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Abstract—Decomposition of an image into multiple semantic
components has been an effective research topic for various image

processing applications such as image denoising, enhancement,

and inpainting. In this paper, we present a novel self-learning
based image decomposition framework. Based on the recent

success of sparse representation, the proposed framework first

learns an over-complete dictionary from the high spatial fre-
quency parts of the input image for reconstruction purposes.

We perform unsupervised clustering on the observed dictionary

atoms (and their corresponding reconstructed image versions) via
affinity propagation, which allows us to identify image-dependent

components with similar context information. While applying

the proposed method for the applications of image denoising,
we are able to automatically determine the undesirable patterns

(e.g., rain streaks or Gaussian noise) from the derived image

components directly from the input image, so that the task of
single-image denoising can be addressed. Different from prior

image processing works with sparse representation, our method

does not need to collect training image data in advance, nor do
we assume image priors such as the relationship between input

and output image dictionaries. We conduct experiments on two

denoising problems: single-image denoising with Gaussian noise
and rain removal. Our empirical results confirm the effectiveness

and robustness of our approach, which is shown to outperform

state-of-the-art image denoising algorithms.

Index Terms—Denoising, image decomposition, rain removal,

self-learning, sparse representation.

I. INTRODUCTION

A SSUMING an image is a linear mixture of multiple

source components, image decomposition aims at deter-

mining such components and the associated weights [1], [2].

For example, how to properly divide an image into texture and
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non-texture parts has been investigated in applications of image

compression [3], image inpainting [4], [5], or related image

analysis and synthesis tasks. Consider a fundamental problem

of decomposing an image of N pixels into C different N-di-

mensional components, one needs to solve a linear regression

problem with unknown variables. While this problem

is ill-posed, image sparsity prior has been exploited to address

this task [1]. As a result, an input image can be morphologically

decomposed into different patches based on such priors for a

variety of image processing applications.

Before providing the overview and highlighting the contri-

butions of our proposed method, we will first briefly review

morphological component analysis (MCA), which is a sparse-

representation based image decomposition algorithm, and has

been successfully applied and extended to solve the problems

of image denoising [6]–[8], image inpainting [5], [8], and image

deraining (i.e., rain removal) [9], [10].

A. MCA for Image Decomposition

MCA utilizes the morphological diversity of different fea-

tures contained in the data to be decomposed and to associate

each morphological component to a dictionary of atoms [1],

[5], [11]. Suppose an image I of N pixels is a superposition of

K components (called morphological components), denoted by

, where denotes the k-th component, such as

the geometric or textural component of the image I. To decom-

pose I into , , MCA iteratively minimizes the

following energy function:

(1)

where denotes the sparse coefficients corresponding to

with respect to the dictionary , is a regularization param-

eter, and is the energy function defined according to the type

of (global or local dictionary).

The MCA algorithms solve (1) by iteratively performing for

each component , the following two steps: (i) update of the

sparse coefficients: this step performs sparse coding to solve

or , where represents the sparse coefficients of the

p-th patch extracted from , and P is the total number of

extracted patches, to minimize while fixing ; and

(ii) update of the components: this step updates or

while fixing or . More details about MCA can be

found in [1], [5], [11].

1520-9210 © 2013 IEEE
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TABLE I

THE NOTATIONS AND DESCRIPTIONS OF THE SYMBOLS IN THIS PAPER

B. Overview and Contributions of the Proposed Method

In this paper, we propose a self-learning based image de-

composition framework. The proposed method identifies image

components based on semantical similarity and thus can be

easily applied to the applications of image denoising. Un-

like prior learning-based image decomposition or denoising

works which require the collection of training image data (e.g.,

raw/noisy inputs vs. denoised outputs, or low-resolution vs.

high-resolution output images), our proposed method advo-

cates the self-learning of the input (noisy) image directly. After

observing dictionary atoms with high spatial frequency (i.e., po-

tential noisy patterns), we advance the unsupervised clustering

algorithm of affinity propagation without any prior knowledge

of the number of clusters, which allows us to automatically

identify the dictionary atoms which correspond to undesirable

noise patterns. As a result, removing such noise from the input

image can be achieved by performing image reconstruction

without using the associated dictionary atoms. From the above

explanation, it can be seen that our proposed method does not

require any external training image data (e.g., noisy and ground

truth image pairs), and no user interaction or prior knowledge

is needed either. Therefore, our method can be considered as an

unsupervised approach. And, as verified by our experiments,

our method can be directly applied to a single input image and

solve single-image problems of rain streaks and Gaussian noise

removal. The former type of noise can be considered structured

noise patterns, and the latter as the unstructured ones.

