

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author�

Self-managed Resources in Network

Virtualisation Environments

PhD Thesis Dissertation

by

Rashid Mijumbi

Submitted to the Universitat Politècnica de Catalunya (UPC)

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Barcelona, September 2014

Supervisor: Prof. Joan Serrat Fernández

Co-Supervisor: Dr. Juan-Luis Gorricho

Abstract

Network virtualisation is a promising technique for dealing with the resistance of the

Internet to architectural changes, enabling a novel business model in which infras-

tructure management is decoupled from service provision. It allows infrastructure

providers (InPs) who own substrate networks (SNs) to lease chunks of them out to

service providers who then create virtual networks (VNs), which can then be re-leased

out or used to provide services to end-users.

However, the different VNs should be initialised, in which case virtual links and

nodes must be mapped to substrate nodes and paths respectively. One of the chal-

lenges in the initialisation of VNs is the requirement of an efficient sharing of SN

resources. Since the profitability of InPs depends on how many VNs are able to

be allocated simultaneously onto the SN, the success of network virtualisation will

depend, in part, on how efficiently VNs utilise physical network resources. This the-

sis contributes to efficient resource sharing in network virtualisation by dividing the

problem into three sub-problems: (1) mapping virtual nodes and links to substrate

nodes and paths i.e. virtual network embedding (VNE), (2) dynamic managing of

the resources allocated to VNs throughout their lifetime (DRA), and (3) provisioning

of backup resources to ensure survivability of the VNs.

The constrained VNE problem is NP-Hard. As a result, to simplify the solution,

many existing approaches propose heuristics that make assumptions (e.g. a SN with

infinite resources), some of which would not apply in practical environments. This

thesis proposes an improvement in VNE by proposing a one-shot VNE algorithm

which is based on column generation (CG). The CG approach starts by solving a

restricted version of the problem, and thereafter refines it to obtain a final solution.

The objective of a one-shot mapping is to achieve better resource utilisation, while

using CG significantly enhances the solution time complexity.

In addition current approaches are static in the sense that after the VNE stage, the

resources allocated are not altered for the entire lifetime of the VN. The few proposals

that do allow for adjustments in original mappings allocate a fixed amount of node

i

and link resources to VNs throughout their life time. Since network load varies with

time due to changing user demands, allocating a fixed amount of resources based on

peak load could lead to an inefficient utilisation of overall SN resources, whereby,

during periods when some virtual nodes and/or links are lightly loaded, SN resources

are still reserved for them, while possibly rejecting new VN requests. The second

contribution of this thesis are a set of proposals that ensure that SN resources are

efficiently utilised, while at the same making sure that the QoS requirements of VNs

are met. For this purpose, we propose self-management algorithms in which the SN

uses time-difference machine learning techniques to make autonomous decisions with

respect to resource allocation.

Finally, while some scientific research has already studied multi-domain VNE, the

available approaches to survivable VNs have focused on the single InP environment.

Since in the more practical situation a network virtualisation environment will in-

volve multiple InPs, and because an extension of network survivability approaches

from the single to multi domain environments is not trivial, this thesis proposes a

distributed and dynamic approach to survivability in VNs. This is achieved by using

a multi-agent-system that uses a multi-attribute negotiation protocol and a dynamic

pricing model forming InPs coalitions supporting SNs resource backups. The ulti-

mate objective is to ensure that virtual network operators maximise profitability by

minimising penalties resulting from QoS violations.

ii

Resumen

La virtualización de redes es una técnica prometedora para afrontar la resistencia de

Internet a cambios arquitectónicos, que permite un nuevo modelo de negocio en el que

la gestión de la infraestructura está desacoplada del aprovisionamiento del servicio.

Esto permite a los proveedores de infraestructuras (InPs), propietarios de la red f́ısica

subyacente (SN), alquilar segmentos de la misma a los proveedores de servicio, los

cuales crearán redes virtuales (VNs), que a su vez pueden ser realquiladas o usadas

para proveer el servicio a usuarios finales.

Sin embargo, las diferentes VNs deben inicializarse, mapeando sus nodos y enlaces

en los del substrato. Uno de los retos de este proceso de inicialización es el requisito

de hacer un uso eficiente de los recursos de la SN. Dado que el beneficio de los InPs

depende de cuantas VNs puedan alojarse simultáneamente en la SN, el éxito de la

virtualización de redes depende, en parte, de cuan eficiente es el uso de los recursos de

red f́ısicos por parte de las VNs. Esta Tesis contribuye a la compartición eficiente de

recursos para la virtualización de redes dividiendo el problema en tres sub-problemas:

(1) mapeo de nodos y enlaces virtuales sobre nodos y enlaces del substrato (VNE),

(2) gestión dinámica de los recursos asignados a las VNs a lo largo de su vida útil

(DRA), y (3) aprovisionamiento de recursos de backup para asegurar la supervivencia

de las VNs.

La naturaleza del problema VNE lo hace “NP-Hard”. En consecuencia, para

simplificar la solución, muchas de las actuales propuestas son heuŕısticas que parten

de unas suposiciones (por ejemplo, SN con recursos ilimitados) de dif́ıcil asumir en

la práctica. Esta Tesis propone una mejora al problema VNE mediante un algoritmo

“one-shot VNE” basado en generación de columnas (CG). La solución CG comienza

resolviendo una versión restringida del problema, para después refinarla y obtener la

solución final. El objetivo del “one-shot VNE” es mejorar el uso de los recursos, a la

vez que con CG se reduce significativamente la complejidad temporal del proceso.

Por otro lado, las propuestas actuales son estáticas, ya que los recursos asignados

en la fase VNE no se alteran a lo largo de la vida útil de la VN. Las pocas propuestas

iii

que permiten reajustes del mapeado original ubican una cantidad fija de recursos a

las VNs. Sin embargo, dado que la carga de red vaŕıa con el tiempo, debido a la

demanda cambiante de los usuarios, ubicar una cantidad fija de recursos basada en

situaciones de pico conduce a un uso ineficiente de los recursos por infrautilización

de los mismos en periodos de baja demanda, mientras que en esta situación, al tener

los recursos reservados, pueden rechazarse nuevas solicitudes de VNs. La segunda

contribución de esta Tesis es un conjunto de propuestas para el uso eficiente de los

recursos de la SN, asegurando al mismo tiempo la calidad de servicio de las VNs.

Para ello se proponen algoritmos de auto-gestión en los que la SN usa técnicas de

aprendizaje de máquinas para materializar decisiones autónomas en la asignación de

recursos.

Finalmente, aunque determinadas investigaciones ya han estudiado el problema

multi-dominio VNE, las propuestas actuales de supervivencia de redes virtuales se han

limitado a un entorno de provisión de infraestructura de un solo InP. Sin embargo, en

la práctica, la virtualización de redes comportará un entorno de aprovisionamiento

con múltiples InPs, y dado a que la extensión de las soluciones de supervivencia de

un entorno único a uno multi-dominio no es trivial, esta Tesis propone una solución

distribuida y dinámica a la supervivencia de VNs. Esto se consigue mediante un

sistema multi-agente que usa un protocolo de negociación multi-atributo y un modelo

dinámico de precios para conformar coaliciones de InPs para proporcionar backups

a los recursos de las SNs. El objetivo último es asegurar que los operadores de VNs

maximicen su beneficio minimizando la penalización por violación de la QoS.

iv

Resum

La virtualització de xarxes es una tècnica prometedora per afrontar la resistència

d’Internet als canvis arquitectònics, que permet un nou model de negoci en el que

la gestió de la infraestructura de xarxa es desacobla de la provisió del servei. Això

permet als provëıdors de infraestructura (InPs), propietaris de la xarxa f́ısica substrat

(SN), llogar segments d’aquesta als provëıdors dels serveis, que crearan xarxes virtuals

(VNs) que a l’hora poden re-llogar-se o utilitzar-se per donar servei a usuaris finals.

No obstant això, les diferents VNs s’han d’inicialitzar assignant els seus nodes i en-

llaços als del substrat. Un dels reptes d’aquest procés es el requisit de fer un ús eficient

dels recursos de la SN. Donat que el benefici d’un InP depèn del nombre de xarxes

virtuals que puguin allotjar-se simultàniament en la SN, l’èxit de la virtualització de

xarxes depèn en part de quan eficient es l’ús dels recursos de la xarxa f́ısica per part

de les VNs. Aquesta Tesi contribueix a la millora de l’eficiència en la compartició de

recursos en la virtualització de xarxes dividint el problema en tres sots problemes:

(1) assignació de nodes i enllaços virtuals a nodes i enllaços del substrat (VNE), (2)

gestió dinàmica dels recursos assignats a les VNs al llarg de la seva vida útil (DRA) i

(3) aprovisionament de recursos de backup per assegurar la supervivència de les VNs.

La naturalesa del problema VNE el fa “NP-Hard”. En conseqüència, per sim-

plificar la solució, moltes de les propostes son heuŕıstiques que es basen en hipòtesis

(per exemple, SN amb recursos il.limitats) de difcil compliment en escenaris reals.

Aquesta Tesi proposa una millora al problema VNE mitjançant un algorisme “one-

shot VNE” basat en generació de columnes (CG). La solució CG comena resolent

una versió restringida del problema, per tot seguit refinar-la i obtenir la solució final.

L’objectiu del “one-shot VNE” es aconseguir millorar l’ús dels recursos, mentre que

CG redueix significativament la complexitat temporal del procés.

D’altre banda, les solucions actuals son estàtiques, ja que els recursos assignats en

la fase VNE no es modifiquen durant tot el temps de vida útil de la VN. Les poques

propostes que permeten reajustar l’assignació inicial, es basen en una assignació fixe

de recursos a les VNs. No obstant això, degut a que la càrrega de la xarxa varia

v

a conseqüència de la demanda canviant dels usuaris, assignar una quantitat fixe de

recursos basada en situacions de càrrega màxima esdevé en ineficiència per infrautil-

ització en peŕıodes de baixa demanda, mentre que en tals peŕıodes de demanda baixa,

el tenir recursos reservats, pot originar rebutjos de noves VNs. La segona contribució

d’aquesta Tesi es un conjunt de propostes que asseguren l’ús eficient dels recursos

de la SN, garantint a la vegada els requeriments de qualitat de servei de totes les

VNs. Amb aquesta finalitat es proposen algorismes d’autogestió en els que la SN

utilitza tcniques d’aprenentatge de màquines per a materialitzar decisions autònomes

en l’assignació dels recursos.

Finalment, malgrat que diversos estudis han tractat ja el problema VNE en en-

torn multi-domini, les propostes actuals de supervivència de xarxes virtuals s’han

limitat a contexts d’aprovisionament per part d’un sol InP. En canvi, a la pràctica,

la virtualització de xarxes comportarà un entorn d’aprovisionament multi-domini, i

com que l’extensió de solucions de supervivncia d’un sol domini al multi-domini no es

trivial, aquesta Tesi proposa una solució distribüıda i dinàmica per a la supervivència

de VNs. Això s’aconsegueix amb un sistema multi-agent que utilitza un protocol de

negociació multi-atribut i un model dinàmic de preus per formar coalicions d’InPs que

proporcionaran backups als recursos de les SNs. L’objectiu últim es assegurar que els

operadors de xarxes virtuals maximitzin beneficis minimitzant les penalitzacions per

violació de la QoS.

vi

Acknowledgments

First and foremost, I would like to thank God, whose many blessings have made me

who I am today. Secondly, this thesis would never have its current form without the

help and support of many kind people around me, to only a few of whom it is possible

to give particular mention here.

I am forever grateful to Prof. Joan Serrat Fernández for having accepted to be

my thesis director. Your commitment, patience, guidance and support have been

invaluable to the birth of this thesis, and to my general development as a researcher.

You have gone beyond the definition of an advisor to assume a role of an “academic

father”, always giving your best effort not only to help me progress in my PhD, but

also introducing and giving me opportunities to work with other respected people in

the network and service management community.

I would like to thank my co-advisor Dr. Juan-Luis Gorricho for your relentless

efforts in guiding me from the conception of the PhD research topic, to carrying

out the research and finally writing this thesis. Without your support, trust and

disposition, this thesis would not have been possible.

I express my sincere gratitude to Prof. Filip De Turck (Ghent University - iMinds),

Prof. Raouf Boutaba (University of Waterloo), Prof. Ke Xu (Tsinghua University),

Dr Javier Rubio-Loyola (CINVESTAV, Tamaulipas), Prof. Kun Yang (University of

Essex), Prof. Ramón Agüero (Universidad de Cantabria) and Prof. Steven Latré

(University of Antwerp - iMinds) for agreeing to work with me at different stages

during the development of the content in this thesis. I would have never dreamt for

my development as a researcher to be guided by better professionals.

