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Abstract

The success of an intelligent robotic system depends on
the performance of its vision-system which in turn depends
to a great extend upon the quality of its calibration. Dur-
ing the execution of a task the vision-system is subject to
external influences such as vibrations, thermal expansion
etc. which affect and possibly render invalid the initial cal-
ibration. Moreover, it is possible that the parameters of
the vision-system like e.g. the zoom or the focus are al-
tered intentionally in order to perform specific vision-tasks.
This paper describes a technique for automatically main-
taining calibration of stereovision systems over time without
using again any particular calibration apparatus. It uses all
available information, i.e. both spatial and temporal data.
Uncertainty is systematically manipulated and maintained.
Synthetical and real data are used to validate the proposed
technique, and the results compare very favourably with
those given by classical calibration methods.
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1. Introduction

Calibrating a camera consists in determining the analyt-
ical relationship between the three-dimensional coordinates
of a point and the two-dimensional coordinates of its im-
age by the camera. Once a camera model is chosen, the
calibration problem is to compute the particular numerical
parameters for a given camera. The classical methods are
model-based. They are based on the observation of an objet
for which the three-dimensional coordinates of N reference
points1 Mi = [Xi; Yi; Zi]T are known. The projections mi
of these points are measured in the image and yield pixel co-
ordinates mi = [ui; vi]T . The reference objects which are
used are generally calibration grids composed of repeated�This work was partly supported by the European Space Agency (ESA)
project CALVIN and was done at INRIA, France.

1We use a typewriter type style to denote vectors if uppercase letters are
concerned, such as for space points.

patterns (circles or rectangles) chosen to define point of in-
terest which can be measured with a very good precision. A
review of the state-of-the-art for camera calibration can be
found in [6, 1].

In real applications (e.g. space applications), during per-
formance of visual tasks, the camera calibration may be no
longer valid due to accidental changes of the camera param-
eters such as thermal and mechanical influences as well as
intentional changes in camera parameters such as a change
in zoom and focus. One solution would be to detect, dur-
ing a visual task, whether the calibration is no more valid.
If it is no more valid, we could again use the classical tech-
nique to re-calibrate the vision system by showing calibra-
tion apparatus (model). This solution is of course not sat-
isfactory because we have to interrupt a task being exe-
cuted. Another solution is the so-called self-calibration [2,
3], which uses projective constraints between images and
only requires to establish image-point correspondence with-
out using any calibration apparatus. Unfortunately, up to
now, there does not yet exist a robust and fully automatic
self-calibration technique, and the calibration apparatus can-
not yet be thrown away.

The work described here assumes that a vision system
was initially calibrated by using some classical calibration
technique. The objective is to maintain camera calibration
over time using sequences of images of the surrounding en-
vironment, i.e. without having to use again a calibration ob-
ject of precisely known dimensions. A camera is modeled
by a standard pinhole. The relationship between the coordi-
nates of a 3D space point and those of its image point is de-
scribed by a 3�4 perspective projection matrix P, which is
defined up to a scale factor. The proposed method can, how-
ever, easily include more camera parameters such as radial
distortion coefficients.

2. Summary of the proposed technique

The basic idea of the method is to ‘push forward’ Eu-
clidean structure of the scene previously seen by the cam-
eras until time instant ti to the next instant ti+1. This struc-
ture together with the information extracted from the corre-
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Figure 1. Notations usedM;�M: 3D-points and their covariances, m;�m: image-features

and their covariances, m̂;�m̂: reprojected points and their covari-
ances, d: distance between observed image points and reprojected
ones, P: projection matrices

sponding images at ti+1 is used to obtain the new projec-
tion matrices and thus the internal and external parameters
of the cameras with which the images have been taken. This
is possible even when the camera parameters have changed
in between views. The notations used are shown in figure 1.
When image points are concerned, the subscript is used to
denote the image number, and the superscript is used to de-
note the point number.

We now consider a binocular stereo system. (However,
the method can be easily extended to deal with n cameras.)
At each time instant, we consider two image pairs. For sim-
plicity, let i = 1, but actually the technique described be-
low will work with any i. The proposed method starts with
strongly calibrated cameras at time t1. We will assume that
at t1 the following is known:� the projection matricesP1 andP2 and their covariance

matrices �P1 and �P2 . They are provided by the clas-
sical calibration technique at the beginning of the ses-
sion, and are then updated continuously by using the
observed data with the technique being described.� the point-matches m1�4 in images 1-4 with their re-
spective covariance matrices �m1�4 . Usually, �mi =�mj ; 8i;j because the images are taken with the
same camera(s) or the same type of cameras and the
same technique is used to extract the points of interest
from images.

