
Self-learning IP Traffic Classification based on
Statistical Flow Characteristics

Sebastian Zander1, Thuy Nguyen1, Grenville Armitage1

Centre for Advanced Internet Architectures (CAIA)
Swinburne University of Technology, Melbourne, Australia
{szander,tnguyen,garmitage}@swin.edu.au

Abstract. A number of key areas in IP network engineering, management and
surveillance greatly benefit from the ability to dynamically identify traffic flows
according to the applications responsible for their creation. Currently such
classifications rely on selected packet header fields (e.g. destination port) or
application layer protocol decoding. These methods have a number of shortfalls
e.g. many applications can use unpredictable port numbers and protocol
decoding requires high resource usage or is simply infeasible in case protocols
are unknown or encrypted. We propose a framework for application
classification using an unsupervised machine learning (ML) technique. Flows
are automatically classified based on their statistical characteristics. We also
propose a systematic approach to identify an optimal set of flow attributes to
use and evaluate the effectiveness of our approach using captured traffic traces.

1 Introduction

Over recent years there has been a dramatic increase in the variety of applications
used in the Internet. Besides the ‘traditional’ applications (e.g. email, web) new
applications have gained strong momentum (e.g. gaming, P2P). The ability to
dynamically classify flows according to their applications is highly beneficial in a
number of areas such as trend analysis, network-based QoS mapping, application-
based access control, lawful interception and intrusion detection.

The most common identification technique based on the inspection of ‘known port
numbers’ suffers because many applications no longer use fixed, predictable port
numbers. Some applications use ports registered with the Internet Assigned Numbers
Authority (IANA) but many applications only utilise ‘well known’ default ports that
do not guarantee an unambiguous identification. Applications can end up using non-
standard ports because (i) non-privileged users often have to use ports above 1024,
(ii) users may be deliberately trying to hide their existence or bypass port-based
filters, or (iii) multiple servers are sharing a single IP address (host). Furthermore
some applications (e.g. passive FTP) use dynamic ports unknowable in advance.

A more reliable technique involves stateful reconstruction of session and
application information from packet contents. Although this avoids reliance on fixed

1 Work supported by Cisco Systems, Inc under the University Research Program.

port numbers, it imposes significant complexity and processing load on the
identification device, which must be kept up-to-date with extensive knowledge of
application semantics, and must be powerful enough to perform concurrent analysis
of a potentially large number of flows. This approach can be difficult or impossible
when dealing with proprietary protocols or encrypted traffic. The authors of [1]
propose signature-based methods to classify P2P traffic. Although these approaches
are more efficient than stateful reconstruction and provide better classification than
the port-based approach they are still protocol dependent.

Machine Learning (ML) automatically builds a classifier by learning the inherent
structure of a dataset depending on the characteristics of the data. Classification in a
high dimensional attributes space is a big challenge for humans and rule-based
methods, but stochastic ML algorithms can easily perform this task. The use of
stochastic ML for traffic classification was raised in [2], [3] and [4]. However, to the
best of our knowledge no systematic approach for application classification and
evaluation has been proposed and an understanding of possible achievements and
limitations is still lacking. We propose a detailed framework for self-learning flow
classification based on statistical flow properties that includes a systematic approach
of identifying the optimal set of flow attributes that minimizes the processing cost,
while maximizing the classification accuracy. We evaluate the effectiveness of our
approach using traffic traces collected at different locations in the Internet.

2 Related Work

Previous work used a number of different parameters to describe network traffic (e.g.
[1], [5], [6]). The idea of using stochastic ML techniques for flow classification was
first introduced in the context of intrusion detection [2]. The authors of [7] use
principal component analysis and density estimation to classify traffic into different
applications. They use only two attributes and their evaluation is based on a fairly
small dataset. In [3] the authors use nearest neighbour and linear discriminate analysis
to separate different application types (QoS classes). This supervised learning
approach requires an a-priori knowledge of the number of classes. Also, it is unclear
how good the discrimination of flows is because in [3] the sets of attributes are
averaged over all flows of certain applications in 24-hour periods. In [4] the authors
use the Expectation Maximization (EM) algorithm to cluster flows into different
application types using a fixed set of attributes. From their evaluation it is not clear
what influence different attributes have and how good the clustering actually is.

3 ML-based Flow Classification Approach and Evaluation

As initial input we use traffic traces or capture data from the network. First we
classify packets into flows according to IP addresses, ports, and protocol and compute
the flow characteristics. The flow characteristics and a model of the flow attributes
are then used to learn the classes (1). Once the classes have been learned new flows
can be classified (2). The results of the learning and classification can be exported for

evaluation. The results of the classification would be used for e.g. QoS mapping,
trend analysis etc. We define a flow as a bidirectional series of IP packets with the
same source and destination address, port numbers and protocol (with a 60 second
flow timeout). Our attribute set includes packet inter-arrival time and packet length
mean and variance, flow size (bytes) and duration. Aside from duration all attributes
are computed in both directions. We perform packet classification using NetMate [8],
which supports flexible flow classification and can easily be extended with new flow
characteristics. For the ML-based classification we use autoclass [9], an
implementation of the Expectation Maximization (EM) algorithm [10]. EM is an
unsupervised Bayesian classifier that automatically learns the ‘natural’ classes (also
called clustering) inherent in a training dataset with unclassified cases. The resulting
classifier can then be used to classify new cases (see [4], [9]).
 (Sub)Sampling

Result
Usage

ML Learning (1)
& Classification (2)

Offline

Traces

Online

Packet Classification Flow
Statistics

Flow
Attributes

Model

ML

Result

 Evaluation

Packet
Classification

Packet
Sniffing

Data Source

Learned
Classes

QoS

Mapping,
etc.