Special thanks go to my colleagues and professors: Prof. José-Luis Melús, Prof.

Rafael Valle, Prof. Ramon Ferrús, Prof. Carles Puente, Prof. Ulises Cortés, Dr.

Jeroen Famaey, Dr. Steven Davy, Dr. Sofie Verbrugge, Antonio Astorga, Ricardo

Bagnasco, Mario Flores, Raul-Marcelo Ortiz, Maxim Claeys, Niels Bouten, Bram

Naudts, Meng Shen, to mention but a few. Thank you all for your friendship, the

fruitful informal talks and your respective contributions to this thesis.

vii

I thank my family who have supported me through out my academic and personal

development. Despite the distance and self alienation resulting from pursuing my

career goals, I have always felt the love and care. Importantly, I would like to thank

my mother who has given me unequivocal support throughout my life, as always, for

which my mere expression of “thanks mom” will never suffice.

Living in Barcelona as well as all the many cities I have been blessed to live during

these years has been a wonderful experience, full of enriching moments. My friends

have always given me the most support, without realising that my progress depended

on it. Shamim Nassanga, Peace Gakwaya, Farrah Matovu, Hussein Nsamba, Sowali

Mukose, Isa Kisingo, Auraham Camacho, Valeria Zuñiga, Cecilia Zuñiga, Cuquis

Garcia, Yanet Ponce, Aurora Ruiz, Susana Gutierrez, Pepe Castro, Gerardo Vazquez,

Jose Martinez, Samuel Monterro, Thomas Vanhove, Stefano Petrangeli, Ruggero Bet-

tinardi, Alice Del Genovese, Irune Fernandez, Mabel Fernandez, to mention but a few.

You have been my big family, and have supported me at all times, with encourage-

ment to work harder, and with laughter and companionship whenever I needed it.

Importantly, for you, Marina Khryukina, words will never fully describe what you

mean to me. Thank you very much for everything you sacrificed for us and for all

the unforgettable moments. I am forever indebted.

Finally, the research in this thesis has been partially supported by various Span-

ish national and European projects. Special mention to the Ministry of Economy

and Competitiveness (MINECO), Government of Spain, for the scholarship that sup-

ported the development of this thesis, and FLAMINGO, a Network of Excellence

project (318488) supported by the European Commission under its Seventh Frame-

work Programme.

viii

This thesis is dedicated to the memory of my father, Umar Muramagi.

I wish he could be here to see me become the kind of person he always

wanted me to be. I hope that, wherever he is, he rests in peace looking at

this important step in my career!

ix

x

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Hypothesis . 3

1.3 Thesis Objectives . 4

1.4 Thesis Technological Scope . 4

1.5 State of the art . 6

1.5.1 Virtual Network Embedding (VNE) 6

1.5.2 Application of Column Generation to VNE 6

1.5.3 Dynamic Resource Allocation (DRA) 7

1.5.4 Application of Learning Techniques to DRA 8

1.5.5 Virtual Network Survivability (VNS) 9

1.5.6 Application of Autonomic Negotiation to VNS 10

1.5.7 Summary . 11

1.6 Thesis Contributions . 11

1.7 Structure of the thesis . 13

2 Network Virtualisation 15

2.1 Introduction . 15

2.2 Network Virtualisation Business Models 16

2.2.1 Infrastructure Provider . 17

2.2.2 Service Provider . 17

2.2.3 End User . 18

2.3 Network Virtualisation Architecture 18

xi

2.3.1 Substrate Network . 18

2.3.2 Substrate Nodes . 19

2.3.3 Substrate Links . 19

2.3.4 Virtual Network . 20

2.3.5 Virtual Links . 20

2.3.6 Virtual Nodes . 20

2.4 Resource Management in NVEs . 20

2.4.1 Virtual Network Modelling . 22

2.4.2 Substrate Network Modelling 22

2.4.3 Virtual Network Embedding 23

2.4.4 Dynamic Resource Allocation 26

2.4.5 Virtual Network Survivability 26

2.5 Conclusion . 28

3 Column Generation-based VNE 29

3.1 Introduction . 29

3.2 Mathematical Programming . 29

3.3 Formulation of Linear Programs . 31

3.3.1 Duality . 31

3.4 Column Generation . 34

3.5 Column Generation-based VNE . 35

3.5.1 Substrate Network Augmentation 36

3.5.2 LP−P: Path based Formulation −Primal 37

3.6 Proposed Path Generation Approach 40

3.6.1 Initial Solution . 41

3.6.2 Pricing Problem . 44

3.7 Performance Evaluation . 48

3.7.1 Simulation Setup . 48

3.7.2 Performance Metrics . 50

3.7.3 Comparisons . 51

xii

3.7.4 Results . 52

3.7.5 Time Complexity . 54

3.8 Conclusion . 55

4 Reinforcement Learning-based Dynamic Resource Allocation 57

4.1 Introduction . 57

4.2 Reinforcement Learning . 58

4.2.1 Learning Algorithm . 58

4.2.2 Policy . 60

4.2.3 Action Selection . 61

4.2.4 Multi Agent Systems . 63

4.3 Problem Description: DRA in NVEs 64

4.4 RL-based Dynamic Resource Allocation 65

4.4.1 Policy . 67

4.4.2 Reward Function . 70

4.4.3 Q-Learning . 71

4.4.4 Time Complexity of the Proposed Learning Algorithm 74

4.4.5 Cooperation between Agents 74

4.4.6 Scalabity of Proposed Learning Algorithm 75

4.5 Performance Evaluation . 76

4.5.1 Simulation Setup . 76

4.5.2 Initial Evaluations . 78

4.5.3 Performance Metrics . 80

4.5.4 Discussion of Results . 82

4.6 Conclusion . 84

5 Artificial Neural Network-based Dynamic Resource Allocation 87

5.1 Introduction . 87

5.2 Artificial Neural Networks (ANN) . 88

5.2.1 Structure of a Neuron . 88

5.2.2 Neural Network Structure . 88

xiii

5.2.3 Learning in Neural Networks 89

5.2.4 Back-propagation (BP) Algorithm 90

5.3 Proposed DRA Model . 92

5.3.1 Multi-Agent System . 92

5.3.2 Artificial Neural Network . 93

5.3.3 Evaluative Feedback . 96

5.4 Performance Evaluation . 98

5.4.1 Simulation Environment . 98

5.4.2 Simulation Parameters . 98

5.4.3 Compared Algorithms . 99

5.4.4 Performance Metrics . 99

5.4.5 Discussion of Results . 100

5.5 Conclusion . 103

6 Neuro Fuzzy System-based Dynamic Resource Allocation 105

6.1 Introduction . 105

6.2 Fuzzy Systems (FS) . 106

6.2.1 Neuro-Fuzzy System (NFS) 108

6.3 Proposed NFS-based DRA Model . 110

6.3.1 Multi-agent Environment . 110

6.3.2 Learning Neuro-Fuzzy System (NFS) 112

6.4 Evaluative Feedback . 119

6.4.1 Reward Function . 119

6.4.2 Membership Function Learning 121

6.4.3 Neuro-Fuzzy System Network Structure 123

6.5 Rulebase Initialisation . 124

6.5.1 Dataset Preprocessing . 126

6.5.2 Initial Rule Base Pruning . 127

6.5.3 Time Complexity of Rule Base Initialisation 129

6.6 Agent Cooperation . 129

xiv

6.6.1 Coordination amoung Agents 129

6.6.2 Knowledge Sharing amoung Agents 132

6.6.3 Time Complexity of Neuro-Fuzzy Learning Algorithm 133

6.7 Performance Evaluation . 134

6.7.1 Simulation Model . 134

6.7.2 Comparison against Alternatives 135

6.7.3 Performance Metrics . 135

6.7.4 Discussion of Results . 136

6.8 Conclusion . 143

7 Virtual Network Survivability 145

7.1 Introduction . 145

7.2 Problem Formulation . 147

7.2.1 Business Model . 147

7.2.2 Problem Description . 148

7.2.3 Work Flow . 149

7.2.4 Virtual and Substrate Network Modelling 151

7.2.5 Design Considerations . 152

7.3 Proposed Negotiation System . 153

7.3.1 Negotiation Objects . 154

7.3.2 Negotiation Strategies . 154

7.3.3 Negotiation Protocol . 160

7.4 Performance Evaluation . 165

7.4.1 Simulation Setup . 165

7.4.2 Comparison with other approaches 167

7.4.3 Performance Metrics . 167

7.4.4 Discussion of Results . 168

7.5 Conclusion . 171

8 Conclusions and Future Work 173

8.1 Introduction . 173

xv

8.2 Summary of Results . 174

8.2.1 Virtual Network Embedding 175

8.2.2 Dynamic Resource Allocation 176

8.2.3 Virtual Network Survivability 178

8.3 Future Work . 179

8.3.1 Virtual Network Embedding 179

8.3.2 Dynamic Resource Allocation 179

8.3.3 Virtual Network Survivability 180

8.3.4 Other Related Areas . 180

8.4 Practical Application . 181

A Notation 189

B Acronyms and Definitions 191

C Link-based Optimal One-Shot VNE Formulation (ViNE-OPT) 193

xvi

List of Figures

1-1 Hypothesis: Each sub-problem with the corresponding expected results 3

1-2 Thesis Scope, including the Problems and Solution Techniques 5

1-3 State of Art Approaches, showing Gaps Filled by this Thesis 10

1-4 Thesis Contributions, showing relevant publications 12

1-5 Thesis Structure . 14

2-1 Network Virtualisation Business Roles and Players 17

2-2 Network Virtualisation Architecture 19

2-3 Resource Management in Network Virtualisation 21

2-4 Virtual Network Embedding: Two VNs mapped onto a SN 24

2-5 Static Resource Allocation . 27

2-6 Dynamic Resource Allocation . 27

2-7 Survivable Virtual Network Embedding: Backup Link Provisioning . 28

3-1 Interaction between Primal and Dual Problems in Column Generation 35

3-2 Embedding a virtual network onto a substrate network 37

3-3 Path Generation-based Virtual Network Embedding 41

3-4 Node-Link Weighted Averages . 44

3-5 Possible substrate node combinations for virtual link XZ 47

3-6 Average Acceptance Ratio - 20 SN Nodes 51

3-7 Average Acceptance Ratio - 100 SN Nodes 52

3-8 Average Node Utilisation . 53

3-9 Average Link Utilisation . 53

3-10 Average Computatation Time . 54

xvii

4-1 Agent-Environment interactions in Reinforcement Learning 59

4-2 Dynamic Resource Allocation in Network Virtualisation 64

4-3 Substrate Network Modeling . 65

4-4 Learning System Modelling: Case of a single substrate node/link . . . 66

4-5 Example of Agent Policy: Look-up Table 67

4-6 Learning Model: Illustration of Agent States (Case of a Node) 68

4-7 Learning Model: Illustration of Agent Actions 70

4-8 Proposed Policy Initialisation Function 74

4-9 Simulation Setup . 76

4-10 Performance Comparison of ǫ-greedy and Softmax 79

4-11 Effect of biased policy initialisation 79

4-12 VN Acceptance Ratio . 81

4-13 Number of Accepted Virtual Networks 81

4-14 Node Packet Drop Ratio . 82

4-15 Node Packet Drop Ratio Variation 82

4-16 Link Packet Delay . 83

4-17 Link Packet Delay Variation . 83

5-1 Structure of a Neuron . 89

5-2 Example of a Neural Network . 90

5-3 Neural Network Learning Model . 91

5-4 Neural Network Back Propagation . 92

5-5 Artificial Neural Network-based Resource Allocation Model 94

5-6 Variation of RMSE with Number of Neurons in Hidden Layer 95

5-7 Acceptance Ratio . 100

5-8 Resource Utilisation . 101

5-9 Packet Drop Ratio . 101

5-10 Delay Variation . 102

6-1 Functional components of a Fuzzy System 107

6-2 Learning Neuro-Fuzzy System VN Resource Allocation Model 109

xviii

6-3 Monotonic MFs for input (state) fuzzy sets 111

6-4 Monotonic MFs for output (action) fuzzy sets 112

6-5 Neuro-Fuzzy Network for VN Resource Allocation 123

6-6 VN Acceptance Ratio . 137

6-7 Number of Accepted Virtual Networks 138

6-8 Average SN Queue Size Utilisation 138

6-9 Average SN Bandwidth Utilisation 139

6-10 Node Packet Drop Ratio . 139

6-11 Node Packet Drop Ratio Variation 140

6-12 Link Packet Delay . 140

6-13 Link Packet Delay Variation . 141

6-14 Initialisation and Agent Cooperation 141

6-15 Convergence Rate of Machine Learning Approaches 142

7-1 Multi-Domain Virtual Network Embedding Problem Formulation . . 148

7-2 Proposed inter-domain negotiation model 153

7-3 Substrate Resources Pricing Utility Function 156

7-4 Message Exchange between InPs and VNP 161

7-5 Average Substrate Resource Utilisation 166

7-6 Virtual Network Acceptance Ratio 166

7-7 Variation in Message Overhead . 167

7-8 VNP Average Costs, Income, Profits 168

7-9 Effect of Negotiation Strategy . 169

7-10 Effect of Pricing Model . 170

8-1 Practical Questions to be Considered for Future Research 181

xix

xx

List of Tables

3.1 Brite Network Topology Generation Parameters 49

3.2 Performance Quality Evaluation Algorithms 50

4.1 Variable States . 68

4.2 Action Definitions . 69

4.3 NS3 Parameters used in Simulation 77

4.4 Brite Network Topology Generation Parameters 78

4.5 Simulated Substrate and Virtual Network Properties 80

5.1 SN and VN Properties . 98

5.2 Compared Algorithms . 99

6.1 Running Example - Fuzzification . 116

6.2 Action and State to Membership Function Mapping 125

6.3 Output Membership function to Integer Mapping 125

6.4 Compared Algorithms . 134

6.5 Compared Approaches - Initilisation and Agent Cooperation 134

7.1 Network Virtualisation Interfaces . 148

7.2 Simulation Parameters . 165

xxi

Chapter 1

Introduction

The evolution of the Internet in the last decades has led to a shift from its conception

as a mere connectivity network to a content based network [1]. Along with this evo-

lution, Internet users are now concerned not only with being able to communicate,

but also getting the right information at the right time and at an affordable price.

