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Abstract. A number of key areas in IP network engineering, management and 
surveillance greatly benefit from the ability to dynamically identify traffic flows 
according to the applications responsible for their creation. Currently such 
classifications rely on selected packet header fields (e.g. destination port) or 
application layer protocol decoding. These methods have a number of shortfalls 
e.g. many applications can use unpredictable port numbers and protocol 
decoding requires high resource usage or is simply infeasible in case protocols 
are unknown or encrypted. We propose a framework for application 
classification using an unsupervised machine learning (ML) technique. Flows 
are automatically classified based on their statistical characteristics. We also 
propose a systematic approach to identify an optimal set of flow attributes to 
use and evaluate the effectiveness of our approach using captured traffic traces.  

1 Introduction 

Over recent years there has been a dramatic increase in the variety of applications 
used in the Internet. Besides the ‘traditional’ applications (e.g. email, web) new 
applications have gained strong momentum (e.g. gaming, P2P). The ability to 
dynamically classify flows according to their applications is highly beneficial in a 
number of areas such as trend analysis, network-based QoS mapping, application-
based access control, lawful interception and intrusion detection. 

The most common identification technique based on the inspection of ‘known port 
numbers’ suffers because many applications no longer use fixed, predictable port 
numbers. Some applications use ports registered with the Internet Assigned Numbers 
Authority (IANA) but many applications only utilise ‘well known’ default ports that 
do not guarantee an unambiguous identification. Applications can end up using non-
standard ports because (i) non-privileged users often have to use ports above 1024, 
(ii) users may be deliberately trying to hide their existence or bypass port-based 
filters, or (iii) multiple servers are sharing a single IP address (host). Furthermore 
some applications (e.g. passive FTP) use dynamic ports unknowable in advance. 

A more reliable technique involves stateful reconstruction of session and 
application information from packet contents. Although this avoids reliance on fixed 
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port numbers, it imposes significant complexity and processing load on the 
identification device, which must be kept up-to-date with extensive knowledge of 
application semantics, and must be powerful enough to perform concurrent analysis 
of a potentially large number of flows. This approach can be difficult or impossible 
when dealing with proprietary protocols or encrypted traffic. The authors of [1] 
propose signature-based methods to classify P2P traffic. Although these approaches 
are more efficient than stateful reconstruction and provide better classification than 
the port-based approach they are still protocol dependent. 

Machine Learning (ML) automatically builds a classifier by learning the inherent 
structure of a dataset depending on the characteristics of the data. Classification in a 
high dimensional attributes space is a big challenge for humans and rule-based 
methods, but stochastic ML algorithms can easily perform this task. The use of 
stochastic ML for traffic classification was raised in [2], [3] and [4]. However, to the 
best of our knowledge no systematic approach for application classification and 
evaluation has been proposed and an understanding of possible achievements and 
limitations is still lacking. We propose a detailed framework for self-learning flow 
classification based on statistical flow properties that includes a systematic approach 
of identifying the optimal set of flow attributes that minimizes the processing cost, 
while maximizing the classification accuracy. We evaluate the effectiveness of our 
approach using traffic traces collected at different locations in the Internet. 

2 Related Work 

Previous work used a number of different parameters to describe network traffic (e.g. 
[1], [5], [6]). The idea of using stochastic ML techniques for flow classification was 
first introduced in the context of intrusion detection [2]. The authors of [7] use 
principal component analysis and density estimation to classify traffic into different 
applications. They use only two attributes and their evaluation is based on a fairly 
small dataset. In [3] the authors use nearest neighbour and linear discriminate analysis 
to separate different application types (QoS classes). This supervised learning 
approach requires an a-priori knowledge of the number of classes. Also, it is unclear 
how good the discrimination of flows is because in [3] the sets of attributes are 
averaged over all flows of certain applications in 24-hour periods. In [4] the authors 
use the Expectation Maximization (EM) algorithm to cluster flows into different 
application types using a fixed set of attributes. From their evaluation it is not clear 
what influence different attributes have and how good the clustering actually is.  

3 ML-based Flow Classification Approach and Evaluation 

As initial input we use traffic traces or capture data from the network. First we 
classify packets into flows according to IP addresses, ports, and protocol and compute 
the flow characteristics. The flow characteristics and a model of the flow attributes 
are then used to learn the classes (1). Once the classes have been learned new flows 
can be classified (2). The results of the learning and classification can be exported for 



evaluation. The results of the classification would be used for e.g. QoS mapping, 
trend analysis etc. We define a flow as a bidirectional series of IP packets with the 
same source and destination address, port numbers and protocol (with a 60 second 
flow timeout). Our attribute set includes packet inter-arrival time and packet length 
mean and variance, flow size (bytes) and duration. Aside from duration all attributes 
are computed in both directions. We perform packet classification using NetMate [8], 
which supports flexible flow classification and can easily be extended with new flow 
characteristics. For the ML-based classification we use autoclass [9], an 
implementation of the Expectation Maximization (EM) algorithm [10]. EM is an 
unsupervised Bayesian classifier that automatically learns the ‘natural’ classes (also 
called clustering) inherent in a training dataset with unclassified cases. The resulting 
classifier can then be used to classify new cases (see [4], [9]).  
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Fig. 1. ML-based flow classification 
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Fig. 2. Intra-class homogeneity 

For the evaluation we use the Auckland-VI, NZIX-II and Leipzig-II traces from 
NLANR [11] captured in different years at different locations. Because the learning 
process is slow we use 1,000 randomly sampled flows for eight destination ports (FTP 
data, Telnet, SMTP, DNS, HTTP, AOL Messenger, Napster, Half-Life), which results 
in a total of 8,000 flows. Finding the combination of attributes that provides the most 
contrasting application classes is a repeated process of (i) selecting a subset of 
attributes, (ii) learning the classes and (iii) evaluating the class structure.  