Using P1, P2, �P1 , �P2 , m1;2 and �m1;2 , a set of 3D
points Mi and their covariance matrices �Mi can be computed
(Sect. 3.1). Using the 3D reconstruction Mi and �Mi and the
image points m3;4 together with �m3;4 , the projection ma-
tricesP3 andP4 and their covariance matrices �P3 and�P4
at time instant t2 can be obtained (Sect. 3.2).

3. Description of the Proposed Technique

This section provides the details of the proposed tech-
nique. The first step is to reconstruct the 3D points observed
at t1 together with their uncertainty measure. The second
step is then to update the camera projection matrices by min-
imizing the error between the observed image points at t2
and the projection of the 3D points reconstructed at t1. One
particular effort is on the characterization of the uncertainty.
This is important because the errors of the reconstructed
points are not the same in different directions (e.g. there is
usually a larger error in depth than in lateral directions) and
they are different from one point to another [4, 7].

3.1. Calculating the 3D reconstruction

We are given at t1 point matches f(mi1;mi2)g, their co-
variance matrices f(�mi1 ;�mi2)g, and the projection matri-
ces P1 and P2 with covariance matrices �P1 and �P2 .

Analytical solution: For each pair of image-
correspondences, we obtain, from the pinhole camera
model, 4 linear equations in the 3 unknown coordinates.
A linear least-squares technique is used to compute the 3
unknowns. Details are omitted here.

Nonlinear refinement: The above solution is not optimal
because the quantity being minimized does not have a phys-
ically meaningful interpretation. Analysis based on maxi-
mum likelihood principle shows that we should minimize
the Mahalanobis distance in the image-plane between ob-
served image points mi and reprojected points m̂i:minM 2Xj=1 dTj ��1j dj (1)

where dj = (mj � m̂j), the reprojected point is obtained
based on the camera model, i.e. m̂j = Pj(M), and �j is de-
fined as �j = �mj +�m̂j where �mj is the uncertainty in
image j (which is fixed by the user or obtained through the
analysis of the corner detector used) and �m̂j is the uncer-
tainty of the reprojected point due to the uncertainty of the
camera projection matrices, defined as�m̂j = @m̂j@Pj �Pj �@m̂j@Pj �T

(2)

The term �Pj is the uncertainty of the projection matrix Pj
which at t1 is given by the classical camera calibration tech-
nique. Starting from t2 these uncertainty-matricesare the re-
sult of the calculations in section 3.2. Note that in the above
computation, a projection matrix P is used as a 12-D vec-
tor P, and �Pi is considered to be a 12x12 matrix. The mini-
mization of (1) is conducted using the Levenberg-Marquardt
technique.



Covariance for 3D points: Now we show how to esti-
mate the covariance-matrices of the estimated 3D points.
The 3D points are obtained by solving the minimization
problem (1), that is by minimizingC(M;x) = 2Xj=1(mj � m̂j)T��1i (mj � m̂j) : (3)

Here, we define the measurement vector x to be the 28-
vector (m1;m2;P1;P2) (here again, we consider the cam-
era projection matrix as a 12-vector). Using the implicit
function theorem, we can compute the covariance matrix ofM as�M = D�xDT with D = �@2C(M̂; x̂)@M2 ��1 @2C(M̂; x̂)@M@x :
Here, the covariance matrix of x is given by �x =
diag (�m1 ;�m2 ;�P1 ;�P2). Here again, we consider �Pi
(i = 1; 2) to be a 12� 12 matrix.

3.2. Estimating P
We now describe how to estimate the projection matrices

at t2, Pi (i = 3; 4), and their covariance matrices �Pi (i =3; 4). Since the technique described here works in exactly
the same way for both projection matrices, we only considerP3 in the sequel.

We have a set of Euclidean points Mi (i = 1; : : : ; n)
reconstructed from previously observed image points to-
gether with their covariance matrices �Mi (i = 1; : : : ; n),
as described in section 3.1. We are also given the corre-
spondence between these 3D points Mi and the image pointsmi3 observed in image 3. The projection matrix P3 is ob-
tained by minimizing the distance between the image pointsmi3 and the reprojected points m̂i3 (reprojected from the
3D-reconstruction obtained previously). This minimization
is done using the Levenberg-Marquardt least-squares tech-
nique which requires an initial guess.