The expectations and demands of Internet users have risen to levels that are very

difficult to achieve with the traditional architectural approach of the same connectiv-

ity infrastructure for any type of service offer. Therefore, specialisation of resources

and protocol stacks is a must for such diversified service provisioning scenarios. This

requires modifications in the current “one size fits all” architecture of the Internet

[2]. However, the existence of multiple stakeholders with competing objectives makes

it very difficult, if not impossible, for any architectural changes to be made on the

Internet. This is the so called ossification of the Internet [3], and can be observed,

for example, from the difficulties that have been encountered in the deployment of IP

Multicast [4] and IPv6 [5].

Network virtualisation - which is now a subject of various research teams both

in academia as well as industry [6] - has been proposed as a Future Internet enabler

technique to not only allow for the de-ossification of the current Internet [7] but also

to facilitate new and specialised service deployment [3]. It is conceived as a new ap-

proach to network design and service delivery aimed at achieving dynamic network

and service management, which is important in achieving comparative and competi-

1

2 1.1. Problem Statement

tive advantages in Internet service provision. In a network virtualisation environment

[2], multiple service providers are able to create heterogeneous virtual networks to of-

fer customized end-to-end services to end-users by leasing shared resources from one

or more infrastructure providers without significant investment in deploying physical

infrastructures [8].

1.1 Problem Statement

One of the fundamental requirements in network virtualisation is the assignment of

physical network resources to virtual networks [9]. It involves assigning physical node

and link resources to virtual nodes and links respectively. The resources can be as-

signed offline (implying that all virtual network resource demands are assumed to

be known in advance) or online. In addition we can distinguish between static and

dynamic allocation. In static allocation, resources are assigned to a virtual network

on creation, and are not adjusted according to changes in the demands of the users,

traffic loads, physical resources and infrastructures. Even with the most efficient allo-

cation algorithms, static resource allocation cannot adapt to variations in dynamically

changing network environments, and therefore the virtual network becomes resource

inefficient in real network conditions [10].

In general, most current approaches [11] have considered the resource assignment

approach as only involving the mapping of virtual nodes and links to substrate nodes

and paths, also known as the virtual network embedding (VNE) problem [11]. The

VNE problem can be represented using a mixed-integer program, and is known to be

NP hard [8]. Because of this computational intractability, various approaches to it

have been by use of heuristics [12] which make different assumptions (such as assuming

availability of unlimited physical resources) so as to simplify the solution. However,

even though various constraints and objectives make this problem computationally

intractable, the presence of multifarious topologies and possible opportunities to ex-

ploit them still leaves enough room for research on customized solutions and better

approximation algorithms [2]. In addition, even after the initial mapping step, there

Chapter 1. Introduction 3

Virtual Network Embedding Dynamic Resource Allocation Virtual Network Survivability

• One-shot virtual network
embedding improves virtual
network acceptance ratio,

• Column generation enhances
the time complexity of the
one-shot virtual network
embedding problem

• Adaptive and opportunistic
use of virtual resources lead to
better resource utilisation,

• The improved resource
utilisation is not at the
expense of QoS to the virtual
networks

• Survivable virtual networks
limit penalties resulting from
QoS violations,

• Reduced penalties, even with
high resource costs can lead to
better profitability of both
InPs and VNPs

1

6

53

42

Figure 1-1: Hypothesis: Each sub-problem with the corresponding expected results

is need to manage the allocated resources so as to ensure efficient resource utilisation.

This has so far not received deserved attention in the state of the art [11].

1.2 Hypothesis

The view of this thesis is that an efficient resource management in virtual network

environments does not only constitute an efficient initial virtual network embedding

step, but also appropriate life cycle management of resources allocated to virtual

networks so as to not only ensure that the resources allocated to virtual networks

do not remain idle in times of low network load, but also that, in case of failures to

substrate network resources, the QoS guarantees to the mapped virtual networks are

not violated. Therefore, this thesis divides the resource management problem into

three sub-problems: (1) virtual network embedding; (2) dynamic resource allocation;

and (3) virtual network survivability; and proposes a solution to each one of them. In

Fig. 1-1, the we summarise the hypothesis of each of the sub-problems identified in

this thesis. The numbers shown alongside each hypothesis are intended for reference

purposes, and will be used through out this thesis.

4 1.3. Thesis Objectives

1.3 Thesis Objectives

This thesis entails development of algorithms for management of resources in net-

work virtualisation environments. The primary objectives of the developed algorithms

−beyond the obvious goals of utilisation efficiency, and autonomic allocations of phys-

ical resources− are: (1) to carry out virtual network embedding in one-shot; (2) to

dynamically adjust resources allocated to virtual networks according to perceived

needs; (3) to minimize QoS violations resulting from failures in substrate network

resources. To this end, for each the above primary objectives, the following specific

points of interest constitute the research carried out in this thesis.

• To investigate the effect −on resource utilisation efficiency− of performing one-

shot virtual network embedding, as well as establishing the possible computa-

tional time savings achieved by applying a column-generation approach to the

solution of the VNE problem,

• To design, and evaluate distributed self-management algorithms −based on one

or more machine learning techniques− for the dynamic allocation of resources

in network virtualisation environments,

• To evaluate the possible profitability resulting from automated negotiations

and dynamic substrate resources pricing by infrastructure providers, aimed at

survivability in multi-domain virtual networks.

It is our humble opinion that achieving the above objectives, either fully (as an

orchestrated solution) or in part (each of them independently) would constitute a

significant contribution to the very important problem of resource management for

the Future Internet, and specifically in network virtualisation environments.

1.4 Thesis Technological Scope

The scope of this thesis is with in the activities of proposing solutions to each of the

three sub-problems identified in Section 1.2. For each of these sub-problems, we pro-

Chapter 1. Introduction 5

Network VirtualisationMachine Learning Multi-Agent Systems

Mathematical Optimisation

Signalling /

Bootstrapping

Naming and

Addressing

Admission Control

Interfacing
Clustering

Bayesian Networks

Reinforcement Learning

Artificial Neural Networks

Fuzzy Systems

Support Vector Machines

Learning

Negotiation

Cooperation

Competition

Planning

Trust

Column GenerationInteger Programming Linear Programming

Branch and Bound Branch and Cut Cutting Plane

The Problems Thesis ScopeProposed Solution Techniques

Resource Management

Virtual Network Survivability

Dynamic Resource Allocation

Virtual Network Embedding

Figure 1-2: Thesis Scope, including the Problems and Solution Techniques

pose a specific solution aimed at achieving the respective sub-objectives as outlined

in Section 1.3. As illustrated in Fig. 1-2, we employ tools (integer programming,

linear programming and column generation) from mathematical optimisation [13, 14]

for the virtual network embedding sub-problem. We then use a combination of ma-

chine learning techniques (reinforcement learning [15], artificial neural networks [16]

and fuzzy systems [17]) and multi-agent systems [18] (agent cooperation) for dynamic

resource allocation. Finally, we apply multi-agent negotiation and cooperation [19]

to ensure survivable virtual network embedding. The choice of each of the solution

techniques used in this thesis is motivated by the nature and objectives of each of the

three sub-problems considered, for example, the one-shot virtual network embedding

sub-problem is usually formulated as a mathematical program, which is computa-

tionally intractable. The choice of using column generation is due to its (column

generation) ability to significantly reduce the computational time of mathematical

programs with a large number of variables.

6 1.5. State of the art

1.5 State of the art

From the scientific point of view, network virtualisation has already received a lot of

attention, and as a result, the number of peer-reviewed publications dedicated to it

is already quite high. While [2] gives a comprehensive survey of network virtualisa-

tion, the work presented in this thesis embraces multiple areas of interest and their

application to network virtualisation. The remainder of this section gives a summary

of the state of the art for each of the three sub-problems as well as the respective

solution techniques, and the major differences between the state-of-the-art and the

proposals of this thesis.

1.5.1 Virtual Network Embedding (VNE)

Different approaches to the embedding problem, based on two stages, starting with

node mapping and then link mapping, are proposed in [20] and [21]. A coordinated

node and link mapping is proposed in [8]. Although the coordination here improves

the solution space, the mapping is still performed in two separate stages, hence yield-

ing sub-optimal embedding. A one-shot embedding solution based on a multi-agent

system is proposed in [22], assuming unbounded substrate network resources, and all

virtual network requests to be known in advance (offline solution). A comprehensive

survey of virtual network embedding approaches can be found in [11]. Unlike the

proposals in [11], the work in this thesis does not only formulate the VNE as a one-

shot mapping problem but also proposes a column generation approach to improve

the computation complexity.

1.5.2 Application of Column Generation to VNE

Integer and Linear programming have been applied to a variety of problems in net-

working. ViNEYard [8] uses mixed integer programming to coordinate node and

link mapping in virtual network embedding, while [23] and [24] use mathematical

programming for dynamic resource allocation in networks. [25] uses an optimiza-

tion technique for link mapping (assuming that the virtual nodes have already been

Chapter 1. Introduction 7

mapped to substrate nodes), while [26] incorporates substrate failures in the virtual

network embedding problem by formulating the link mapping problem as a path-based

multi-commodity flow (MCF) [27] problem. Unlike all these works, the mathematical

programming formulation used in this thesis combines both node and link mapping

in one stage.

Column generation based formulations for multi-commodity flow based problems

are proposed in [28], [29] and [30]. In these formulations the source and end nodes for

each flow are known a priori, which reduces the complexity of the problem, compared

to the virtual network embedding that we solve in this thesis. Finally, [31] proposes

a column generation approach that chooses one from a given set of virtual network

embeddings, aimed at maximising substrate network revenue. It is worth noting

that this proposal is different both in objective and complexity of problem in a way

that it considers that VNE has already been completed and that the embedding

configurations are given.

1.5.3 Dynamic Resource Allocation (DRA)

Most existing works on dynamic resource allocation are based on three approaches:

control theory, performance dynamics modeling and workload prediction. [32] and

[33] are control theoretic approaches, [34] and [35] are based on performance dynam-

ics, while the authors in [36] and [37] use workload prediction. One of the major

differences between these works and the work in this thesis is the application domain.

Resource allocation in virtual networks presents additional challenges as we have to

deal with different resource types (such as bandwidth and queue size) which are not

only segmented into many links and nodes, but also require different quality of service

guarantees.

With regard to network virtualisation, the authors in [38] propose a dynamic

and distributed approach to virtual network embedding, assuming that the virtual

nodes are already mapped, while in [39] and [40] the VN embedding problem when

the substrate network is dynamically changing is studied. In [20], a solution that

considers dynamic requests for embedding/removing virtual networks is presented.

