss′ π s and R s, π s .
Therefore, Q-learning becomes a feasible algorithm for learn-
ing the delayed reinforcement information to locate the opti-
mal solution. Correspondingly, the objective function and
the action policy are transformed into a two-dimensional
table which uses state-action pairs as the index and Q-value
in each element. If we assume that the learning rate is α, so
the update rule of Q-value can be expressed as follows:

Qk+1 s, a =Qk s, a

+ α rk s, a + γ max
α′∈A s′

Qk s′, a′ −Qk s, a ,

3

where Qk+1 s, a denotes the Q-value at the state s with the
action a, and rk s, a represents the current reward or the
immediate reward. In this way, the action policy π can be
denoted by the following equation:

π s = arg max
a∈A s

Q s, a 4

Before smoothly applying Q-learning in WSN data
aggregation scheduling process, it is necessary to match the
system model of time slot scheduling with Q-learning
approach and specify the corresponding components of
MDP in the process of slot selection.

4.1.1. State and Action. Each single sensor device is treated as
an agent. The selection process of one ACTIVE slot for
receive or transmit is considered as an MDP. The state and
action are the selected ACTIVE slots in the previous frame
and the current frame, respectively.

The knowledge of upstream and downstream nodes are
obtained before automatically scheduling slots. The previous
state of selection has very limited influence on the action of
selecting the current slot; therefore, only one row is con-
served in Q table without splitting by different previous state
in order to relief the computation burden. Let us assume the
number of upstream nodes is NR, the same number of recep-
tion Q tables are generated. The reception slots from different
upstream node are selected from their corresponding tables
in order, where TabiQR

denotes the reception table for ith
upstreamnode. The same slot cannot be exploited for different
upstream nodes. To comply with this rule, the slots which are
used by the previous upstream node should be excluded from
the candidate set of slots for subsequent upstream nodes. To
maximize the effect of data aggregation, the transmission of
aggregated output always appears after the receptions of all
expected packets. In this case, the candidate transmission slot
is supposed to be located behind all reception slots which are
selected in this frame, and the transmission Q table is repre-
sented by TabQT

. For each node, STc is the current transmis-

sion slot, and SRc is the current set of selected reception slots
in one frame, where SRc = tx,… , ty . SRh is the combination

of multiple historical SRc in recent h frames, whereSRh =

SR1
c ,… , SRh

c .
An example of a Q table is depicted in Figure 2. For cur-

rent node nk, there are two upstream nodes ni and nj, their

corresponding reception tables are Tab1QR
and Tab1QR

, respec-

tively. The downstream node and transmission table are nl
and TabQT

, respectively. When the process of active slot

selection proceeds, these slots are choose sequentially from
these tables. In the first step, t3 is the reception slot for the
first upstream node, it has to be disable as the candidate slot

T

t4 t3

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

t1 t2

t3

t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

t1

t1 t1
t2

t2
t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

na

na

nb

nb

nc

nc

nd

ne
nd

ne

nf

nf

max{SR(nf)} ST(nf)

F
Fa

Next F

SLEEP slot

ACTIVE slot

Figure 1: Example of aggregation scheduling.
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for other selection, and then t2 is selected as the second
reception slot. After all reception slots are decided, the candi-
date set of transmission slot begin from the last reception
slot, then t4 becomes the transmission slot. In this case,
SRc = t2, t3 and STc = t4.

4.1.2. Reward Function. According to the difference of recep-
tion and transmission, the implementations of their reward
function are obviously different.

(1) Reward Function of the Reception Q Table. By observing
the optimization objectives of slot scheduling in 1, the cor-
responding operations will be embodied in the process of
Q-value updating. For the purpose of minimizing the delay,
a node should be inclined to choose the feasible slots with
the smaller sequence number or placed in the anterior parts
of one frame. Therefore, the position of the last working slot
is advanced in the entire frame, and a much lower delay can
be achieved. In the update equation, a delay factor will be
utilized to influence the Q-value. In order to avoid the
communication collision, reward and punishment are used
to deal with different reception situation. If a packet is success-
fully received in an ACTIVE slot, then the Q-value will be
increased. In another case, no packet is received in an
appointed reception slot, and some punishments should be
acted on its Q-value. In the last case, the energy consumption
is represented by the energy factor, which is basically the com-
bination of two impact parameters, such as the maximum
retransmission number, the product of distance, and packet
size. Retransmission is the waste of energy, because the
transmitter has to consume extra power in order to transport
the same data again. So, retransmission number should be
minimized. The product of distance and packet size generates
the preference of receiving packets with larger size from
farther sources. According to the theory of energy consump-
tion in [19], this selection preference can effectively save
more energy.