(1)

(2)

(1)

(2)

Fig. 1. ML-based flow classification

1 2 3 4 5 6

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of Attributes

In
tra

-c
la

ss
 H

om
og

en
ity

 H

Auckland-VI part 1
Auckland-VI part 2
NZIX-II
Leipzig-II

Fig. 2. Intra-class homogeneity

For the evaluation we use the Auckland-VI, NZIX-II and Leipzig-II traces from
NLANR [11] captured in different years at different locations. Because the learning
process is slow we use 1,000 randomly sampled flows for eight destination ports (FTP
data, Telnet, SMTP, DNS, HTTP, AOL Messenger, Napster, Half-Life), which results
in a total of 8,000 flows. Finding the combination of attributes that provides the most
contrasting application classes is a repeated process of (i) selecting a subset of
attributes, (ii) learning the classes and (iii) evaluating the class structure.

We use sequential forward selection (SFS) to find the best attribute set because an
exhaustive search is not feasible. The algorithm starts with every single attribute. The
attribute that produces the best result is placed in a list of selected attributes SEL(1).
Then all combinations of SEL(1) and a second attribute not in SEL(1) are tried. The
combination that produces the best result becomes SEL(2). The process is repeated
until no further improvement is achieved. To assess the quality of the resulting classes
we compute the intra-class homogeneity H. We define C and A as the total numbers
of classes and applications respectively. If Nac is the number of flows of application a
that fall into class c and Nc is the total number of flows in class c Hc is defined as:

max(| 0 1)ac
c

c

N
H a A

N
= ≤ ≤ − (0<H≤1) (1)

For each trial H is the mean of Hc for 0≤c≤C-1 and the objective is to maximize H
to achieve a good separation between different applications. For the evaluation we
assume a flow’s destination port defines the application. This may be incorrect (as
stated initially) but we assume it is true for a majority of the flows. Unfortunately

public available traces do not contain payload information usable for verification.
For each trace (and for two different parts of Auckland-VI) the best set of attributes

found is different and the size varies between 4-6 (see Fig.2.). We rank the attributes
according to how often they appear in the best set: forward packet length mean,
forward/backward packet length variance, forward inter-arrival times mean and
forward size (75%), backward packet length mean (50%), duration and backward size
(25%). Clearly, packet length statistics are preferred over packet inter-arrival time
statistics for the ports we use. The average maximum H is 0.87±0.02 but H greatly
differs for different ports (e.g. 0.98±0.01 for Half-Life but only 0.74±0.14 for HTTP).

4 Conclusions and Future Work

We have proposed a framework for ML-based flow classification based on statistical
flow properties, identified a systematic approach of identifying an optimal set of flow
attributes and evaluated the effectiveness of our approach. The results show that some
separation of the applications can be achieved if the flow attributes are chosen
properly. We plan to evaluate our approach with a larger number of flows and more
applications (e.g. audio/video streaming). We hope to get traces that contain payload
information usable for verifying the actual applications. We also plan to experiment
with more attributes (e.g. idle time, burstiness) and possibly use payload information
in a protocol independent way. Furthermore the precision of the resulting classifier
and the classification performance has not yet been evaluated.

References

1. S. Sen, O. Spatscheck, D. Wang, “Accurate, Scalable In-Network Identification of P2P
Traffic Using Application Signatures”, WWW 2004, New York, USA, May 2004.

2. J. Frank, “Machine Learning and Intrusion Detection: Current and Future Directions”,
Proceedings of the National 17th Computer Security Conference, 1994.

3. M. Roughan, S. Sen, O. Spatscheck, N. Duffield, “Class-of-Service Mapping for QoS: A
statistical signature-based approach to IP traffic classification”, ACM SIGCOMM Internet
Measurement Workshop 2004, Taormina, Sicily, Italy.

4. A. McGregor, M. Hall, P. Lorier, J. Brunskill, “Flow Clustering Using Machine Learning
Techniques”, Passive & Active Measurement Workshop 2004, France, April, 2004.

5. K. Lan, J. Heidemann, “On the correlation of Internet flow characteristics”, Technical Report
ISI-TR-574, USC/Information Sciences Institute, July, 2003.

6. K. Claffy, H.-W. Braun, G. Polyzos, “Internet Traffic Profiling”, CAIDA, San Diego
Supercomputer Center, http://www.caida.org/ outreach/papers/1994/itf/ , 1994.

7. T. Dunnigan, G. Ostrouchov, “Flow Characterization for Intrusion Detection”, Oak Ridge
National Laboratory, Tech Report, http://www.csm.ornl.gov/~ost/id/tm.ps, November 2000.

8. NetMate, http://sourceforge.net/projects/netmate-meter/ (as of January 2005).
9. P. Cheeseman, J. Stutz, “Bayesian Classification (Autoclass): Theory and Results”,

Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, USA, 1996.
10. A. Dempster, N. Laird, D. Rubin, “Maximum Likelihood from Incomplete Data via the EM

Algorithm, Journal of Royal Statistical Society, Series B, Vol. 30, No. 1, 1977.
11. NLANR traces: http://pma.nlanr.net/Special/ (as of January 2005).