Linear method for finding initial estimate forP: In or-
der to find an initial estimate the uncertainty measures are
ignored and only the algebraic distances are used. Starting
with the classical pinhole model equations[u; v; 1]T = P[X;Y; Z; 1]T ;
where (u; v) are 2D coordinates and (X;Y; Z) are 3D coor-
dinates, we eliminate the factor s and create a matrixAwith
2 rows per point-correspondence, which yieldsAx = 0
where x is a 12-vector composed by the entries of camera
perspective projection matrix P3. SinceP3 is defined up to
a scale factor, we can impose the constraint that kxk = 1.
The solution to the above problem is simply the eigenvector
of ATA associated with the smallest eigenvalue.

Nonlinear refinement of the initial guess. Start from the
above initial estimate, we refine the projection matrix by
minimizing the Mahalanobis distance in the image-plane be-
tween the image-pointsmi3 and the reprojected points m̂i3:minP Xi dTi ��1i di (4)

where di = mi3 � m̂i3, m̂i3 = P3(Mi), �i is defined as�i = �mi3 + �m̂i3 where �mi3 is the covariance matrix of
point i in image 3 and �m̂i3 is defined as�m̂i3 = @m̂i3@Mi �Mi �@m̂i3@Mi �T

(5)

which is the uncertainty of the reprojected points. The term�Mi is the covariance matrix of the 3D points calculated in
section 3.1.

The minimization is done using the Levenberg-
Marquardt technique. Since P3 is defined up to a scale
factor, we need to appropriately parameterize it. One way
is to set the element of the last row having the largest value
to 1 and use the remaining 11 elements as free parameters.

Covariance matrix for P. Exactly the same algebra as
for the covariance matrix of reconstructed 3D points can be
done for that of the camera projection matrix P. We only
need to mention that the covariance matrix is a function ofmi3, Mi, and their covariance matrices.

4. Experimental Results

Two sets of experiments were performed, the first one us-
ing synthetic data in order to investigate the robustness of
the algorithms in the presence of noise, while the second one
using real image-data to confront our proposed technique
with the real world.

4.1. Synthetic Data

In the experiments involving synthetic data, the follow-
ing was used:� the known 3D coordinates of an object, in this case the

calibration grid known as mire44 as shown in figure 2.� four different projection matrices (with fixed, i.e.
known parameters). The exact values used are:P �u �v u0 v0 c

1 600 800 250 260 -4.62593e-20
2 560 750 255 265 2.47818e-20
3 650 830 255 265 2.05067e-12
4 600 800 260 270 7.19234e-11

which corresponds to something like a small zoom be-
tween t1 and t2. The parameter c above is equal to��u cot �, which is very close to 0 because � is very
close to �=2. The external parameters are:



Figure 2. Synthetic Data: The Calibration-
Object ‘mire44’P rx ry rz tx ty tz

1 -2.61e-16 5.498 1.08e-16 -200 -150 1000
2 -2.61e-16 5.498 1.08e-16 -323 -150 1030
3 4.49e-09 5.273 8.12e-09 -171 -110 982
4 1.52e-07 5.273 2.75e-07 -294 -110 1012

which corresponds to a slight translation of the cameras
and a rotation around the y-axis. The translation vector
corresponds to the position of the optical center in the
absolute coordinate system. The rotation is represented
as the rotation-axis with the norm of the rotation-vector
being the angle of the rotation.� the four views generated from the 3D points projected
by the projection matrices.
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Figure 3. Behavior of Algorithm in the Pres-
ence of Noise: �u and �v for images 3 (top)
and 4 (bottom)

The results for the experiments using synthetic data are
shown in figures 3 - 6. The units for tx, ty and tz are mil-
limeters, while those for rx, ry and rz , in radians. The re-
sults are very good up to a noise with standard deviation of
about 2 pixels per point. The estimation of the intrinsic pa-
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Figure 4. Behavior of Algorithm in the Pres-
ence of Noise: u0 and v0 for images 3 (top)
and 4 (bottom)
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Figure 5. Behavior of Algorithm in the Pres-
ence of Noise: tx; ty and tz for images 3 (left)
and 4 (right)

rameters is stable. The relative error in translation is about
3%, while that in rotation is about 2%. At noise-level of
above approximately 2 pixels per image-point, the results
become less useful. One reason is that the 3D points used for
calibration are reconstructed from 2D noisy points at t1 and
that the 2D points at t2 used for calibration are also noisy,
which is different from the classical calibration where the
3D points are known very precisely.