For the purpose of formulating the reward function, let ti
represent the ith slot in one frame, na be the maximum num-
ber of retransmission attempts, hd be the hop count towards
the destination at dth transmission for a packet, and kd be the
packet size of the dth transmission. Since the unit of packet
size may severely weaken the impact of other factors, then
it has to be normalized as follows:

kd
¯ =

kd − kmin

kmax − kmin

, 5

where kd
¯ is the normalized packet size. If we assume that a

packet is received at ti as pr ti = 1 and the contrary circum-
stances as pr ti = 0, then the reward function can be rewrit-
ten as follows:

rR ti =

δ F − i

F
+ na + 1 〠

D

d=2

hd − hd−1 kd
¯, pr ti = 1,

−θ
i

F
, pr ti = 0,

6

where δ is the impact factor of the slot position, D is the
sequence number of current transmission, and finally, θ is
the punishment factor that ensures the effect of punishment.
The usage of different factors for reward and punishment
functions can be attributed to two reasons. Firstly, some
parameters contained in the energy factor are unobtainable
when there is no received packet. Secondly, the slot placed
in the front position of the entire frame is always preferred
by the selection of subsequent frames. In this case, its incre-
ment of reward is larger and decrement of punishment is
smaller than the slots located behind it.

To clearly explain the updating process, an example is
depicted in Figure 3. The middle table displays the values
before updating, where slot t3 is selected by the previous
upstream node, so the column of action t3 should be disabled.
Slot t2 has the highest Q-value in the table, then it is selected
as the reception slot for the current upstream node. If a
packet is surely received at this slot t2, then a reward will be
given to it, as it was the case in the right table. Otherwise,
the Q-value of slot t2 is reduced due to its punishment.

(2) Reward Function of the Transmission Q Table. To keep
the consistency with the optimization objective in 1, the slot
with smaller sequence number is still preferred to be used.
Besides this aspect, the product of retransmission number
and aggregation efficiency will embody the energy consump-
tion. Scheduling policy tends to pick the slot which success-
fully transports a packet with high retransmission number,
because this behavior effectively relief the network burden.
The aggregation efficiency is the ratio of the receiving data
size and the aggregating data size, and the higher efficiency
should correspond to the higher Q-value, which is encour-
aged to be selected.

The definition of abovementioned parameters is inher-
ited, and then, let us consider the size of reception and aggre-
gation to be represented by krec and kagg, respectively. Let us

further suppose that the reception status of ACK at ti is rep-
resented by pra ti . The assignment pra ti = 1 means that
ACK is received; otherwise, pra ti = 0. Consequently, the
updating rule of transmission slot can be expressed as follows:

rT ti =

δ F − i

F
+ na + 1 1 −

krec
kagg

, pra ti = 1,

−θ
i

F
− na + 1 1 −

krec
kagg

, pra ti = 0,

7

Downstream

Action

Tab1
Q
R

Tab2
Q
R

Tab
QT

Candidate slots

Selected slots

Disable slots

Current

Upstream

0 0.1

0.1 0.7 0

00

0 0 0.2

0.2 0.8 0.3 0

0.6 0 0.1 0

nl

nk

ni nj

t1 t2 t3 t4 t5 t6

Figure 2: Example of a Q table.
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where kagg/krec actually represents the ratio of aggregation. If

this value is higher, the aggregation effect is more obvious.