The major contribution of this paper is tri-fold: (i) unlike

prior MCA based approaches [1], [5], [11], our proposed

method allows one to decompose an input image and to observe

its representation without the need to learn from pre-collected

training data. We do not assume any image priors such as the

relationship between the input and desirable output images

either. This makes single-image based applications applicable

in real-world scenarios; (ii) we advance affinity propagation

for identifying key image components which exhibit similar

context information, so that those associated with noise or

undesirable patterns can be disregarded for automatic image

denoising; (iii) while our proposed framework can be applied

to address the tasks of single-image denoising and rain re-

moval, we further show that we do not limit our method to the

use of any specific preprocessing techniques when retrieving

the high spatial frequency parts (e.g., bilateral filtering [12],

K-SVD-based image denoising [7], and BM3D filtering [13]).

The effectiveness and robustness of our method will later be

confirmed by our experiments.

The rest of this paper is organized as follows. We briefly re-

view sparse representation and dictionary learning techniques

in Section II. Section III presents our proposed framework for

image decomposition via self-learning. Sections IV and V ex-

plain how to apply our method for single-image rain removal

and denoising, respectively. Experimental results on two types

of denoising problems will be presented in Section VI, followed

by the conclusions of this paper.

II. SPARSE REPRESENTATION AND DICTIONARY LEARNING

A. Sparse Representation

Sparse coding [14]–[16] is a technique of representing a

signal in terms of a compact linear combination of a set of

basis signals (or atoms) from a dictionary. A pioneering work

in image sparse representation [14] stated that the receptive

fields of simple cells in mammalian primary visual cortex can

be characterized as being spatially localized, oriented, and

bandpassed. It was shown that a coding strategy that maximizes

sparsity is sufficient to account for the above properties, and

that a learning algorithm attempting to determine sparse linear

codes for natural scenes will develop a complete family of

localized, oriented, and bandpassed receptive fields.

For each image patch extracted from an image I, we can

find the corresponding sparse coefficient vector with respect

to a given dictionary (described in Section II-B) by solving

the following optimization problem

(2)

where is a regularization parameter. It has been shown that (2)

can be efficiently solved using the orthogonal matching pursuit

(OMP) algorithm [6], [15], [17].

B. Dictionary Learning

To construct a dictionary to sparsely represent each patch

extracted from an image, one can use a set of training image

patches , , for learning purposes. To derive

a dictionary which satisfies the above sparse coding scheme,

we solve the following optimization problem [6], [17]:

(3)
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Fig. 1. Illustration of our image decomposition framework. After removing the low spatial frequency (LF) parts (i.e., ) of the input image , we learn a dictionary

for representing the high spatial frequency (HF) image (i.e., ). The observed dictionary atoms are grouped into different clusters based on their context

information, so that the corresponding atom set is associated with a particular HF image component for decomposition purposes.

where denotes the sparse coefficient vector of with re-

spect to and is a regularization parameter. Equation (3)

can be efficiently solved by performing a dictionary learning al-

gorithm, such as online dictionary learning [17] or K-SVD [6]

algorithms.

III. SELF-LEARNING BASED IMAGE DECOMPOSITION

Fig. 1 shows the proposed framework for image decompo-

sition. As shown in this figure, we approach this problem by

solving the task of dictionary learning for image sparse rep-

resentation, followed by the learning of context-aware image

components. While the former aims at reconstructing an input

image using sparse representation techniques, the latter will be

utilized to identify key image components based on their context

information (and thus can be applied for denoising purposes).

The notations used in this paper are summarized in Table I. We

now detail our proposed method.

A. Dictionary Learning for Image Sparse Representation

In this paper, we focus on addressing image denoising prob-

lems. In our proposed framework, we first separate the high spa-

tial frequency parts from the low spatial frequency parts

for an input image . This is because most undesirable noise pat-

terns like rain streaks or Gaussian noise are of this type. In order

to achieve , we consider the use of three low-pass

filtering (LPF) or denoising techniques: bilateral [12], K-SVD

[7], and BM3D [13] as the preprocessing stage. We note that

these LPF or denoising techniques can be replaced by band-pass

filtering if the noise of interest is known to be associated with

a particular frequency band. Nevertheless, we can produce

by subtracting the resulting smoothed/filtered version from

. However, since we do not have prior knowledge or assump-

tions on the type of noise to be removed, it is not clear how to

identify the image components of which correspond to un-

desirable noise patterns.