8 1.5. State of the art

The authors map the constraints of the virtual network to the substrate network by

splitting the requirements of one virtual link in more than one substrate link. On

the other hand, the proposal in [26] is aimed at network survivability, performing

re-embeddings in case of failures in the substrate network. The authors in [41] pro-

pose a reactive solution (carried out only when an embedding strategy cannot assign

a VN request) which aims at minimising the number of congested substrate links by

carrying out link migrations, while [42] proposes algorithms for the problem of effi-

ciently re-configuring and embedding VN requests submitted to a cloud-based data

center, requiring that the ISPs submit new requests to modify existing ones, and that

only one such request can be handled at a given time. In a related approach, [43]

proposes a migration-aware dynamic virtual data center (VDC) embedding frame-

work that also includes VDC scaling as well as dynamic VDC consolidation, while

Butt et. al. [44] propose a topology-aware embedding that performs re-embeddings

aimed at improving performance of previously embedded VNs. [45] proposes a re-

source allocation scheme in data centers by considering that the VN link follows a

normal distribution, without involving any adjustment to allocated resources after

embedding. [46] proposes an opportunistic bandwidth sharing for virtual network

mapping that only considers a single link, with several competing requirements for

resources. The work in this thesis differs from previous ones in that our resource

re-allocations are proactive (not triggered by failed embeddings), autonomous (not

triggered by either users or network providers) and do not involve any re-embeddings

of already mapped requests. Our proposals also consider a complete network (not a

single node or link as in some works), through out its lifetime.

1.5.4 Application of Learning Techniques to DRA

Machine learning techniques have been used in various problems involving dynamic

resource management. The authors in [47, 48, 49, 50] propose and simulate dynamic

resource allocation in telecommunication networks using reinforcement learning and

they show improvements introduced by learning compared to other solutions, while

[51] proposes an approach for dynamic resource allocation in Clouds based on max-

Chapter 1. Introduction 9

imization of a utility function. Centralised radio resource management architecture

for call admission control and multirate transmission control are proposed in [52] and

[53] respectively, while [54] proposes a decentralised learning multi-agent system for

channel and power algorithm selection based on the construction of behavioral rules.

A frequency resource selection approach, based on multi-armed bandit formulation

is proposed in [55]. Finally, artificial neural networks and fuzzy systems have been

applied to the resource allocation problem in [56] and [57] respectively, while [58] com-

bines both neural networks and fuzzy systems for a joint radio resource management

solution.

The major difference between these works and the proposals of this thesis are based

on application domain. In a VN environment, the allocated resources are dependent

on each other, for example a given virtual link can be mapped on more than one

substrate link and the resources allocated to a virtual node may affect the performance

of virtual links attached to it, say in terms of increased routing delays. It is also worth

noting that the learning environments for the proposals in this thesis involve multiple

entities, which is −again− dictated by the nature and possible model of the problem

solved in this thesis. Having multiple learning entities in a single system presents

several challenges amoung which includes managing possible conflicting actions as

well as the need for cooperation to benefit from actions of other agents.

1.5.5 Virtual Network Survivability (VNS)

SVNE [26] incorporates single substrate link failures in VNE, while [59] uses a node

migration technique to introduce link survivability. [60] represents each of the sub-

strate nodes of a given substrate network by an agent, allowing the agents to com-

municate with each other so as to resolve link and node failures. All these proposals

are for the single InP case. The major distinction between the proposal in this thesis

and the current ones is that we consider survivability in a multi-domain environment,

in which case we have to deal with limited information (for example about other InP

network topologies), which inevitably calls for negotiation. It is worth noting that

extension of a survivable embedding solution from single domain to multiple domains

10 1.5. State of the art

Virtual Network Embedding

Two-stage

Coordinated

One-Shot, Online

Resource Management

in Network

Virtualisation

Offline

Figure 1-3: State of Art Approaches, showing Gaps Filled by this Thesis

is not trivial since it involves both intra and inter domain link failures [26]. A broad

survey on survivable virtual network embedding can be found in [61].

1.5.6 Application of Autonomic Negotiation to VNS

Negotiation and contracting in multi-provider setups have been studied in [62] and [63]

focusing on peer-to-peer networks, while [64] and [65] propose multi-market coalition

formations of autonomic management systems in competitive environments, where

the authors model service quality by “service skills” for which performance level pa-

rameters are defined. In all these works, the services on offer are well and easily

defined, such that the focus is on service negotiation. However, the VNE surviv-

ability problem is more challenging due to its online nature, capacity constraints,

connectivity, and end-node constraints on the links. It therefore requires not only

Chapter 1. Introduction 11

determining the negotiation participants, but also dynamically re-defining the service

being negotiated. A detailed survey on automated negotiation is given in [66].

1.5.7 Summary

To summarise, in Fig. 1-3, the general problem of this thesis is represented at the

centre (in black), surrounded by the three sub-problems (in light blue) which are the

focus of this thesis. For each of the sub-problems, the main characteristics of the

state-of-the-art proposals are represented (in green), and aspects where this thesis

makes contributions (in red).

1.6 Thesis Contributions

This dissertation contributes to the area of resource management in network virtu-

alisation. Specifically, it introduces novel approaches to virtual network embedding,

dynamic resource allocation, and virtual network survivability. The main contribu-

tions of this thesis are as follows:

• A near optimal one-shot virtual network embedding approach that improves

substrate resource utilisation and virtual network acceptance ratio compared to

solutions in the state of the art,

• A column generation-based approach that significantly improves the time com-

plexity of one-shot virtual network embedding compared to an optimal formu-

lation,

• A set of distributed reinforcement learning algorithms that allocate resources

to virtual nodes and links dynamically, leading to better substrate resource

utilisation,

• A combined artificial neural network (ANN) and reinforcement learning (RL)

solution in which RL trains the ANN for dynamic resource allocation in network

virtualisation,

12 1.6. Thesis Contributions

Chapter 7: Virtual Network Survivability

Distributed Automated Negotiation

Chapters 4, 5, 6: Dynamic Resource Allocation

Reinforcement
Learning

Artificial Neural
Networks

Neuro-Fuzzy
Systems

Chapter 3: Virtual Network Embedding

Column Generation

Resource Management in Network Virtualisation Publications

PaGeViNE, CERM,

MARA, ARMVN

NFSA, NNAA, CERM, DELA,

MARA, ARMVN, DARVN

SONA, MARA, ARMVN

Figure 1-4: Thesis Contributions, showing relevant publications

• An adaptive neuro-fuzzy system that dynamically learns allocation of substrate

resources to virtual networks. A hybrid learning mechanism which uses su-

pervised learning to initialise a rule base and then uses unsupervised learning

to adapt the rule base and fuzzy sets of each rule to achieve efficient resource

allocation,

• A cooperation scheme that allows the substrate network agents to coordinate

their actions so as to avoid conflicts and to share their knowledge so as to

enhance their learning speed and improve action selection efficiency,

• A negotiation protocol that ensures virtual network survivability with mini-

mum communication message overhead; VNP and InP negotiation strategies

that minimise QoS violation penalties, hence ensuring both VNP and InP prof-

itability; and a dynamic substrate resource pricing model that ensures efficient

utilisation of resources.

Chapter 1. Introduction 13

In summary, to the best of our knowledge, the work presented in this thesis is the

first application of column generation to virtual network embedding. It is also a

novel contribution of this thesis to apply machine learning techniques to dynamic

resource allocation in network virtualisation. Finally, our automated negotiation and

pricing proposal is the first foray into network survivability for multi-domain virtual

networks. Fig. 1-4 is a graphical summary of the major contributions of this thesis,

together with the chapters in the thesis where these contributions are presented, as

well as the relevant publications related to the contributions1.

1.7 Structure of the thesis

The rest of this thesis is arranged as shown in Fig. 1-5. Specifically, Chapter 2

presents an introduction to network virtualisation, focussing on the common business

model, the general architecture of network virtualisation environments, and a brief

description of the three main problems that are the subject of this thesis. Chap-

ter 3 introduces column generation, formulates the one-shot unsplittable flow virtual

network embedding problem, and proposes a column generation approach to enhance

the computation time complexity of the VNE problem. Chapters 4, 5, and 6 pro-

pose combinations of machine learning techniques (including reinforcement learning,

artificial neural networks, and fuzzy systems) aimed at contributing the dynamic self-

management of virtual network resources, with each of the chapters building on the

advantages of the previous one, while solving some drawbacks. Chapter 7 proposes

an automated multi-entity negotiation system and a dynamic pricing model both of

which are aimed at achieving virtual network survivability. Finally, this thesis is con-

cluded in Chapter 8, giving our outlook for future research directions in the area of

resource management in network virtualisation.

1The full name of each code for the publications is given at the end of the thesis, where the
complete list of publications is presented.

14 1.7. Structure of the thesis

Chapter 2:

Network

Virtualisation

Introduction

Business

Models

Virtualisation

Architecture

Problem

Description

Chapter 3:

Column

Generation

Introduction

to Column

Generation

VNE

Problem

Model

Evaluations

Conclusion

Chapter 4:

Reinforcement

Learning

Introduction to

Reinforcemnet

Learning

DRA

Problem

Model

Evaluations

Conclusion

Chapter 5:

Artificial Neural

Networks

Introduction

to Neural

Networks

DRA

Problem

Model

Evaluations

Coclusion

Chapter 6:

Neuro-Fuzzy

Systems

Introduction

to Neuro Fuzzy

Systems

DRA

Problem

Model

Evaluations

Conclusion

Chapter 7:

Network

Survivability

Introduction

to Automated

Negotiations

Survavibility

Problem

Model

Evaluations

Conclusion

Chapter 8:

Conclusions

and Outlook

Summary

Practical

Application

Possible

Extensions

Research

Direction

Figure 1-5: Thesis Structure

Chapter 2

Network Virtualisation

2.1 Introduction

Network virtualisation is the process of combining hardware network resources and

software network resources into a single administrative unit - a virtual network (VN).

The goal of network virtualisation is to provide systems and users with efficient, con-

trolled, and secure sharing of the networking resources [67]. It involves the separation

of an infrastructure service from the physical resources on which the service runs. This

service (such as node CPU, or link bandwidth) is not described on, identified by, or

strictly associated to any physical asset. Instead, the service is described in a data

structure, and exists entirely in a software abstraction layer reproducing the service

on any physical resource running the virtualisation software [68]. Therefore, the life

cycle, identity, location, and configuration attributes of the service exists in software

with API interfaces, thereby unlocking the full potential of automated provisioning.

The main objective of network virtualisation is to achieve abstraction of network

resources, in such a way that the resources can be shared with an aim of achieving

efficiency [69]. Each VN in a network virtualisation environment (NVE) is made

up of virtual nodes and virtual links, and each substrate network (SN) is made up

of substrate nodes and substrate links. Each virtual node is hosted on a substrate

node, and multiple virtual nodes can share one substrate node. In the same way,

each virtual link is hosted over a substrate path (one or more substrate links), and

15

16 2.2. Network Virtualisation Business Models

any given substrate link can host one or more virtual links. Each virtual network

constructs its own architecture and assigns its own protocol, which is customized

according to its special services and user requirements [70]. Service providers can

deploy and manage customised end-to-end services on those virtual networks for the

end users by effectively sharing and utilising underlying network resources leased from

multiple infrastructure providers [71].

The effect of network virtualisation on the Future Internet architecture has cre-

ated a debate between architectural purists and pluralists [72]. While the purists

propose that network virtualisation is a means of evaluating incremental changes to

the architecture, the pluralists consider it as an important part of the architecture

itself, so as not only to solve the ossification impasse, but also allows for reliable,

flexible and dynamic management of the Internet. This chapter introduces the busi-

ness model as well as architecture of network virtualisation based on the pluralists

approach. The three sub-problems; virtual network embedding, dynamic resource

allocation and virtual network survivability, considered in this thesis are also briefly

described in this Chapter.

2.2 Network Virtualisation Business Models

Virtualisation is achieved by decoupling the roles of the traditional Internet service

providers (ISPs) into two independent entities: infrastructure providers (InPs), who

deploy and manage the physical network resources - also known as substrate networks

(SNs), and service providers (SPs), who create virtual networks (VNs) by aggregating

resources from one or more InPs and offer end-to-end network services [2].

The most basic business model in a network virtualisation environment consists of

three players; an infrastructure provider, a service provider and end users. As shown

in Fig. 2-1, the model involves a splitting of the role of the traditional Internet service

provider [73] into two roles; a service provider and an infrastructure provider. It is

worth noting that some models such as [71] include a brokerage role that can act as a

mediator between any of the three roles shown in Fig. 2-1. In fact, [74] proposes two

Chapter 2. Network Virtualisation 17

End UsersInfrastructure Provider Service Provider

Virtual Network

Substrate Network

Internet Service Provider

Figure 2-1: Network Virtualisation Business Roles and Players

additional roles - a virtual network operator (VNO) and a virtual network provider

(VNP). The roles of the players in Fig. 2-1 are detailed in the rest of the section.