4.1.3. Action Policy. In order to keep the random searching
capability of Q-learning, we adopt a variant action selection
policy ∆ε-greedy instead of the standard ε-greedy, where a
random slot can be selected with the narrowing probability
and the best slot with the maximumQ-value can be used oth-
erwise. The searching range should be larger at the beginning
of exploration or learning, and the range should be narrowed
with the convergence of exploration. Based on this principle,
if the current sequence number of frame is Fsn and ρ is the
shrinking factor, then ∆ε can be expressed as follows:

Δε =
e−Fsn

ρ 1 + e−Fsn
8

In this way, alongside with the increase of the frame
number, the probability to use random selection becomes
very small. This behaviour contributes to a quick conver-
gence of the slot selection.

4.2. Implementation of Time Slot Scheduling Based on
Reinforcement Learning. Through observing the working
process of time slot scheduling, the procedure of automati-
cally coordinating a great number of sensor nodes to achieve
efficient communication becomes distinct. Generally speak-
ing, there are two primary tasks for the scheduling policy.
First, the active slots which are supposed to receive and trans-
mit packets should be decided before the execution of a new
frame. Second, each slot of one frame starts to work sequen-
tially, once the state of a slot is ACTIVE, the corresponding
actions are subsequently performed.

4.2.1.NodeBehaviour onTimeSlot Scheduling. InAlgorithm1,
from line 2 to 7, the current node is supposed to receive NR

packets from the same number of upstream nodes, and the
slot with the highest value for each reception is selected from
the independent Q-value tables. The result is recorded into
the current set of selected reception slots. Once the last
reception slot is decided, the transmission slot can be
selected from the last reception slot to the last slot in the
frame. In the next step, the selection results with historical
information are compared in lines 11–15. A condition of
judgment is utilized to distinguish whether the selection
result is stable or not, and the principle of this condition will
be explained in the following paragraph.

The execution of slots starts with line 16. From lines
1724, the problem of handling the transmission slot is
described. For each slot, if the state is ACTIVE, and the cur-
rent slot is allocated to transmit, the aggregated packets will
be transmitted. Afterwards, the system expects to receive

ACK. The value of this slot t j in the Q table TabQT
will update

depending on whether ACK is received or not. In lines 2527,
if the packet from the ith upstream node is received, then the

value of this slot in the corresponding Q table TabiQR
is rein-

forced with rewards. However, if the current slot is assigned
to receive the packet from a specific upstream node, but there
is no packet arriving, then its Q-value will be decreased by
using punishment. Besides, several subsequent slots are acti-
vated in order to reduce the opportunity of unsuccessful
communication. This process is depicted in lines 28–30.

4.2.2. Stable Condition of Selection Result. The reason to dis-
tinguish the state of selection result originates from the goal
of balancing the energy consumption and the successful
transmission ratio. Depending on the judgment result, a
node can adjust its own strategy to transit more slots from
SLEEP to ACTIVE state. In case of STABLE state, the
upstream nodes have high probability to choose the same
slots for transmitting data, and other slots can be switched
off to further save energy. Otherwise, too many SLEEP slots
may cause low successful transmission ratio, but it is uncer-
tain when the incoming packets will arrive at current node.
Keeping all slots as ACTIVE can definitely increase the prob-
ability for the successful data transmission. Based on the def-
inition of SRh, whether the selection of slots is stable can be
confirmed by using the similarity index, and this metric
depends on the comparison result of each two successive
selection sets:

J̄ SRh = 〠
i=1

h−1

wi

SRi
c ∩ SRi+1

c

SRi
c ∩ SRi+1

c

, 9

where J̄ SRh denotes the similarity index, and is the weight
of the similarity of two sets. Once the similarity index is
larger than a predefined threshold, the state of selection can
be viewed as stable. Since the tendency of stableness makes
the comparison result of the latest two successive selection
sets more important than the historical result, then more
weight should be allocated to the latest comparison results.
The weight can be defined as

wi =
2i

h h − 1
, 10

which can ensure the latest results having higher weight, and

∑h−1
i=1 wi = 1. This switchover between two states can markedly

avoid the phase with low communication efficiency.