As discussed in Section I, MCA has been successfully ap-

plied to decompose an image into different components/atoms.

However, traditional MCA approaches usually use a fixed

dictionary (e.g., discrete cosine transform (DCT), wavelet, or

curvelet basis) to sparsely represent an image component. For

these cases, the selection of dictionaries and parameters become

heavily empirical, and the results will be sensitive to the choice

of dictionaries. While some advanced training image data to

learn dictionaries for improved representation, how to select a

proper image set in advance for training remains a challenging

problem. Moreover, the collection of training data might not be

practical in many real-world applications such as single-image

based processing tasks.

Therefore, different from the traditional MCA using fixed

dictionaries, we advocate the learning of dictionary directly

from the input image. More precisely, we only learn a dictionary

based on the high spatial frequency part of the input image (i.e.,

). Once such a dictionary is observed, the remaining task is

to automatically identify the undesirable components/patterns

which correspond to noise, so that one can perform image

reconstruction without using such components for achieving

image denoising.

To be more specific, we extract patches

of size from for learning the dictionary via solving

(3). We apply an online dictionary learning algorithm [17] for

solving the following problem:

(4)

where denotes the sparse coefficient vector of with re-

spect to and is a regularization parameter. The learned

dictionary contains M atoms and thus is

of size (we have ).

B. Learning of Context-Aware Image Components

It is worth noting that, the atoms of are not necessarily

distinct from each other in such a over-complete dictionary for

sparse image representation. Therefore, it is not easy to estimate

the undesirable image patterns in using the observed dictio-

nary atoms. Inspired by MCA, we proposed to separate these

atoms into disjoint groups (i.e., those within the same group

are semantically similar to each other). Thus, it will be pos-

sible to determine the group (and their components) associated

with the noise of interest, and the task of image denoising can

be achieved by performing image reconstruction without using

those undesirable components.

We approach this task as solving an unsupervised clustering

problem. We group the aforementioned atoms

, into different clusters, so that the atoms within

the same group will share similar edge or texture information.
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Fig. 2. Examples of deriving from the input image using different LPF

techniques. The filtered/denoised versions of the input using bilateral fil-

tering, K-SVD, and BM3D are shown in (a), (b), and (c), respectively. The cor-

responding are shown in (d), (e), and (f), respectively.

Since the number of clusters is not known, we apply affinity

propagation [18] for solving this task, which minimizes the net-

similarity (NS) between atoms:

(5)

In (5), the function measures the similarity be-

tween atoms and . In order to group atoms share similar

edge or texture information, we define the similarity function

as where

extracts the features of Histogram of Oriented Gra-

dients [19] describing the shape/texture information of the

atom. The coefficient indicates that the atom is

the exemplar (i.e., the cluster representative) of the atom ,

and thus is categorized to cluster (and equals 1 since

itself is the exemplar cluster ). The first term in (5) is to

calculate the similarity between atoms with each cluster, while

the second term penalizes the case when atoms are assigned to

an empty cluster (i.e., but with ). The

third term in (5), on the other hand, penalizes the condition

when atoms belong to more than one cluster, or no cluster

label is assigned. In practice, the parameter is set to to

avoid the aforementioned problems. We note that, in addition

to HOG, other features describing shape or textural information

can also be considered in our work. For example, the features of

Histogram of Orientation of Streaks (HOS) have recently been

Fig. 3. Examples of rain-removal results of Fig. 2 using (a) bilateral filtering,

(b) KSVD, and (c) BM3D. The first row shows the estimated rain image compo-

nents. The estimated non-rain HF image components are depicted in the second

row. The third row shows the final rain removal versions (i.e., integration of

non-rain HF components and ).

utilized in [20] for representing the patterns of rain or snow in

video frames. Since our work focuses on the self-learning and

decomposition of an input image, we are particularly interested

in identifying and removing a dominant undesirable noise

pattern from the input. From our experiments, the use of HOG

features is sufficient for us to achieve this goal.