2.2.1 Infrastructure Provider

Infrastructure providers deploy and manage physical resources in form of substrate

networks. These resources are then leased, through programmable interfaces, to one

or more service providers. They also determine which resource requests (from ser-

vice providers) are accepted, and how the physical resources are allocated to service

providers. This way, InPs are able to influence the profitability resulting from their

physical resources. If a given InP is not able to provide resources fully or in part to

a given service provider, negotiations and hence coalitions can be formed with other

InPs so as to provision multi-domain virtual networks [75].

2.2.2 Service Provider

Service Providers lease physical resources from one or more infrastructure providers,

which they use to create virtual networks. They can then deploy customised pro-

tocol stacks onto these virtual networks and hence provide customised services to

end users. In a more general case, service providers may also sub-lease the resources

allocated to them to other service providers, in which case the former would appear

as infrastructure providers.

18 2.3. Network Virtualisation Architecture

2.2.3 End User

End users are the final consumers of the services provided by service providers. They

are similar to the end users in the existing Internet, except that the existence of

multiple virtual networks from competing service providers enables them to choose

from a wide range of services [2]. End users may connect to multiple service providers

for different services.

2.3 Network Virtualisation Architecture

Fig. 2-2 shows a conceptual representation of a network virtualisation environment

architecture. The architecture is made up of two general entities; substrate networks

and virtual networks. In the figure, three virtual networks are created on top of

and share the physical resources of the substrate network. Each node in the virtual

networks is hosted or mapped on a physical node, and each link in the virtual networks

is mapped to one or more links in the physical networks. While in the figure we

represent three virtual networks sharing resources from a single substrate network, it

is in general possible that a given virtual network may use resources from more than

one substrate network. Users of any of the virtual network should seamlessly connect

via the substrate network to access the host resources, which could be in general the

Internet for such applications as browsing and email, or even specialized services such

as web servers, content servers or even storage databases. A given virtual network can

also provide service to another virtual network, and generally a user can subscribe

to more than one virtual network [2]. The substrate networks are made up substrate

nodes and substrate links, while virtual networks are composed of virtual nodes and

virtual links. In the following subsections, we define these components [11, 71, 76, 77]

2.3.1 Substrate Network

A substrate network is a combination of physical active and passive network elements

(network nodes and network links). It consists of substrate nodes and substrate links

Chapter 2. Network Virtualisation 19

Virtual Network 1 Virtual Network 2 Virtual Network 3

Substrate Network

Virtual Node

Virtual Link

Substrate Link

Substrate Node

Figure 2-2: Network Virtualisation Architecture

that form a connected network topology of the infrastructure.

2.3.2 Substrate Nodes

A substrate node is a physical, active electronic device that is attached to a substrate

network, and is capable of sending, receiving, or forwarding information over a com-

munications channel. It is either a physical host or a physical router. A host acts

as a packet source or a sink, while a router performs packet forwarding according

to the protocols of the substrate network. A substrate node may host one or more

virtual nodes from different virtual networks. Substrate nodes are usually defined

with parameters such as location, CPU, queue size, e.t.c.

2.3.3 Substrate Links

A substrate link is a physical communications channel that connects two substrate

nodes. Each substrate link can host one or more virtual links from one or more virtual

networks. Each substrate link has a set of attributes that characterise it, for example,

bandwidth (data rate), delay, packet loss. If the substrate network supports substrate

path splitting [20] then a substrate link may only support a proportion of the total

demand of any given virtual link.

20 2.4. Resource Management in NVEs

2.3.4 Virtual Network

A virtual network is a combination of active and passive network elements (network

nodes and network links) on top of a substrate network. It consists of virtual nodes

and virtual links that form a connected network topology using the infrastructure of

the underlying physical network. As shown in Fig. 2-2, several independent virtual

networks can exist in parallel on top of a physical network.

2.3.5 Virtual Links

A virtual link is a logical interconnection of two virtual nodes, appearing to them

as a direct physical link with dynamically changing properties. Each virtual link

in the virtual network may span over one or more connected physical links i.e. a

path in the underlying physical topology. In general, a virtual link may consist of

multiple substrate paths, which can be used to increase the capacity or reliability

(survivability) of the virtual link [26].

2.3.6 Virtual Nodes

A virtual node is a software component with either hosting or routing functionality,

for example an operating system encapsulated in a virtual machine. Virtual nodes are

interconnected through virtual links, forming a virtual network topology. In addition

to having characteristics similar to those of substrate nodes, virtual nodes may have

a restriction on how far from their required location they can be located [8].

2.4 Resource Management in NVEs

While many aspects of network virtualisation have received attention from the re-

search community, a few remain unexplored till today, and many others, although

touched, can be improved [2]. Resource management in network virtualisation en-

vironments (NVEs) is one of the areas that still require attention from the research

community [2], as it affects the substrate resources utilisation efficiency, as well as

Chapter 2. Network Virtualisation 21

Start Create
SN

Create
VN

More VN
Requests VNE Successful VNE StopYes

No

Yes

No

Substrate/Virtual Network Modelling

Thesis contribution areas

DRA

VNS

Figure 2-3: Resource Management in Network Virtualisation

quality of service guarantees both of which would directly affect the profitability of

InPs and SPs, and hence the success of network virtualisation. As stated in Chapter

1 this thesis decomposes the resource management problem into three sub-problems;

virtual network embedding (VNE), dynamic resource allocation (DRA), and virtual

network survivability (VNS). While virtual network embedding is already well studied

[11], this thesis proposes improvements to its solution compared to state of the art

approaches. However, dynamic resource allocation and virtual network survivability

are currently un-explored aspects of resource management in network virtualisation.

The overall virtualisation resource management process flow considered in this thesis

is shown in Fig. 2-3. It begins by describing the resource capacities of a substrate

network, as well as the resource requirements and constraints of virtual networks.

A virtual network embedding is then attempted. If the VNE is successful, then a

dynamic resource allocation process is initiated for the embedded VN, and continues

through out its lifetime. At the same time, and in parallel, a virtual network surviv-

ability process ensures that in case of substrate resource failures, quality of service

guarantees for the virtual networks are not negatively affected. It is worth noting the

while DRA manages resources through out the life of a given successfully embedded

22 2.4. Resource Management in NVEs

VN, VNS continuously runs throughout the life of the substrate network. In the fol-

lowing subsections, the substrate and virtual network models used in this thesis, as

well as the three contribution areas shown in Fig. 2-3 are introduced.

2.4.1 Virtual Network Modelling

The allocation of SN resources to a given VN is initiated by a SP specifying resource

requirements for both virtual nodes and links to the InP. The specification of VN

resource requirements is usually represented by a weighted undirected graph denoted

by Gv = (Nv, Lv), where Nv and Lv represent the sets of virtual nodes and links

respectively. Each virtual link lij ∈ Lv connecting the virtual nodes i and j has

a maximum delay Dij and bandwidth Bij, while each virtual node i ∈ Nv has a

proposed location Li(x, y), a constraint on the maximum deviation ∆Pi(∆x,∆y)

from its proposed location, which specifies the maximum allowed deviation for each

of the x and y coordinates of node i, and a queue size Qi, which is a measure of the

maximum number of packets (or Bytes) a given node can have in its buffer before

dropping packets.

It is worth noting that in general, the virtual nodes/links may have other con-

straints/requirements. For instance, ViNEYard [8] considers node CPU instead of

node queue size. This thesis uses such node/link constraints interchangeably, and

as dictated by a given sub-problem. As an example, for the VNE sub-problem, we

use the node CPU instead of node queue size1 since its the parameter that has been

considered in most VNE proposals [11], while we use node queue size for DRA since

in this sub-problem we are interested in evaluating the packet drop ratio.

2.4.2 Substrate Network Modelling

Similarly, a substrate network can be modelled as an undirected graph denoted by

Gs = (Ns, Ls), where Ns and Ls represent the sets of substrate nodes and links,

respectively. Each substrate link luv ∈ Ls connecting the substrate nodes u and v has

1This change is only in problem representation as one variable is replaced by another, and hence
does not change the problem formulation or solution complexity.

Chapter 2. Network Virtualisation 23

a delay Duv and a bandwidth Buv, while each substrate node2 u ∈ Ns has queue size

Qu and a location Lu(x, y).

2.4.3 Virtual Network Embedding

The VNE problem involves the mapping3 of each virtual node i ∈ Nv to one of

the possible substrate nodes with in the set Υ(i). Υ(i) is defined as a set of all

substrate nodes u ∈ Ns that have enough available queue size and are located within

the maximum allowed deviation ∆Pi(∆x,∆y) of the virtual node i. For a successful

VNE, each virtual node must be mapped and any given substrate node can map at

most one virtual node from the same request. Similarly, all the virtual links have

to be mapped to one or more substrate links connecting the nodes to which the

virtual nodes at its ends have been mapped. Each of the substrate links must have

a sufficient data rate (bandwidth) to support the virtual link, e.g. a virtual link

with a bandwidth requirement of 15Mbps cannot be mapped on a substrate path

containing a substrate link whose available (unused) bandwidth is 14Mbps (unless

the substrate network supports path splitting, and that the extra 1Mbps is carried

by another parallel substrate path.). In addition, the total delay of all the substrate

links used to map a given virtual link must not exceed the maximum delay specified

by the virtual link. In Fig. 2-4, we show an example of two virtual networks being

mapped onto a substrate network. The resource requirements for each virtual node

or link is also shown. The values in the substrate network are the total loading of any

given physical node or link. As can be noted from Fig. 2-4, one substrate node can

host more than one virtual node (e.g. node A). A substrate link can also host more

than one virtual link (e.g. link AB), and a given virtual link can span more than one

substrate link (e.g link RP).

The VNE problem, with fixed constraints on virtual nodes and links, reduces to

the multi-way separator problem which is known to be NP-Hard [8, 78]. Even when

2Throughout this thesis, while referring to nodes, the letters i and j are used to refer to virtual
nodes while the letters u and v are used to represent substrate nodes.

3The terms mapping and embedding are used synonymously in this thesis.

24 2.4. Resource Management in NVEs

Substrate Network

VN Request 1 VN Request 2

2

7

5

13

25

6

3

8

41

10

23

15

VNE

2

5+1 = 6 4

8

7+3 = 10

15

23

23

P

Q

A

B

R

Figure 2-4: Virtual Network Embedding: Two VNs mapped onto a SN

all nodes have already been mapped, the problem of performing link mapping for

unsplittable flows [79] is still NP-Hard [80]. Therefore, most approaches to the VNE

problem have been through use of heuristics. In this context, and mainly aimed at

simplifying the problem, several variations of the VNE problem can be defined. We

give some of them below:

(a) Single Domain[21, 20, 8]: The virtual network is assumed to be completely

mapped by a single substrate network,

(b) Multi-domain [75, 81] : A given VN is mapped across multiple substrate net-

works, owned by different InPs,

(c) Offline [21]: Assumes that all VN requests and demands are known in advance,

(d) Online [82]: VN requests arrive one at a time, and each is mapped without

knowledge of future requests,

Chapter 2. Network Virtualisation 25

(e) Static [83]: Both VN and SN as well as initial mappings are not changed

throughout the lifetime of the VN,

(f) Dynamic [20, 41, 84]: Considers changes in both VN and SN to either perform

re-mappings or resource scaling,

(g) Two-stage [85, 86, 87]: Performs node mapping and link mapping in two disjoint

steps,

(h) Coordinated [8, 88]: Performs node and link mapping in two coordinated steps,

(i) One-Shot [89, 90, 91, 92]: Performs both node and link mapping in one step,

(j) Splittable flows [8]: Assume that the substrate network supports the splitting

of virtual network flows,

(k) Un splittable flows [20]: Considers that the total bandwidth of any given virtual

link demand must be mapped wholly (or not at all) by any given substrate link.

Virtual network embedding problems that are formulated with any of the character-

istics in (c, e, g, h, j and l) are generally much easier to solve, but are in general not

realistic, for example, assuming that the substrate network has unlimited resources, or

assuming that all virtual network requests are known a priori. In addition, perform-

ing the embedding in two separate steps can lead to blocking or rejecting of resource

requests at the link mapping stage and hence a sub-optimal substrate resource utili-

sation. Even when the two embedding steps are coordinated, the embeddings are still

sub-optimal. If the embedding is performed in one step, the embedding efficiency is

significantly improved. However, the computational intractability prohibits finding

optimal solutions even in this case. In Chapter 3, we propose a one-shot, unsplit-

table flow embedding approach that achieves a better resource utilisation while at the

same time achieving a significant improvement in time complexity by use of column

generation.