4.3. Adaptation for Dynamic Network Environment.Dynamic
network environment is one of themost important character-
istics of WSNs. Since sensors are normally deployed in

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6
Action

Punishment
0.1 1.0 0.4 0.8 0 0 0.1 1.3 0.4 0.8 0 0 0.1 1.5 0.4 0.8 0 0

State

Reward

Figure 3: Example of Q-value updating for reception slot.
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complicated external environment and their resources are
limited, any change on the sensors' state or the surrounding
environment may cause the sensor to malfunction or lost
communication. Consequently, network topology may be
not always stationary, for example, a sensor node suddenly
becomes disconnected, or a node participates into the
network in order to cover more monitoring area. Node
disappearance and appearance are very common situations
in WSNs, and the proposed scheduling policy is able to
automatically handle these situations without repeatedly
gathering information from the global network.

In general cases, a node that disappears in the network
will only affect the routing and scheduling relationship in
local range. It is not necessary to make a reaction in the global
network. The disappearance may be caused by many reasons,
such as battery exhaustion and malfunction. We do not con-
cern the problem of how to detect the disappearance, then we
assume that a node is able to send a disappearing notification

message to neighbour nodes before a formal disappearance.
For a neighbor node, once its ith upstream nodes disappear,

thenNR and SRh are subsequently updated, Tab
i
QR

is removed

as well. Q-value in remaining tables of reception and trans-
mission is not affected in order to conserve the learningmem-
ory. However, Δε of TabQT

has to be set as the original value

and gradually grow with the number of frames. The objective
is to recover the random searching capability. Consequently,
better slots are probably foundwhen comparingwith previous
selections. If the unique downstream node disappears, an
alternative downstream node will be picked by the routing
protocol. Then, all values of TabQT

are forcedly to be reset

due to the previous slot which is not feasible for wireless com-
munication anymore. This principle is inherited from the
reaction process of appearing a new node in the network.
When a new node intends to participate in the current net-
work, it broadcasts an appearance notification to neighbor

Data:

NR, SRc, Tab
i
QR
, TabQT

, SRh

1 while a new frame starts to execute do
2 for i = 1; i ≤ NR; i + + do

3 for k = 1; k ≤ SRc ; k + + do

4 TabiQR
.disable (SRc(k));

5 end

6 tR = Δε – greedy argmax
tR∉SRc

TabiQR
tR ;

7 SRc .add(t
R);

8 end

9 SRh.add(SRc);

10 STc = Δε - greedy argmax
tT>SRc last

TabQT
tT ;

11 if SRh.comparison() is not stable then
12 Set the state of all slots as ACTIVE;
13 else

14 Set tk as ACTIVE where ∀tk ∈ SRc, and set other slot as SLEEP
15 end

16 for j = 1; j ≤ F; j + + do

17 if the state of tj is ACTIVE then

18 if STc == tj then
19 send packet and wait for ACK;
20 if ACK is received then

21 Update TabQT
(tj) with rewards;

22 else

23 Update TabQT
(tj) with punishment;

24 end

25 else if receive from ith upstream node then

26 Update TabiQR
(tj) with rewards;

27 end

28 else if SRc (i) == tj and not receive any packet from ith upstream node then

29 Update TabiQR
(tj) with punishment;

30 Set tj+1 to tj+p as ACTIVE;
31 end

32 end

31 end

32 end

Algorithm 1: Node behaviour on time slot scheduling.
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nodes. The routing strategy of neighbour nodes decides the
transmission relationship with this new node. After that, the
scheduling policy starts to find out the suitable slots. No
matter how this new node performs as upstream node or
downstream node for the current node, the transmission slot
is supposed to be determined again.

5. Simulation and Performance

OMNeT++ is the simulation platform used to evaluate the
performance of the proposed scheduling policy. MiXiM is a
common modelling framework for wireless communication
based on OMNeT++ [20]. Through utilizing this layered
model, different tasks of sensors can be implemented at dif-
ferent network layer. As one of the most common application
in WSNs, periodical data collection event is implemented on
the network layer. The guide of the transmission direction of
data packet is the job of the routing protocol. The correspond-
ing implementation is put on the network layer. Finally, the
control of communication time point is completed by the
scheduling policy onMAC layer. Other necessary components
are provided by the MiXiM framework. The routing protocol
based on data aggregation is not the concern of this paper, and
a conventional method called energy-aware spanning tree [21]
is used to construct the routing structure. In this case, the
proposed DSQ (data aggregation scheduling policy based on
Q-learning) gets the node relationship before allocating the
suitable time slot for each node.