After automatically grouping the extracted dictionary

atoms into different image clusters, we can derive image

components associated with each cluster. That is, the p-th

patch of is computed from where is a

vector whose nonzero entries are only those associated with

the atoms in the k-th cluster. Each image component can

considered as being associated to a particular type of context

information, as depicted in Fig. 1. This completes the task of

image decomposition. In the following sections, we will dis-

cuss how we apply this proposed framework for two denoising

tasks, in which rain streaks and Gaussian noise need to be

automatically identified and removed.

IV. APPLICATION TO SINGLE IMAGE RAIN REMOVAL

A. Vision-Based Rain Removal

Since rain streaks presented in images or videos cause com-

plex visual effects on spatial or temporal domains, which may

significantly reduce user satisfaction or degrade the perfor-

mances of surveillance-related applications, removal of such

patterns from images/videos has recently received much atten-

tion from researchers [9], [10], [20]–[22]. Prior vision-based

approaches typically focus on detecting and removing rain

streaks in a video, where both the spatial and temporal in-

formation in the video can be employed for rain removal. A

pioneering work on rain removal from videos was proposed in
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Fig. 4. Examples of deriving from the input image using different LPF

techniques. The filtered/denoised versions of the input using bilateral fil-

tering, K-SVD, and BM3D are shown in (a), (b), and (c), respectively. The cor-

responding are shown in (d), (e), and (f), respectively.

[21], in which a correlation model capturing the dynamics of

rain and a physics-based motion blur model characterizing the

photometry of rain were developed.

On the other hand, when only a single image is available,

it becomes a more challenging task to detect and remove such

noise patterns. In [9], we have proposed a single-image rain re-

moval framework, which approaches the rain removal task as

the image decomposition problem based on MCA [1]. In this

work, we first separated a rain image into low and high-fre-

quency parts via bilateral filtering [12]. The high-frequency part

was then decomposed into the “rain component” and the “non-

rain component” by learning the associated sparse-representa-

tion based dictionaries for representing rain and non-rain com-

ponents, respectively. To achieve this, K-means clustering (K

= 2) was performed on the learned dictionary atoms for distin-

guishing between rain and non-rain atoms. We note that, while

satisfactory results were reported in [9], their use of K-means

clustering for separating the rain streak patterns from non-rain

ones, and the collection of training image data for dictionary

learning, might limit the performance.

B. Our Proposed Method for Single Image Rain Removal

In this study, we formulate the problem of single image rain

removal as an image decomposition problem as [9] did. As illus-

trated in Fig. 1 and discussed in Section III, we first decompose

an input rain image I into and using existing low-pass

filtering techniques. Fig. 2 shows examples of producing

using different filtering techniques. Once is obtained, we

learn the dictionary for representation purposes, and the

dictionary atoms will be grouped into different clusters based

Fig. 5. Examples of denoising results of Fig. 4 using (a) bilateral filtering, (b)

KSVD, and (c) BM3D. The first row shows the estimated rain image com-

ponents. The estimated noise-free HF image components are depicted in the

second row. The third row shows the final denoised outputs (i.e., integration of

noise-free HF components and ).

on its HOG features via affinity propagation. This clustering

stage is to identify dictionary atoms which are similar to each

other in terms of their context information. Once this stage is

complete, we obtain multiple subsets of dictionary atoms ,

where . Recall that, each contains dictionary

atoms with similar HOG features. As illustrated in Fig. 1,

we can reconstruct the image component using the corre-

sponding dictionary set .

For the task of image rain removal, one of the images

from the observed groups would indicate the high spatial

frequency rain streak pattern. To identify such patterns, we con-

sider the variance of gradients for each dictionary atoms asso-

ciated with each group, i.e., we calculate the variance of HOG

features of in . If the noise patterns of interest are the rain

streaks, the edge directions of the rain streaks would be consis-

tent throughout the patches in and thus dominates one of

the resulting cluster . In this case, the variance of the atoms in

that cluster would be the smallest among those across different

clusters, and thus we can determine the cluster and its compo-

nents corresponding to such noise patterns accordingly. Once

the atoms/components associated with such noise are identified

and removed, we can use the remaining atoms for reconstructing

the high frequency part of the image. Adding the low spatial

frequency parts back to this recovered output, the denoised

version of is produced. Fig. 3 shows example rain removal re-

sults using different filtering techniques.