We use sequential forward selection (SFS) to find the best attribute set because an 
exhaustive search is not feasible. The algorithm starts with every single attribute. The 
attribute that produces the best result is placed in a list of selected attributes SEL(1). 
Then all combinations of SEL(1) and a second attribute not in SEL(1) are tried. The 
combination that produces the best result becomes SEL(2). The process is repeated 
until no further improvement is achieved. To assess the quality of the resulting classes 
we compute the intra-class homogeneity H. We define C and A as the total numbers 
of classes and applications respectively. If Nac is the number of flows of application a 
that fall into class c and Nc is the total number of flows in class c Hc is defined as:  

max( | 0 1)ac
c

c

N
H a A

N
= ≤ ≤ −   (0<H≤1)  (1) 

For each trial H is the mean of Hc for 0≤c≤C-1 and the objective is to maximize H 
to achieve a good separation between different applications. For the evaluation we 
assume a flow’s destination port defines the application. This may be incorrect (as 
stated initially) but we assume it is true for a majority of the flows. Unfortunately 



public available traces do not contain payload information usable for verification.  
For each trace (and for two different parts of Auckland-VI) the best set of attributes 

found is different and the size varies between 4-6 (see Fig.2.). We rank the attributes 
according to how often they appear in the best set: forward packet length mean, 
forward/backward packet length variance, forward inter-arrival times mean and 
forward size (75%), backward packet length mean (50%), duration and backward size 
(25%). Clearly, packet length statistics are preferred over packet inter-arrival time 
statistics for the ports we use. The average maximum H is 0.87±0.02 but H greatly 
differs for different ports (e.g. 0.98±0.01 for Half-Life but only 0.74±0.14 for HTTP). 

4 Conclusions and Future Work 

We have proposed a framework for ML-based flow classification based on statistical 
flow properties, identified a systematic approach of identifying an optimal set of flow 
attributes and evaluated the effectiveness of our approach. The results show that some 
separation of the applications can be achieved if the flow attributes are chosen 
properly. We plan to evaluate our approach with a larger number of flows and more 
applications (e.g. audio/video streaming). We hope to get traces that contain payload 
information usable for verifying the actual applications. We also plan to experiment 
with more attributes (e.g. idle time, burstiness) and possibly use payload information 
in a protocol independent way. Furthermore the precision of the resulting classifier 
and the classification performance has not yet been evaluated. 

References 

1. S. Sen, O. Spatscheck, D. Wang, “Accurate, Scalable In-Network Identification of P2P 
Traffic Using Application Signatures”, WWW 2004, New York, USA, May 2004. 

2. J. Frank,  “Machine Learning and Intrusion Detection: Current and Future Directions”, 
Proceedings of the National 17th Computer Security Conference, 1994. 

3. M. Roughan, S. Sen, O. Spatscheck, N. Duffield, “Class-of-Service Mapping for QoS: A 
statistical signature-based approach to IP traffic classification”, ACM SIGCOMM Internet 
Measurement Workshop 2004, Taormina, Sicily, Italy. 

4. A. McGregor, M. Hall, P. Lorier, J. Brunskill, “Flow Clustering Using Machine Learning 
Techniques”, Passive & Active Measurement Workshop 2004, France, April, 2004. 

5. K. Lan, J. Heidemann, “On the correlation of Internet flow characteristics”, Technical Report 
ISI-TR-574, USC/Information Sciences Institute, July, 2003. 

6. K. Claffy, H.-W. Braun, G. Polyzos, “Internet Traffic Profiling”, CAIDA, San Diego 
Supercomputer Center, http://www.caida.org/ outreach/papers/1994/itf/ , 1994. 

7. T. Dunnigan, G. Ostrouchov, “Flow Characterization for Intrusion Detection”, Oak Ridge 
National Laboratory, Tech Report, http://www.csm.ornl.gov/~ost/id/tm.ps, November 2000. 

8. NetMate, http://sourceforge.net/projects/netmate-meter/ (as of January 2005). 
9. P. Cheeseman, J. Stutz, “Bayesian Classification (Autoclass): Theory and Results”, 

Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press, USA, 1996. 
10. A. Dempster, N. Laird, D. Rubin, “Maximum Likelihood from Incomplete Data via the EM 

Algorithm, Journal of Royal Statistical Society, Series B, Vol. 30, No. 1, 1977. 
11. NLANR traces: http://pma.nlanr.net/Special/ (as of January 2005). 