The performance of scheduling policy is highly related to
the configuration of system parameters. In the simulation,
even though the deployment of sensor nodes is a random dis-
tribution, the connectivity of network is ensured. The com-
mon application scenarios with different network size and
different number of source nodes should be considered.
Besides, the setting of parameters is recommended by
conducting many a priori experiments, where α ∈ 0 1, 0 4 ,
γ ∈ 0 1, 0 2 , h = 4,6,8 , δ ∈ 1 2, 1 6 , θ ∈ 2 0, 10 0 , and
kmin = 100 and kmax = 5000.

For the purpose of embodying the advantage of the pro-
posed scheduling method, three existing methods with differ-
ent types are selected to do the contrast. DSS (distributed
self-learning scheduling approach) is a slotted scheduling
policy without considering data aggregation, which aims to
realize the low delay and collision-free communications in
WSNs. NCA (nearly constant approximation) imports the
concept of data aggregation into time slot scheduling, but it
requires the global knowledge of entire network and per-
forms the centralized computation for the scheduling plan.
DAS (distributed delay-efficient data aggregation scheduling)
combines the technique of data aggregation and distributed
implementation, but its efficiency is not always satisfied due
to the lack of the global viewpoint of the network.

Based on the objectives of scheduling policy in 1, three
main metrics are adopted to exhibit the performance of these
comparative methods. Transmission delay can be observed
by the average duration between the transmitting time point
of a packet at the source node and the receiving time point of
this packet at the sink node or destination node. The average
number of communication collisions can be easily counted

by using the network simulator, which can embody one
important aspect of communication quality. Average resid-
ual energy of the involved transmission nodes is the direct
index of nodal lifetime, and it can reveal the effect of
data aggregation.

In Figure 4, four scheduling policies are compared. DAS
gets the highest delay when comparing with other methods,
and the gap becomes more apparent as the increase of net-
work size. In the worst case, DAS takes 2.6 times of delay
when comparing with DSS. It does not find an efficient opti-
mization mean to make the scheduling approaching the the-
oretical optimal solution. Since DSS gives the first priority to
the transmission delay, it has the best performance on this
metric. DSQ treats delay as the main optimization objective
and prefers the slots ahead in the scheduling, so it performs
a little bit better than NCA, and it saves about 19% of delay
in the best case. In the meantime, DSQ only requires half of
DAS’s delay to transport the same amount of data. The num-
ber of frames also has impacts on transmission delay for dif-
ferent methods as shown in Figure 5. DSQ has the learning
feature, it costs a short period to be stable and locates an
approximate best solution, and the average delay is reduced
with 70% when the number of frames increases to 104. In this
case, DSQ takes longer delay when comparing with NCA at
the few number of frames. This is due to the fact that it still
attempts to find a good scheduling. When the more frames
are executed, the scheduling of DSQ becomes convergent,
and it reaches a lower delay. The delay of other three policies
has barely changed due to their advanced scheduling con-
struction before data transmissions. Meanwhile, DSQ has
the highest value of deviation due to the mutative nature at
the beginning of execution.

The average residual energy of the involved transmission
nodes is depicted in Figure 6, and its unit is set as percentage
instead of joule. When the number of source nodes increases,
the energy level of DAS dramatically decreases, because
data aggregation is not considered. DSQ conserves about
1.3 times more energy than DAS when the largest number
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Figure 4: Average delay with different network size.
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of source nodes is considered in transmissions. The feature
of centralized data aggregation scheduling contributes to
keep the highest level of energy by NCA. Along with the
change of frame numbers, DAS quickly drops to a very
low energy level due to that fact that it delivers too many
packets as depicted in Figure 7. When the frames grow
from 102 to 104, the energy level of DAS decreases to
31.6% of the original value. DSQ aims to reduce the
energy consumption by using data aggregation, and it is
able to conserve energy more 1.76 times than DAS and 1.21
times more than DSS. Thanks to the global searching capabil-
ity for the optimal aggregation scheduling, NCA obtains the
best performance.