It is worth noting that, if the noise pattern or background tex-

ture of an input image is very similar to that of the rain streaks

(even in a different orientation), we would also observe a low

variance value for the associated HOG features. In this case, we

do not expect to differentiate between these two similar textural

patterns using our proposed method. For this challenging case,
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Fig. 6. An example of single image rain removal. (a) The input image with rain

steaks presented, and (b) our rain removed output.

one should consider temporal information for solving this

particular rain removal task. Since this paper focuses on the

self-learning algorithms for single-image decomposition and

its potential applications, tasks beyond single-image processing

would be out of the scope of this paper.

V. APPLICATION TO SINGLE IMAGE DENOISING

A. Image Denoising

The goal of image denoising is to remove unstructured or

structured noise from an imagewhich is acquired in the presence

of an additive noise [23]. Numerous approaches have been pro-

posed to address this problem in the literature [7], [8], [13], [24].

Extended from image denoising, algorithms have also been pro-

posed for addressing particular image processing tasks. An ex-

ample is bilateral filtering [12], which performs image denoising

via Gaussian blur while being able to preserve the edge infor-

mation.

Recently, the use of sparse and redundant representations

has been successfully applied to address this task [6]–[8]. With

a predetermined dictionary or the one learned from the input

image itself, one can effectively recover the denoised version.

A representative sparse-representation based denoising work is

the K-SVD approach [6], [7]. Once the standard deviation of

the Gaussian noise is given, very promising denoising results

were reported in [6], [7]. Another popular method is BM3D

(block-matching and 3D filtering) [13], which is also on the

image sparse representation in the transformed domain. Similar

to K-SVD, BM3D also requires the prior knowledge of the

standard deviation of the Gaussian noise.

B. Our Proposed Method for Removing Gaussian Noise

Besides rain removal, we further apply our proposed decom-

position method for removing Gaussian noise from input im-

ages. It is worth noting that, unlike K-SVD or BM3D, we do not

need the standard deviation of such noise patterns to be given in

advance, which makes our method more practical for real-world

applications.

Similar to rain removal, we first decompose the input into

and . Fig. 4 shows examples of producing using dif-

ferent filtering techniques. Once is obtained, we learn the

dictionary and extract the HOG features for each atom

. We note that, while HOG is not expected to describe the

Gaussian noise, the presence of such noise would result in HOG

TABLE II

PERFORMANCE COMPARISONS (IN TERMS OF PSNR)

OF BILATERAL-FILTERING BASED RAIN REMOVAL METHODS

TABLE III

PSNR COMPARISONS OF RAIN REMOVAL RESULTS

USING DIFFERENT DENOISING TECHNIQUES

features in which each bin/attribute is not distinguishable. On

the other hand, for noise-free dictionary atoms, we still observe

dominant attributes in their HOG features. As a result, the use of

HOG still allows us to perform clustering of dictionary atoms. In

other words, even the standard deviation of the Gaussian noise

is not given, we are still able to identify the image component

which corresponds to the presence of such noise using our de-

composition and clustering framework. Once this noise compo-

nent is identified and disregarded, we can reconstruct the image

using the remaining HF components and , and example re-

sults are shown in Fig. 5.

VI. EXPERIMENTS

To evaluate the performance of our proposed method, we

conduct experiments for addressing two single-image denoising

tasks: rain removal and denoising (with Gaussian noise). We

consider the patch size of each image as 16 16 pixels, and the

number of dictionary atoms . As suggested in [17],

the regularization parameter and the maximum sparsity value

for the OMP algorithm are set as 0.15 and 10, respectively. For

LPF preprocessing techniques, we have the spatial and inten-

sity-domain standard deviations for bilateral filtering as 6 and

0.2, respectively. All images are of size 256 256 pixels in our

experiments.

A. Performance Evaluation On Single Image Rain Removal

We collect several synthetic rain images from the Internet or

the photo-realistically rendered rain video frames provided in

[21], and thus we have ground-truth images without rain streaks

presented for PSNR calculation. To evaluate the performance of

our proposed method for rain removal, we compare our method

with bilateral filtering (denoted by “Bilateral”) [12], K-SVD [7],

and BM3D [13] denoising algorithms. We set large standard de-

viation values and 35 for K-SVD andBM3D algorithms,

respectively. We note that, during the preprocessing stage of

our framework, larger values allow us to remove high spa-

tial frequency patterns including possible rain streaks from the

low spatial frequency parts of the input image. We do not (and it

is not possible) fine tune such parameters for removing the rain

streaks only.