26 2.4. Resource Management in NVEs

2.4.4 Dynamic Resource Allocation

Through the VN request, a service provider defines the required virtual node and link

parameters such as node queue size and link bandwidth. However, as the resources

allocated to nodes and links are meant for use by end users, and because Internet

traffic is not uniform, reserving a fixed amount of resources for virtual nodes and links

throughout their lifetime could lead to inefficient resource utilisation and hence limit

the revenue of infrastructure providers, especially if other VN requests are rejected

while reserving resources for VNs that are lightly loaded. Therefore, dynamic resource

allocation as proposed in this thesis involves monitoring the actual usage of resources

allocated to virtual networks, and making opportunistic use of these resources based

on perceived need for them. The opportunistic use of resources involves carefully

taking advantage of unused virtual node and link resources to ensure that VN requests

are not rejected when resources reserved to already embedded requests are idle. This

should however be performed carefully to ensure that quality of service parameters

such as packet drop ratio and delay for the VNs are not affected. In Figs. 2-5 and 2-6

we illustrate the difference between a static resource allocation scheme, and a dynamic

one. In the static resource allocation in Fig. 2-5 both the nodes (P and Q) and the

link (PQ) keep their resource allocation at 100% of their initial demand irrespective of

resource utilisation, while in the dynamic resource allocation, the resource allocation

to each node and link is dynamically adapted to the perceived demand for these

resources. Chapters 4, 5, 6 propose self-management approaches to dynamic resource

allocation in virtual network environments.

2.4.5 Virtual Network Survivability

In practice, physical networks do not remain operational at all times [93], hence mak-

ing the provisioning of resources for backups and/or restorations an inevitable part of

any survivable network resource management approach. Survivability in network vir-

tualisation [61] involves consideration that substrate links and nodes can fail, and in

ensuring that the virtual nodes or links mapped onto the failed substrate resources are

Chapter 2. Network Virtualisation 27

Node A Node B

1

7

P

Q

Link AB

Su
b

st
ra

te
 N

et
w

o
rk

VN Resource

Allocation

Figure 2-5: Static Resource Allocation

Node A Node B

1

7

P

Q

Link AB

Figure 2-6: Dynamic Resource Allocation

not disrupted. This is usually achieved either by backing secondary resources (proac-

tive survivable virtual network embedding) before failures have actually occurred or

provisioning the resources upon substrate resource failures (reactive survivable vir-

tual network embedding) [94]. While proactive virtual network embedding avoids

the delays and possible data loss that may be encountered if resources have to be

provisioned upon failures, reserving some physical resources for un foreseen failures

could result into inefficient resource utilisation for the substrate network.

Since network link failures occur about 10 times more than node failures [95], and

given that about 70% of unplanned link failures are single link failures [93], most

approaches to survivability in virtualisation have concentrated on survivability for

single substrate link failures [26, 61]. It should however be noted that any node

failure can be considered as a failure of links adjacent to the node [26], and as such,

proposals that consider single substrate link failures can be extended to cover multiple

link failures, and hence node failures.

In Fig. 2-7, we show an example of a virtual network embedding that considers

survivability of substrate links by provisioning backup substrate paths for each virtual

link. In the figure, the virtual nodes P, Q and R are mapped onto substrate nodes D,

E and B respectively. As an example, the virtual link RP has an original mapping

(primary mapping) on substrate path BAD, and has a provisioned backup substrate

path (secondary mapping) on substrate path BCD. Therefore, in case any of the

28 2.5. Conclusion

Substrate Network

Virtual Network

P

Q

A D

R

B
C

F

E
G

Primary Mapping

Backup Mapping

Figure 2-7: Survivable Virtual Network Embedding: Backup Link Provisioning

substrate links on the path BAD fails, the link RP will be migrated to BCD. As

it can be noted, in order to ensure that the backup path is not affected by the

failure, it is important to ensure that each of the substrate links on the backup

path is disjoint of the primary substrate path. Chapter 7 of this thesis presents a

proposal for considering survivability in multi-domain virtual networks which is based

on automated negotiations.

2.5 Conclusion

This Chapter has introduced network virtualisation, its business model, and a network

virtualisation architecture. We have also introduced the three major problems that

are the subject of this thesis. In the next Chapter, the first of these sub-problems

will be solved using column generation.

Chapter 3

Column Generation-based VNE

3.1 Introduction

The VNE problem can be formulated as a mathematical program [2]. In this case, the

objective is usually to minimise or maximise a given aspect of the substrate to virtual

network resource allocation, such as minimising substrate network load imbalances [2],

maximising InP profits [96] and minimising energy losses [25, 97]. In this Chapter, we

start by giving a brief introduction to both mathematical programming and column

generation. We then formulate the one-shot unsplittable virtual network embedding

problem based on substrate network paths rather than links, and thereafter propose

a solution to it using column generation. The Chapter is concluded by evaluating our

proposal as well as discussing the results.

3.2 Mathematical Programming

Mathematical programming, and especially linear programming, is one of the best

developed and most used branches of operational research [98]. It involves the use

of mathematical models, particularly optimizing models [99], to assist in taking de-

cisions. The objective is usually to achieve optimum allocation of limited resources

among competing activities, under a set of constraints imposed by the nature of the

problem being studied. These constraints could reflect financial, technological, mar-

29

30 3.2. Mathematical Programming

keting, organisational, or many other considerations. In broad terms, mathematical

programming can be defined as a mathematical representation aimed at programming

or planning the best possible allocation of scarce resources. A mathematical program

is made up of four main components [100]:

• Variables (also known as decision variables): These represent things that can

be adjusted or controlled, for example the bandwidth of a substrate link, the

CPU demand of a virtual node, e.t.c. Usually, the aim of a mathematical

program is to find the values of the variables that provide the best value of the

objective function.

• Objective function: This is a mathematical expression that combines the

variables to express the goal of the mathematical program. It may represent a

an average resource allocation or InP profit,. It is usually required to maximise

or minimise this function.

• Constraints: These are mathematical expressions that combine the variables

to express limits on the possible solutions. For example, they may express

the fact that the maximum number of virtual links that can be mapped on a

substrate link must not have total bandwidth demand that exceeds the total

free bandwidth capacity of the substrate link.

• Variable bounds: Only rarely are variables in a mathematical problem per-

mitted to take on any value from negative infinity to positive infinity. Instead,

the variables usually have bounds, for example, 0 and 1 may bound a variable

that indicates whether or not a given virtual node is mapped onto a substrate

node.

When the mathematical representation uses linear functions exclusively (i.e. when

all the mathematical expressions for the objective function and the constraints are

linear), we have a linear-programming model [98]. In the next section, we formulate

a linear program and use it to explain the concepts of duality and hence column

generation.

Chapter 3. Column Generation-based VNE 31

3.3 Formulation of Linear Programs

A linear program is the most common formulation of an optimization/mathematiocal

problem. It involves a minimisation or maximisation of an objective function over

some domain. The objective function is linear, and the domain, or feasible set, is

defined by linear constraints [101]. Equations (3.1) - (3.4) show a generic example of

a linear program [102].

minimise
m
∑

i=1

cixi +
n
∑

j=1

djtj (3.1)

subject to ejtj +
m
∑

i=1

aijxi ≥ gj , 1 ≤ j ≤ n (3.2)

fixi +
n
∑

j=1

bijtj ≥ hi , 1 ≤ i ≤ m (3.3)

xi ≥ 0, tj ≥ 0 , 1 ≤ i ≤ m, 1 ≤ j ≤ n (3.4)

As can be observed in the formulation (3.1) - (3.4), the variables are x and t, (3.1) is

the objective function, (3.2) and (3.3) are constraints and (3.4) are variable bounds.

Therefore, the linear program above has m + n constraints, and all its variables are

positive.

3.3.1 Duality

Any given linear programming problem is referred to as a primal problem, and every

primal problem has an associated linear program called the dual problem [101]. The

dual problem provides an upper bound to the optimal value of the primal problem

[14, 103]. The fundamental idea behind duality is that every feasible solution for

the primal problem gives a bound on the optimal value of the objective function of

the corresponding dual problem [104]. The duality theorem states that the objective

function value of the dual at any feasible solution is always greater than or equal to

the objective function value of the primal at any feasible solution [98]. In order to

derive a dual program from the primal in (3.1) - (3.4), the following seven steps are

32 3.3. Formulation of Linear Programs

used [101].

1. If necessary, rewrite the objective as a minimisation.

Since our primal is already a minimisation problem, we skip this step

2. Rewrite each inequality constraint as a “less than or equal”, and rearrange each

constraint so that the right-hand side is 0.

After this step, the linear program looks as shown in (3.5) - (3.7)

minimise
m
∑

i=1

cixi +
n
∑

j=1

djtj (3.5)

subject to gj − ejtj −
m
∑

i=1

aijxi ≤ 0 , 1 ≤ j ≤ n (3.6)

hi − fixi −
n
∑

j=1

bijtj ≤ 0 , 1 ≤ i ≤ m (3.7)

3. Define a non-negative dual variable for each inequality constraint, and an un-

restricted dual variable for each equality constraint.

To constraints (3.2), we associate n dual variables yj ≥ 0, and to constraints

(3.3), we associate m dual variables si ≥ 0.

4. For each constraint, eliminate the constraint and add the term (dual vari-

able)×(left- hand side of constraint) to the objective. Maximise the result over

the dual variables.

maximise
(

m
∑

i=1

cixi +
n
∑

j=1

djtj

)

(3.8)

yj

(

gj − ejtj −
m
∑

i=1

aijxi

)

, 1 ≤ j ≤ n (3.9)

si

(

hi − fixi −
n
∑

j=1

bijtj

)

, 1 ≤ i ≤ m (3.10)

5. We now have an objective with several terms of the form (dual variable)*(expression

with primal variables), plus remaining terms involving only primal variables.

Chapter 3. Column Generation-based VNE 33

Rewrite the objective so that it consists of several terms of the form (primal

variable)×(expression with dual variables), plus remaining terms involving only

dual variables.

Doing this results into the objective in (3.11) - (3.13) below

maximise
(

m
∑

i=1

hisi +
n
∑

j=1

gjyj

)

(3.11)

tj

(

dj − ejyj −
m
∑

i=1

bijsi

)

, 1 ≤ j ≤ n (3.12)

xi

(

ci − fisi −
n
∑

j=1

aijyj

)

, 1 ≤ i ≤ m (3.13)

6. Remove each term of the form (primal variable)×(expression with dual vari-

ables) and replace with a constraint of the form:

• expression ≥ 0, if the primal variable is non-negative.

• expression ≤ 0, if the primal variable is non-positive.

• expression = 0, if the primal variable is unrestricted.

Doing this results into the objective in (3.14) - (3.16) below

maximise
(

m
∑

i=1

hisi +
n
∑

j=1

gjyj

)

(3.14)

(

ejyj +
m
∑

i=1

bijsi ≤ dj

)

, 1 ≤ j ≤ n (3.15)

(

fisi +
n
∑

j=1

aijyj ≤ ci

)

, 1 ≤ i ≤ m (3.16)

7. If the linear program in step 1 was rewritten as a minimisation, rewrite the

result of the previous step as a minimisation; otherwise, do nothing.

34 3.4. Column Generation

Therefore, the final dual program is shown in (3.17) - (3.20).

maximise
m
∑

i=1

hisi +
n
∑

j=1

gjyj (3.17)

subject to
m
∑

i=1

bijsi + ejyj ≤ dj , 1 ≤ j ≤ n (3.18)

fisi +
n
∑

j=1

aijyj ≤ ci , 1 ≤ i ≤ m (3.19)

yj ≥ 0, si ≥ 0 , 1 ≤ j ≤ n, 1 ≤ i ≤ m (3.20)

3.4 Column Generation

Many linear programs are too large to consider all their variables explicitly. Since

most of the variables will be non-basic and assume a value of zero in the optimal

solution, only a subset of variables need to be considered in theory when solving

the problem [102]. Column generation takes advantage of this idea to generate only

the variables which have the potential to improve the objective function, i.e. to find

variables with negative reduced cost (assuming without loss of generality that the

problem is a minimization problem). In order to use a column generation approach,

the problem being solved is split into two problems: the primal problem and the

dual problem. In Fig. 3-1, we represent the interaction between the primal and dual

problems in column generation.

The main idea is to solve a restricted version of the program (the restricted primal

problem) - which contains only a subset of the variables, and then (through the use of

the dual problem) add more variables as needed [105]. Therefore, we start by solving

a restricted primal problem, and from its solution, we are able to obtain dual prices

for each of the constraints in the primal problem. This information is then utilised

in the objective function of the dual problem. The dual problem is then solved. If

the objective value of the dual problem is negative, a variable with negative reduced

cost has been identified. This variable is then added to the primal problem, and the

primal problem is solved again. Re-solving the primal problem generates a new set of

Chapter 3. Column Generation-based VNE 35

(RESTRICTED)

PRIMAL

PROBLEM

DUAL

PROBLEM

New Decision

Variables with

Reduced Costs

Dual Variables

for Determining

Reduced Costs

Figure 3-1: Interaction between Primal and Dual Problems in Column Generation

dual values, and the process is repeated until no negative reduced cost variables are

identified. When the dual problem returns a solution with non-negative reduced cost,

we can conclude that the solution to the primal problem is optimal [106]. In order

to have the initial restricted set of variables, it is required to have an initial feasible

solution to the primal problem.