Being different with other two aggregation scheduling
policies, DSQ does not occupy an independent period to
construct a stationary time slot scheduling. Instead of that,

an approximate optimal scheduling is supposed to be discov-
ered among the ordinary data transmission. Therefore, the
sequence of scheduling is dynamic at the beginning of explo-
ration, and then quickly converge to a stable sequence with
high quality. The benefit of this feature is to save the time
for independent construction and automatically adapt to
the dynamic network environment. The average number of
communication collisions for each frame is depicted in
Table 1. Since DSQ has the convergent nature of making
the scheduling sequence approach the optimal solution, com-
munication collisions are remarkably reduced when the
number of frames increases. The most obvious result can
reach 3% of the original collisions with 100 frames.

The problem of how to clearly observe the convergence
process of slot selection can be solved by using a special
metric. The general principle of this metric SC is to find
out the selection consistency among recent Fr frames,
where Fr = 10. Let the selection result of the frame i at node

k be Si
k, then its function can be defined as follows:

SC =
1

Fr − 1 N
〠
N

k=1

〠
F−1

i=F−Fr

Ski ∩ Ski+1

Ski ∪ Ski+1
11

The corresponding result of the selection consistency can
be found in Figure 8. Generally speaking, the consistency will
gradually approach to the maximum value of 1 along with the
execution of more frames. The variation trend of this metric
embodies the convergence nature of selection, because a node
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Table 1: Average number of communication collisions.

Frames
Number of source nodes

10 15 20 25

102 14.23 17.39 26.56 43.16

103 3.31 6.25 9.44 16.92

104 0.47 0.87 1.22 1.78
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Figure 5: Average delay with different number of frames.
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always chooses the same slots after the convergence. Accord-
ing to these results, the consistency value with 100 nodes can
reach its maximum at almost 1200th frame, and the conver-
gence point is approximate at 1150th frames ahead with the
consistency value of 200 nodes. It is obvious to discover that
the climbing speed with 100 nodes is much faster than the
climbing speed with more nodes. The direct reason of this
phenomenon comes from the fact that the more nodes are
involved in the network. The exploration problem becomes
more complex, the corresponding convergence time should
be longer than the scenario with less nodes.

To observe the adaptability of DSQ, the corresponding
simulations are conducted. The reaction process of node
disappearance is depicted in Figure 9.When the network con-
dition is stable, the selection converges at the approximate
1800th frame. A node disappears at 2200th frame, even

though consistency value drops a little bit, it quickly recovers
to the maximum value at almost 2600th frame. Thanks to the
learning memory, the climbing speed is much faster than the
speed of the first convergence starting with the same level of
consistency. The situation of appearing a new node is similar
to this reaction process. After a period of exploration, the
value of selection consistency will return to its maximum.

There are two metrics to evaluate the impact of learning
rate α on the performance of Q-learning. The first one is
the convergence time tc which is denoted by the number of
frames. Meanwhile, the quality of final solution is another
significant metric, which is decided by the optimization
objective in 1, and it can be evaluated by using a simple linear
fitness function as follows:

V f =
1

3
〠
i=1

3

vi − vmin
i

vmax
i − vmin

i

12

where V f is the final fitness value, and vi is the evaluation
value of ith objective. The simulation results can be found
in Table 2. As the increase of α, the convergence time is obvi-
ously decreased due to the acceleration of learning rate.
When α reaches 0.25, the convergence time is reduced to
69%. However, the quality of solution is concurrently
decreased along with this tendency; the fitness value with
the maximum α becomes 1.2 times more than the value with
the minimum α. The possible reason is caused by prematu-
rity of exploration, where a node quickly falls into an unsat-
isfactory solution.

Another important parameter is the shrinking factor ρ,
which controls the randomness of selection. As the augment
of ρ, the random searching probability is distinctly decreased,
and the corresponding result can be found in Table 3. When
ρ = 4, the solution keeps at the good position, and the conver-
gence time is also acceptable, so it can be considered as the
best option among these values. From ρ = 2 to ρ = 4, the con-
vergence time is decreased by about 25%. Even though the
convergence time can be reduced by increasing ρ, the quality
of scheduling solution becomes worse, because the sched-
uling quickly falls into a local optimal solution and loses
the capability to jump out. These two metrics could be
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Table 2: Impact of the learning rate α.