In addition to the above methods, we consider two of our

prior rain removal works: MCA-based rain removal (denoted
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Fig. 7. Example rain removal results. Note that the input image is the noisy version of ground truth image with rain streaks presented. Rain removal outputs are

produced by the methods of (a) Context-based [10], (b) MCA-based [9], (c) Bilateral [12], (d) ours with Bilateral, (e) K-SVD [7], (f) ours with K-SVD, (g) BM3D

[13], and (h) ours with BM3D.

Fig. 8. Example rain removal results. Note that the input image is the noisy version of ground truth image with rain streaks presented. Rain removal outputs are

produced by the methods of (a) Context-based [10], (b) MCA-based [9], (c) Bilateral [12], (d) ours with Bilateral, (e) K-SVD [7], (f) ours with K-SVD, (g) BM3D

[13], and (h) ours with BM3D.

by “MCA-based”) [9] and rain removal via common context

pattern discovery (denoted by “Context-based”) [10]. These two

methods can be considered as bilateral-filtering based methods,

since they require a LPF stage with a bilateral filter.

Table II lists the PSNR values of different bilateral-filtering

based methods over three different rain images. From this table,

we see that our proposed method achieved the highest or com-

parable PSNR values among different approaches. To show that

we do not limit the use of bilateral filtering as the LPF algorithm,

we further apply K-SVM and BM3D in our preprocessing stage,

and compare the rain removal results with using these two de-

noising algorithms directly. As listed in Table III, it can be seen

that our proposed method clearly improved the PSNR values

than these two state-of-the-art denoising algorithms.

To qualitatively evaluate the performance, we show an ex-

ample rain removal result in Fig. 6, in which an input color

image and its rain removed version are presented. We note that

when removing rain streaks from color images, we represent

such images in the YUV space and perform denoising in the Y

domain. To better visualize and to compare the results, Figs. 7

and 8 show example rain removal images in grayscale. From

these figures, it can be observe that although Bilateral, K-SVD,

and BM3D methods were able to remove most rain streaks,

these denoising techniques inevitably disregarded image details

(e.g., high spatial frequency parts). While applying these tech-

niques in our LPF preprocessing stage, we were able to suc-

cessfully identify/recover most non-rain image details and thus

achieved improved visual quality.
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Fig. 9. Example rain removal results. (a) Original image with rain streaks pre-

sented, (b) the ground truth version of (a) (i.e., rain removed), (c) denoising

output using bilateral filtering, (d) our denoising result.

It is worth noting that, although our prior MCA-based ap-

proach successfully discarded most rain streaks without signif-

icantly degrading image quality, parts of non-rain components

were also removed due to the heuristic dictionary partition by

K-means clustering algorithm. While our prior context-based

method produced comparable rain removal results, it requires

one to perform context-constrained image segmentation [10] on

input images, and thus significantly increases the computational

costs.

In addition, we perform single-image denoising experiments

on real-world rainy images. In particular, we consider the

image frames of the video data which were utilized in [25].

The videos in [25] were captured in real rainy scenes with

static backgrounds, and the authors proposed to adjust camera

parameters for removing or enhancing the presence of rain

streaks. Thus, using their video data, we are able to collect

real-world rainy images and the corresponding ground truth

versions. We show example denoising results in Figs. 9 and

10. From these two figures, it can be seen that our approach

produced satisfactory rain removal results on real-world images

with rainy scenes. We note that, although bilateral filtering was

able to remove high spatial frequency patterns such as rain

streaks while preserving edges in Figs. 9 and 10, a large portion

of image details were also removed. As a result, an automatic

and self-learning based approach likes ours is preferable in

removing particular noise patterns from the input image.

B. Performance Evaluation on Image Denoising

To evaluate the performance of our approach for image de-

noising (with Gaussian noise), we collect and conduct experi-

ments on several images considered in [13]. We manually add

Gaussian noise with to the input noise-free images

Fig. 10. Example rain removal results. (a) Original image with rain streaks

presented, (b) the ground truth version of (a) (i.e., rain removed), (c) denoising

output using bilateral filtering, (d) our denoising result.

for addressing this task. Note that if the for the Gaussian

function is known in advance, both K-SVD and BM3D algo-

rithms will be expected to achieve excellent denoising results.