3.5 Column Generation-based VNE

In this section, we propose a column generation-based approach for a one-shot vir-

tual network embedding. The one shot virtual network embedding problem involves

performing both node and link mapping at the same time. We start by formulat-

ing the one shot VNE as a mathematical program, in which VNs arrive one a time

(online) and hence the formulated optimisation problem involves the embedding of a

single VN at any given time. The proposed VNE involves creation of paths in the

substrate network. As a result, the variables considered in the mathematical program

are substrate network paths, rather than individual links. For this reason, the col-

umn generation approach proposed involves generation of new paths. Therefore, in

the rest of this thesis, the phrases column generation and path generation are used

36 3.5. Column Generation-based VNE

interchangeably.

3.5.1 Substrate Network Augmentation

We start by creating an augmented network [8], with each virtual node i connected

to each of the substrate nodes in its possible node set Υ(i) by a meta link [8] liu ∈ Lx,

where Lx is the set of all meta links. Then the aim is to establish a single path pijuv

from each virtual node i to all other virtual nodes j to which it is connected. The path

pijuv is made of two meta links, liu and ljv, and a sub-path in the substrate network

connecting the substrate nodes u and v. This sub-path may be made up of one or

more substrate network links.

In Fig. 3-2, we show a representation of an instance of the problem. In the

figure, XYZ are nodes of a virtual network, while ABCDEFG are nodes of a substrate

network. As an example, for virtual link XZ, one possible path could be XABEZ,

and is represented as pxzae . The path pxzae is a sequence of links in the augmented

network that start from one end of the virtual link to the other. Therefore, in order

to embed the virtual link XZ, we need to determine the three components of the path,

which − for this example − are the two meta links XA and EZ, and the substrate

network path ABE composed of two links, AB and BE. The components XA and EZ

can be determined from a virtual to substrate node mapping, while ABE from a link

mapping approach such as shortest path [107]. In particular, this path example would

mean that the virtual node X is mapped onto substrate node A, the virtual node Z

is mapped onto substrate node E and that the virtual link XZ is mapped onto the

substrate network path ABE. One difficulty illustrated in this example comes from

the fact that if, for example, we choose the path XABEZ for virtual link XZ, then the

virtual link XY can only be mapped on a path that includes meta link XA and not

XC. This would in turn require that Y be mapped onto C, otherwise we would have

a suboptimal solution in which the virtual link XY uses resources from two substrate

links (AC & CG) instead of a single link (CG). Hence, the determination of these

paths should not be carried sequentially and independently. As previously mentioned,

our aim is to find the best possible path for each of the virtual links subject to the

Chapter 3. Column Generation-based VNE 37

C

B

G

X

E

F

Y

D

A

Z

Substrate Links

Virtual Links

 Substrate Nodes

Virtual Nodes

Possible virtual to substrate node mappings

Figure 3-2: Embedding a virtual network onto a substrate network

mapping requirements described in 2.4.3

3.5.2 LP−P: Path based Formulation −Primal

We formulate the virtual network embedding problem as a commodity flow problem[27],

where virtual links are flows that should be carried by the substrate network. How-

ever, unlike most commodity flow formulations, in our case, the source node i and

terminal node j for each flow also need to be determined.

Variable and Parameter definitions: In this formulation, we define a nonneg-

ative binary variable f ij
uv = [0, Dij] which represents the unsplittable flow of a virtual

link lij ∈ Lv on a simple substrate path pijuv ∈ P . The indices u, v, i and j define a

path (i−u− v− j) in the augmented substrate network. As described in 3.5.1, these

paths are made up of three components: two meta-links iu and jv, and a substrate

network path from u to v. The variable f ij
uv is binary in that it can only take on values

0 and Dij, where Dij is the demand of virtual link lij ∈ Lv. We define P as a set

of all the possible substrate paths, Puv as the set of all paths that use the substrate

link luv ∈ Ls and P ij as the set of all paths that can support the flow for virtual

link lij ∈ Lv. We also define χi
u = [0,1] as a binary variable equal to 1 if the virtual

38 3.5. Column Generation-based VNE

node i is mapped onto the substrate node u and 0 otherwise. As mentioned in 3.5.1,

it is important to note that variables χi
u and χj

v directly determine the existence or

otherwise of meta links iu and jv for the path pijuv since the meta links are depen-

dent on the respective node mappings. For example, if χi
u == 0 then the virtual

node i is not mapped onto substrate node u, implying that the meta link from i to

u is non existent, and so is the path pijuv. Let Auv be the available bandwidth capac-

ity on the substrate link luv, and Au be the available computation capacity on node u.

Objective: The objective of the mathematical formulation (3.21)−(3.29) is to bal-

ance the resource usage of the substrate network, by favouring the selection of those

resources with comparatively higher available capacity. Balancing the loading of the

substrate network has two advantages; first, it distributes the mapping of a given

VN request over multiple substrate network resources which avoids a single VN being

majorly affected by single or regional failures in the substrate network, hence ensuring

better VN survivability. In addition, since the problem we consider in this thesis is

online, we do not know in advance the required node locations for future VN requests.

Balancing the loading of the substrate network ensures that at any given point, each

substrate node/link has the same utilised capacity on average. This avoids situations

where a VN request would be rejected due to one or more of its nodes not being able

to be mapped because substrate nodes in their respective possible node sets Υ(i) have

less resources than other parts of the substrate network.

Minimise
∑

lij∈Lv

∑

p
ij
uv∈P

1

Auv

f ij
uv +

∑

i∈Nv

∑

u∈Υ(i)

1

Au

χi
u (3.21)

subject to
∑

u∈Υ(i)

χi
u = 1 ∀i ∈ Nv (3.22)

∑

i∈Nv

χi
u ≤ 1 ∀u ∈ Ns (3.23)

Chapter 3. Column Generation-based VNE 39

∑

p
ij
uv∈P ij

f ij
uv = Dij ∀lij ∈ Lv (3.24)

∑

p
ij
uv∈Puv

f ij
uv ≤ Auv ∀luv ∈ Ls (3.25)

f ij
uv −Dijχ

i
u ≤ 0 ∀pijuv ∈ P (3.26)

f ij
uv −Dijχ

j
v ≤ 0 ∀pijuv ∈ P (3.27)

f ij
uv = [0, Dij] ∀pijuv ∈ P (3.28)

χi
u = [0, 1] ∀i ∈ Nv, ∀u ∈ Ns (3.29)

The first term in the objective (3.21) is for link mapping, while the second term

is for node mapping. Each of these terms are divided by the respective capacities

to ensure that the substrate resources with more free resources are preferred. Con-

straint (3.22) ensures that each virtual node is mapped to a substrate node, while

(3.23) ensures that any substrate node may be used at most once for a given mapping

request. Constraints (3.24) and (3.25) represent the virtual link demand requirements

and substrate link capacity constraints respectively. Specifically, (3.24) states that

the flow f ij
uv on path pijuv should carry the total demand of the virtual link ij, while

(3.25) states that the flow f ij
uv on path pijuv should be atmost equal to the capacity of

each substrate link on that path. From constraint (3.26), if χi
u == 0 then f ij

uv = 0.

If χi
u == 1 then f ij

uv = [0, Dij]. This is also true for (3.27). These constraints ensure

that virtual links and virtual nodes are mapped at the same time, i.e., a flow f ij
uv −

using the path pijuv starting with meta link iu and ending with meta link jv − is only

non-zero if the virtual node i is mapped onto substrate node u and j is mapped onto

v. Together, (3.26) and (3.27) ensure that a flow f ij
uv is only non zero if both the two

40 3.6. Proposed Path Generation Approach

end links iu AND jv exist. Finally, (3.28) and (3.29) are the variable domain bounds.

The formulation in (3.21)−(3.29) is intractable for two reasons; first, the restric-

tions that variables χi
u and f ij

uv only take on binary values ((3.28) and (3.29)), and

then the fact that the number of possible paths pijuv (and hence the number of vari-

ables f ij
uv) is very large (exponential) even for moderately sized networks. Therefore,

solving the problem in its current form is impractical. There are three possibilities

to solving the problem;

1. a relaxation to the constraints on variables χi
u and f ij

uv to take on continuous

values,

2. restricting the number of input variables f ij
uv (by restricting the number of paths

pijuv).

3. a combination of both the first two approaches.

For the VNE problem as formulated in (3.21)−(3.29), a relaxation would require

careful consideration to avoid violating the requirements that both nodes and links

are mapped in one shot (since the variables χi
u would no longer be able to restrict the

mapping of virtual nodes to particular substrate nodes), as well splitting the flows of

the virtual links across multiple links. Therefore, we take the second approach, and

employ path generation, which allows for the use of only a sufficiently meaningful

number of paths, and adding more paths as needed until a final solution is obtained.

3.6 Proposed Path Generation Approach

The path generation approach taken in this thesis is shown in Fig 3-3. We start by

creating an initial set of paths (P1) using a two stage node and link mapping. We then

use these paths to solve a dual problem, and use the pricing problems (shortest path

problems) to determine a set of paths (P2) to add to the initial solution i.e. paths

that can improve the initial solution. These paths are then used to solve a restricted

primal problem to obtain a final solution. It can be noted that our proposal avoids

the usual iteration required in a path generation approach where the primal and

Chapter 3. Column Generation-based VNE 41

Policy

Dual Problem

Solution

Reward Function

Final VNE Solution
Djikstra Shortest

Paths

Primal Problem

Solution

 VN Request

Initial VNE

Solution

Paths, P1

Prices P1

Paths, P2 Paths, (P1+P2)

Paths, P1

Figure 3-3: Path Generation-based Virtual Network Embedding

dual problems are solved sequentially, many times, instead preferring only to perform

a single iteration. In the next subsections, we propose a method for determining

the initial set of paths, derive the pricing problems, and then describe the overall

algorithm proposed in this thesis.

3.6.1 Initial Solution

An initial solution (Init−Sol) is determined as a set of paths P1 in the augmented

substrate network, with each path pijuv ∈ P1 able to support the flow f ij
uv of virtual link

lij. Each of these paths must be able to meet the virtual network mapping conditions

as formulated in the primal problem ((3.22) - (3.29)) . Revisiting the example in Fig.

3-2, since we have two virtual links, an initial solution for such a case would have two

paths, one for each virtual link. Examples of these paths could be XABEZ and XACY

for virtual links XZ and XY respectively. In order to determine such a path, say for

virtual link XZ, the approach proposed is as follows: we start by performing a node

mapping, which for this example, would map virtual nodes X and Z onto substrate

nodes A and E respectively. This step gives us the meta links XA and EZ. In this

subsection, we propose a novel node mapping solution LP−N for determining XA

and EZ. The next step involves determining the path ABE in the substrate network.

42 3.6. Proposed Path Generation Approach

This is done by using Dijkstra’s algorithm[108], with the constraint that each link on

the path should have enough capacity to support the virtual link under consideration.

The complete path is determined by joining meta links XA and EZ to the respective

ends of ABE.

LP−N: Node Mapping

LP−N is based on mathematical programming and is formulated in such a way that

mapping of any given virtual node is biased towards those substrate nodes in its set

of possible nodes Υ(i), which has a high weighted average available capacity of the

connected links.

Objective: Two objectives are considered in this formulation: The first is to keep

the computation time of the solution as low as possible by including only the possible

virtual node to substrate node combinations. Secondly, we minimize the possibility

of failure at the link mapping stage, by making the node mapping aware of the link

mapping stage through the use of weights Wi and Wu.

Variable definition: As defined before ((3.21) - (3.29)), χi
u is a binary variable

equal to 1 when the virtual node i is mapped onto substrate node u and 0 otherwise.

minimise
∑

i∈Nv

∑

u∈Υ(i)

Wi

Wu

χi
u (3.30)

subject to:
∑

u∈Υ(i)

χi
u = 1 ∀i ∈ Nv (3.31)

∑

i∈Nv

χi
u ≤ 1 ∀u ∈ Ns (3.32)

Chapter 3. Column Generation-based VNE 43

χi
u = [0, 1] ∀i ∈ Nv, ∀u ∈ Ns (3.33)

Constraints (3.31), (3.32) and (3.33) are similar to (3.22), (3.23) and (3.29) respec-

tively. The weights Wi and Wu are determined for each virtual and substrate node

respectively. Wu is weighted average of the available capacities of all the substrate

links connected to u. Similarly, Wi is weighted average of the demand of all the

virtual links connected to i. To illustrate the idea behind these weighted averages,

consider Fig. 3-4, which is a subset of the topology represented in Fig. 3-2. The

values beside each link represent the available link bandwidths (blue in Fig. 3-2) and

link demands (red in Fig. 3-2) for substrate and virtual links respectively. As an

example, considering the virtual node X,

WX = 20×

(

20

20 + 10

)

+ 10×

(

10

20 + 10

)

= 16.67.