Metrics
α

0.1 0.15 0.20 0.25

tc 860 690 620 590

V f 0.72 0.76 0.83 0.88

Table 3: Impact of shrinking factor ρ.

Metrics
ρ

2 4 6 8

tc 910 680 650 630

V f 0.78 0.79 0.87 0.91
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conflicting in many cases; therefore, the best solution can
be viewed as the best trade-off between them.

6. Conclusion and Future Work

In this paper, the concept of data aggregation is studied into
the time slot scheduling of WSNs. Alongside with transmis-
sion delay, energy consumption also becomes an important
performance index. Before explaining the details of the
proposed approach, the concrete problem of discovering
the optimal slot scheduling is analyzed and defined. Subse-
quently, the distributed implementation of aggregation
scheduling policy based on Q-learning is described, the selec-
tion of time slot is abstracted as a Markov decision process.
Thanks to the self-learning feature, the scheduling sequence
automatically converges to a near-optimal sequence after a
short period of exploration. The corresponding simulations
are conducted by comparing DSQ with other three common
WSN scheduling policies, and the results are valuable for
thoroughly understand the performance of DSQ, when com-
pared with other state-of-the-art approaches.

Although the simulation platform can evaluate the theo-
retical performance of the proposed scheduling policy in dif-
ferent application scenarios, the simulation results are still
not the same as the measurements from the real devices in
some cases. Therefore, the next step of work is to implement
this method on the real sensor nodes, then observe and ana-
lyze the actual performance on these devices. Besides, the
number of upstream nodes, which is closely related to the
routing structure, is an important parameter in the learning
process of this slot scheduling policy. The change of routing
structure may directly impact the scheduling results. In the
next step of work, some specific techniques should be devel-
oped to make the learning process adapt to the dynamic
changes of routing structure.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was financially supported in part by the National
Natural Science Foundation of China (NSFC: 71761007)
and the project of the innovation team of knowledge
engineering-based manufacturing service in the colleges
and universities of Guizhou ([2015]58) and Young Science
and Technology Talents Growth Project of Guizhou Provin-
cial Education Department ([2017]124).

References

[1] M. Rajiullah and S. Shimamoto, “An energy-aware periodical
data gathering protocol using deterministic clustering in
wireless sensor networks (WSN),” in 2007 IEEE Wireless
Communications and Networking Conference, pp. 3014–3018,
Kowloon, China, March 2007.

[2] T. Pham, E. J. Kimand, and M. Moh, “On data aggregation
quality and energy efficiency of wireless sensor network proto-
cols - extended summary,” in First International Conference on

Broadband Network, pp. 730–732, San Jose, CA, USA, October
2004.

[3] J. Lin, N. Xiong, A. V. Vasilakos, G. Chen, and W. Guo,
“Evolutionary game-based data aggregation model for wireless
sensor networks,” IET Communications, vol. 5, no. 12,
pp. 1691–1697, 2011.

[4] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network
aggregation techniques for wireless sensor networks: a survey,”
IEEEWireless Communications, vol. 14, no. 2, pp. 70–87, 2007.

[5] Y. Lu, I. S. Comsa, P. Kuonen, and B. Hirsbrunner, “Adaptive
data aggregation with probabilistic routing in wireless sensor
networks,” Wireless Networks, vol. 22, no. 8, pp. 2485–2499,
2016.

[6] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, “MAC
essentials for wireless sensor networks,” IEEE Communica-
tions Surveys & Tutorials, vol. 12, no. 2, pp. 222–248, 2010.

[7] B. Malhotra, I. Nikolaidis, and M. A. Nascimento, “Aggrega-
tion convergecast scheduling in wireless sensor networks,”
Wireless Networks, vol. 17, no. 2, pp. 319–335, 2011.

[8] Y. Bo, L. J, and Y. Li, “Distributed data aggregation scheduling
in wireless sensor networks,” in IEEE INFOCOM 2009 - The
28th Conference on Computer Communications, pp. 2159–
2167, Rio de Janeiro, Brazil, April 2009.