However, we assume this exact parameter choice is not known

(which is practical), and we simply set large standard devia-

tion values for both algorithms. Similar to the sce-

narios for rain removal, this would allow us to remove high spa-

tial frequency patterns including possible Gaussian noise from

the low spatial frequency parts of the input image without fine

tuning the parameter . We also compare our algorithm with

denoising methods not requiring the prior knowledge on for

the Gaussian noise. We consider the SURE-LET algorithm [26],

which relies on a purely data-adaptive unbiased estimate of the

mean-squared error, so that the Gaussian noise can be removed

without knowing the Gaussian parameter in advance.

Table IV lists the PSNR of different denoising approaches,

including ours with three different LPF/denoisng techniques ap-

plied. From this table, it can be seen that our approach produced

improved denoising results than the standard LPF/denoising ap-

proaches did (i.e., Bilateral filtering, K-SVD, SURE-LET, and

BM3D). For qualitative comparisons, Figs. 11 and 12 show ex-

ample denoising results produced by different methods. From

these figures, we see that standard LPF/denoising methods were

not able to achieve satisfactory results if parameters like are

not given in advance.

Furthermore, although the SURE-LET based approach was

able to outperform approaches using K-SVD for Gaussian noise

removal, BM3D-based approaches still achieved the best de-

noising performance (i.e., BM3D with ours).

It is worth noting that, while our method quantitatively and

qualitatively outperformed others, we do not need to fine-tune

our approach with or assume such parameters are known in
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TABLE IV

PERFORMANCE COMPARISONS (IN TERMS OF PSNR) OF DIFFERENT IMAGE DENOISING APPROACHES.

NOTE THAT WE PRESENT OUR RESULTS USING THREE DIFFERENT LPF OR DENOISING TECHNIQUES

Fig. 11. Example image denoising results. Note that the input image is the noisy version of ground truth image (with Gaussian noise). Denoising outputs are

produced by the methods of (a) Bilateral [12], (b) ours with Bilateral, (c) K-SVD [7], (d) ours with K-SVD, (e) SURE-LET [26], (f) ours with SURE-LET, (g)

BM3D [13], and (h) ours with BM3D.

Fig. 12. Example image denoising results. Note that the input image is the noisy version of ground truth image (with Gaussian noise). Denoising outputs are

produced by the methods of (a) Bilateral [12], (b) ours with Bilateral, (c) K-SVD [7], (d) ours with K-SVD, (e) SURE-LET [26], (f) ours with SURE-LET, (g)

BM3D [13], and (h) ours with BM3D.

advance (which might not be practical). From the above experi-

ments, we again confirm the effectiveness and robustness of our

approach for image denoising, which can be integrated with ex-

isting LPF/denoising techniques in the LPF preprocessing stage.

In other words, we do not limit the use of our proposed frame-

work to any particular LPF or denoising algorithm.

Although real-time processing is not of concern of this paper,

we provide the remarks on computation time for different
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learning stages of our proposed framework as follows. In

our proposed method, it takes about 100 seconds to perform

denoising for an input image of 256 x 256 pixels. In particular,

it takes about 3 seconds to perform bilateral filtering (i.e.,

identifying potential high-frequency noise patterns), 1 minute

for learning the sparse-representation based dictionary, 30

seconds for performing affinity propagation to identify image

components of interest, and 5 seconds for reconstructing the

image output. We note that, the above runtimes were obtained

on an Intel Quad Core 2 PC with 2.66 GHz processors and 4G

RAM.

VII. CONCLUSION

In this paper, we presented a learning-based image decom-

position framework for single image denoising. The proposed

framework first observes the dictionary atoms from the input

image for image representation. Image components associated

with different context information will be automatically learned

from the grouping of the derived dictionary atoms, which does

not need the prior knowledge on the type of images nor the col-

lection of training image data. To address the task of image de-

noising, our proposed method is able to identify image com-

ponents which correspond to undesired noise patterns. Experi-

ments on two types of single image denoising tasks (with struc-

tured and unstructured noise) confirmed the use of our proposed

method, which was shown to quantitatively and qualitatively

outperform existing denoising approaches.
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