4.2. Real data

For the experiments involving real images a short se-
quence of the same scene was taken: the first pair corre-
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Figure 6. Behavior of Algorithm in the Pres-
ence of Noise: rx; ry and rz for images 3 (left)
and 4 (right)

sponding to a stereo-head at instant t1 the second pair at t2.
Between t1 and t2 the stereo-head has performed a transla-
tion towards the scene and a small rotation to the right, and
has decreased the zoom in order to keep the objects of inter-
est at approximately the same size. These images are shown
in figure 7. In order to be able to compare the obtained re-
sults with those of classical calibration techniques, four im-
ages were taken with the same configuration but with a cal-
ibration object placed in front of the camera. These images
are shown in figure 8. Since the calibration object was place
in exactly the same position for all for shots, it appears in
different positions of the images. The points of interest were
extracted from the images in question and matched across all
4 images giving a total of about 200 common point matches
in the images. This was done using theimage-matching
software. The left image at instant t2 with the matched fea-
ture points marked is shown in figure 9.

The results for the experiments involving real data are
shown in table 1. Pi (i = 1; : : : ; 4) are given by a classical
calibration technique [5], while bPj (j = 3; 4) are obtained
with the technique proposed in this paper. The results for
both the intrinsic as well the extrinsic parameters are very
close to the ones given by the classical method, except for
the fourth image. In fact, the results for the fourth image ob-
tained with our new technique are closer to what one would
expect from the experimental setup than the results given by
a classical calibration technique, because between the two
images at t2 the same camera was translated and rotated, but
the intrinsic parameters remained unchanged. The classical
method gives different intrinsic parameters for the two im-

Figure 7. Real image data: Top: images at t1,
Bottom: images at t2

Figure 8. Images taken with the same configu-
ration as in figure 7 but with calibration object
placed in front of camera

ages (e.g., �u and �v are around 1200 for P3, but 1100 forP4), the new method on the other hand gives almost iden-
tical values for �u and �v (they are all very close to 1200
for bP3 and bP4). The different values given by the classical
technique could be due to the fact that the calibration object
in the fourth image is in the left part of the image (see bot-



Table 1. Results for Real Data: Values at t1 are given in lines P1 and P2. Lines P3 and P4 give the
results of the classical method, the lines bP3 and bP4 give the results of the new method�u �v u0 v0 r tP1 1465 1466 380 316 [�0:576; 5:39; 0:278] [�1482;�10:9;�1372]P2 1393 1391 310 274 [�0:465; 5:55; 0:292] [�1126;�0:24;�1634]P3 1212 1211 396 314 [�0:538; 5:33; 0:274] [�1212;�2:09� 1181]bP3 1220 1208 311 308 [�0:549; 5:40; 0:297] [�1216;�0:24;�1198]P4 1102 1105 268 256 [�0:327; 5:55; 0:270] [�849;�10:0;�1406]bP4 1190 1203 304 280 [�0:480; 5:51; 0:296] [�955;�3:77;�1535]

Figure 9. Left image at t2 from figure 7 shown
with matched points common to all 4 images

tom right of figure 8) and not near the center of the image. It
is a well-known fact that the classical calibration technique
is very sensitive to the size and position occupied by the cal-
ibration pattern in the image.

5. Conclusion

A new method has been proposed for obtaining camera-
calibration of a stereovision system over time without us-
ing again any particular calibration apparatus. The idea is to
use previously valid camera projection matrices and image
point matches to push forward the Euclidean structure of the
scene, which allows us to recalibrate the stereovision sys-
tem. Uncertainty is systematically manipulated and main-
tained. This is important because the errors of the recon-
structed points are different in different directions and from
one point to another. This, together with the configuration
of observed image points, affects the precision of the esti-

mated camera projection matrices. They cannot be properly
and efficiently propagated over time without correctly char-
acterizing their uncertainty. The proposed method has been
evaluated using both synthetic data with various levels of
noise added as well as image-data obtained using real cam-
eras. The results compare very favorably with those given
by classical calibration-methods.

In the current work, no knowledge of the vision system
is assumed, i.e. all parameters of the cameras are free to
change. This is usually not the case in practice (e.g., only
zoom is modified). Our future work will be the develop-
ment of a technique which tracks the calibration parameters
by taking into account the knowledge of their variation.
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