[9] I. S. Comsa, M. Aydin, S. Zhang, P. Kuonen, J.-F. Wagen, and
L. Yao, “Scheduling policies based on dynamic throughput and
fairness tradeoff control in LTE-A networks,” in 39th Annual
IEEE Conference on Local Computer Networks, pp. 418–421,
Edmonton, AB, Canada, September 2014.

[10] M. Bagaa, Y. Challal, A. Ksentini, A. Derhab, and N. Badache,
“Data aggregation scheduling algorithms in wireless sensor
networks: solutions and challenges,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 3, pp. 1339–1368, 2014.

[11] P. Suriyachai, U. Roedig, and A. Scott, “A survey of MAC
protocols for mission-critical applications in wireless sensor
networks,” IEEE Communications Surveys & Tutorials, vol. 14,
no. 2, pp. 240–264, 2012.

[12] J. Niu and Z. Deng, “Distributed self-learning scheduling
approach for wireless sensor network,” Ad Hoc Networks,
vol. 11, no. 4, pp. 1276–1286, 2013.

[13] A. Somov, I. Minakov, A. Simalatsar, G. Fontana, and
R. Passerone, “Amethodology for power consumption evalua-
tion of wireless sensor networks,” in 2009 IEEE Conference on
Emerging Technologies & Factory Automation, pp. 1–8,
Mallorca, Spain, September 2009.

[14] Y. Chu, S. Kosunalp, P. D. Mitchell, D. Grace, and T. Clarke,
“Application of reinforcement learning to medium access con-
trol for wireless sensor networks,” Engineering Applications of
Artificial Intelligence, vol. 46, pp. 23–32, 2015.

[15] P. Wang, Y. He, and L. Huang, “Approaching the optimal
schedule for data aggregation in wireless sensor networks,” in
Wireless Algorithms, Systems, and Applications. WASA 2010.
Lecture Notes in Computer Science, G. Pandurangan, V. S. Anil
Kumar, G. Ming, Y. Liu, and Y. Li, Eds., vol. 6221, Springer,
Berlin, Heidelberg, 2010.

[16] S. C. H. Huang, P. J. Wan, C. T. Vu, Y. Li, and F. Yao, “Nearly
constant approximation for data aggregation scheduling in
wireless sensor networks,” in IEEE INFOCOM 2007 - 26th
IEEE International Conference on Computer Communications,
pp. 366–372, Barcelona, Spain, May 2007.

[17] B. Kang, P. K. H. Nguyen, V. Zalyubovskiy, and H. Choo, “A
distributed delay-efficient data aggregation scheduling for

11Journal of Sensors



duty-cycled WSNs,” IEEE Sensors Journal, vol. 17, no. 11,
pp. 3422–3437, 2017.

[18] X. Chen, X. Hu, and J. ZhuX. Jia, J. Wu, and Y. He, “Minimum
data aggregation time problem in wireless sensor networks,” in
Mobile Ad-hoc and Sensor Networks. MSN 2005. Lecture Notes
in Computer Science, vol. 3794, pp. 133–142, Springer, Berlin,
Heidelberg, 2005.

[19] Y. Lu, P. Kuonen, B. Hirsbrunner, andM. Lin, “Benefits of data
aggregation on energy consumption in wireless sensor net-
works,” IET Communications, vol. 11, no. 8, pp. 1216–1223,
2017.

[20] A. Kopke, M. Swigulski, and K. Wessel, “Simulating wireless
and mobile networks in OMNeT++ the MiXiM vision,” in
Proceedings of the First International ICST Conference on
Simulation Tools and Techniques for Communications Net-
works and Systems, pp. 206-207,Marseille, France,March 2008.

[21] M. Lee and V. W. S. Wong, “An energy-aware spanning tree
algorithm for data aggregation in wireless sensor networks,”
in PACRIM. 2005 IEEE Pacific Rim Conference on Communi-
cations, Computers and signal Processing, 2005, pp. 300–303,
Victoria, BC, Canada, August 2005.

12 Journal of Sensors



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