In the same way for substrate node C,

WC = 50×

(

50

50 + 60 + 70

)

+60×

(

60

50 + 60 + 70

)

+70×

(

70

50 + 60 + 70

)

= 61.11

The reason for using this ratio as a weight is to ensure that those substrate nodes

that are connected to many substrate links with higher available resources are usually

preferred, and that in case two or more virtual nodes have a given substrate node

in their possible node set (such as X and Y in Fig. 3-2), then the substrate node

would always be allocated to that virtual node with the highest weighted average link

demand. This achieves some level of coordination between the node mapping and

link mapping phases and thereby reduces the probability of rejecting link mapping

requests.

We note that there could be instances where the weighted averages lead to se-

lecting substrate nodes with less good links, especially when the links have widely

differing residual capacities. For example, a node connected to two links with residual

capacities 80 and 10 respectively will have a W1 = 72, while a node connected to two

44 3.6. Proposed Path Generation Approach

10

20 70 50

50 60

G

Y

A

C

X

Figure 3-4: Node-Link Weighted Averages

links with residual capacities 60 and 70 respectively will have a W2 = 65. In this

case, the first node will be selected yet the second node could be a better choice.

One simple solution to handle such scenario is to use the sum of two averages: the

weighted average and a simple average. However, it is worth mentioning that in our

approach network embedding is done in such a way that the average loads of sub-

strate network nodes and links are balanced, this way, avoiding scenarios where some

node and/or links have widely differing residual capacity. The procedure, Init-Sol,

for determining the initial solution is shown in Algorithm 1.

3.6.2 Pricing Problem

To determine which paths should be added to the initial set so as to improve the

solution, we need to solve the pricing problems for LP−P. In order to identify the

pricing problems we first formulate the dual problem LP−D for the primal problem

LP−P.

Dual Variables definitions: For a primal that minimises an objective, deriving

the corresponding dual involves maximising an objective, and defining a non-negative

dual variable for each inequality constraint, and an unrestricted dual variable for each

equality constraint. Therefore, we define six dual variables as follows: λi for the vir-

tual node constraints (3.22), µij for the virtual links demand constraints in (3.24),

ηu >= 0 substrate node constraints in (3.23), γuv >= 0 substrate links available

Chapter 3. Column Generation-based VNE 45

Algorithm 1 Init−Sol (Gv(Nv, Lv), Gs(Ns, Ls))

1: for i ∈ Nv do
2: Determine Candidate Node Set, Υ(i)
3: if Υ(i) = ∅ then
4: Reject Request
5: end
6: end if
7: Calculate Wi

8: end for
9: for u ∈ Ns do
10: Calculate Wu

11: end for
12: Solve : LP-N
13: for lij ∈ Lv do
14: for u ∈ Υ(i) do
15: if χi

u = 1 then
16: Meta Link 1: l1 = iu
17: Start Node, s = u
18: end if
19: end for
20: for v ∈ Υ(j) do
21: if χj

v = 1 then
22: Meta Link 2: l2 = jv
23: End Node, t = v
24: end if
25: end for
26: LinkMapping: ps = Dijkstra

(

s, t, Gs(Ns, Ls)
)

27: Create Path: pijuv = l1 + ps + l2
28: Add pijuv to P ′

29: end for

capacity constraints in (3.25), σiu >= 0 for simultaneous node and link mapping

constraint constraint (3.26) and τjv >= 0 for constraint (3.27). Since most results

of duality for linear programs do extend to integer programming[109], the following

dual formulation is based on the steps described in Section 3.3.1.

The objective of the dual formulation (3.34)−(3.36) is to obtain a mathematical

program that produces a maximised value as close as possible to that of its original

primal program for any instance of the variables. Therefore, the dual of the primal

46 3.6. Proposed Path Generation Approach

formulation in (3.21)−(3.27) is:

maximise
∑

i∈Nv

λi +
∑

lij∈Lv

Dijµij −
∑

u∈Ns

ηu −
∑

luv∈Ls

Auvγuv (3.34)

subject to

λi +
∑

p
ij
uv∈P

(σiu + τjv)− ηu ≤
1

Au

∀liu ∈ Lx (3.35)

µij − σiu −
∑

luv∈p
ij
uv

γuv − τjv ≤
∑

luv ,liu∈p
ij
uv

1

Auv

∀pijuv ∈ P (3.36)

The pricing problems are shown in (3.35) and (3.36). From (3.35), the pricing condi-

tion for substrate nodes can be determined as:

λi +
∑

p
ij
uv∈P

(σiu + τjv) >
1

Au

+ ηu

However, since the variables χi
u are much fewer compared to f ij

uv, we include all the

possible substrate nodes for each virtual node in the restricted primal problem. This

eliminates the need for node pricing and we are left to deal with only the link pricing

problem (3.36):

µij >
∑

luv ,liu∈p
ij
uv

1

Auv

+ (σiu +
∑

luv∈p
ij
uv

γuv + τjv)

This pricing problem can be solved using the shortest path algorithm. Any path

pijuv = Siu + (luv ∈ Puv) + Tjv in the augmented substrate network whose length with

respect to the dual variables (this means that the costs of the substrate links luv ∈ Puv

are γuv, those of meta links Siu are σiu and those of Tjv are τjv) is smaller than µij

satisfies the inequality above, and has the potential to improve the solution. However,

a change in path for any given virtual link could necessitate a change in the mapping

of one of its end nodes, which would change the prices and feasibility of mappings for

other virtual links connected to it. For example, in Fig. 3-2, if the virtual node X is

Chapter 3. Column Generation-based VNE 47

We use A←X to mean that node virtual node X
is mapped onto substrate node A

(A←X, B←Z), (A←X, E←Z), (A←X, D←Z)

(C←X, B←Z), (C←X, E←Z), (C←X, D←Z)

B

D Z

X

E

C

A

Figure 3-5: Possible substrate node combinations for virtual link XZ

mapped onto substrate node C, all the paths for both links XZ and XY go through C.

If the path for say XZ is changed to go through A, it would either mean that the path

for XY should also be changed to go through A, otherwise this path cannot be used

to give a feasible and improved solution. Therefore, addition of paths individually for

each virtual link does not guarantee that each of the added paths would still lead to

a feasible solution, and for as long as the added path cannot yield a feasible solution,

this path cannot lead to improvement in the solution of the restricted primal problem.

In this case, there would be no guarantee that the pricing problems can be solved in

polynomial time, as it could require quite a number of iterations before enough paths

are added to actually improve the solution.

In our proposal, instead of adding individual paths for each virtual link in each

iteration of the path generation algorithm, we include all the possible shortest path

combinations after solving the formulation (3.34) − (3.36). We use Fig. 3-5, which

is extracted from Fig. 3-2, to illustrate this for the case of virtual link XZ. Since

the node X has two possible substrate nodes and virtual node Z has three possible

substrate nodes, then the possible combinations for these nodes are 6. In our pricing

48 3.7. Performance Evaluation

Algorithm 2 Final−Sol(Gv(Nv, Lv), Gs(Ns, Ls))

1: Create Augmented Substrate Network
2: Initial Paths Set: P1 ← Solve Init−Sol
3: Solve LP−D(P1)
4: for lij ∈ Lv do
5: for u ∈ Υ(i) do
6: for v ∈ Υ(j) do
7: P2 = GetShortestPath(i, u, v, j)
8: P = (P1 + P2)
9: end for
10: end for
11: end for
12: Solve LP−P(P)

solution, we determine the shortest path − based on the weights

∑

luv ,liu∈p
ij
uv

1

Auv

+

(

σiu +
∑

luv∈p
ij
uv

γuv + τjv

)

for each of these 6 possible end node combinations. This is done for all the virtual

links, and all the corresponding paths are added to the restricted primal problem.

However, the number of paths added for each pricing iteration would be too big to

handle if many iterations are carried out. Even the Dijkstra algorithm takes quite

some time to find the shortest paths. For this reason, we perform only one round for

the substrate paths and use the resulting shortest paths based on the dual problem

to solve LP−P to obtain the final solution. As we show in the simulation results, the

solution obtained is near optimal. The procedure, Final−Sol, for determining the

final solution is shown in Algorithm 2.

3.7 Performance Evaluation

3.7.1 Simulation Setup

To evaluate the performance of our proposed approach, we implemented a discrete

event simulator in Java, which uses the tool Brite [110] to generate substrate and

Chapter 3. Column Generation-based VNE 49

Table 3.1: Brite Network Topology Generation Parameters

Parameter Substrate Network Virtual Network

Name (Model) Router Waxman Router Waxman

Number of nodes (N) 100 and 20 [15-25] and [3-10]

Size of main plane (HS) 500 500

Size of inner plane (LS) 500 500

Node Placement Random Random

GrowthType Incremental Incremental

Neighbouring Nodes 3 2

alpha (Waxman Parameter) 0.15 0.15

beta (Waxman Parameter) 0.2 0.2

BWDist Uniform Uniform

virtual network topologies. We used the tool ILOG CPLEX 12.4 [111] to solve

the mathematical programs. Simulations were run on Windows 8 Pro running on

a 4.00GB RAM, 3.00GHz Processor Machine. Both substrate and virtual networks

were generated on a 500× 500 grid. The CPU and bandwidth capacities of substrate

nodes and links are uniformly distributed between 50 and 100 units respectively.

The CPU demand for virtual network nodes is uniformly distributed between 2 and

10 units while the bandwidth demand of the links is uniformly distributed between

10 and 20 units. The parameters used in Brite to generate network topologies are

shown in Table I. The parameters α and β are Waxman-specific exponents, such that,

0 < α ≤ 1, 0 < β ≤ 1, (α, β) ∈ R. α represents the maximal link probability while β

is used to control the length of the edges. High values of alpha lead to graphs with

higher edge densities while high values of beta lead to a higher ratio of long edges to

short ones. The values used in this thesis are the default values in the brite router

Waxman model used in [110]. Each virtual node is allowed to be located within a

uniformly distributed distance between 100 and 150 units of its requested location.

For embedding quality evaluations, two possible sets of network sizes have been used.

50 3.7. Performance Evaluation

Table 3.2: Performance Quality Evaluation Algorithms

Code Mapping Method

GNMSP Greedy Node Mapping and Shortest Path for links[20]

CNMMCF Coordinated Node and MCF for Link Mapping[8]

VNA-1 One Short Node Mapping[112]

PaGeViNE Path Generation based Virtual Network Embedding

ViNE-OPT Link based Optimal Virtual Network Embedding

One involves a substrate network with 100 nodes and virtual networks with number

of nodes varied uniformly between 15 and 25, while the other has a substrate network

with 20 nodes and virtual networks with number of nodes varied uniformly between

3 and 10. The need for different network sizes will be explained in a later subsection.

For these simulations, we assumed Poisson arrivals at an average rate of 1 per 3 time

units. The average service time of the requests is 60 time units and assumed to follow

a negative exponential distribution. The experiments are performed for 1500 arrivals.

For the time complexity evaluation, the number of nodes for the substrate network

is gradually increased from 20 to 100.

3.7.2 Performance Metrics

Solution Quality

Three performance indicators − Acceptance ratio, Node utilization and Link utiliza-

tion − are used for quality evaluation. The acceptance ratio gives a measure of the

number of virtual network requests accepted compared to the total requests. We

define the average node utilization as the average proportion of the total substrate

node capacity that is under use at any given time. In the same way, we define average

link utilization as the average proportion of the total substrate link capacity that is

under use at any given time.

Chapter 3. Column Generation-based VNE 51

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 300 500 700 900 1100 1300 1500

A
cc

e
p

ta
n

ce
 R

a
ti

o

Number of Arrivals

GNMSP

VNA-I

CNMMCF

PaGeViNE

ViNEOPT

Figure 3-6: Average Acceptance Ratio - 20 SN Nodes

Solution Complexity

We define the time complexity of a given solution as the average time to complete

the computation.

3.7.3 Comparisons

We compare the performance of our solution with closely related solutions. In partic-

ular, three representative solutions from the literature are chosen. The first performs

node and link mapping separately [20]; the second coordinates the two steps [8]; and

the third performs a one shot mapping [112]. These solutions were slightly modified

to fit into our formulation of the problem. Specifically, unsplittable flows, constraints

on substrate network capacities and constraints on virtual node locations were ap-

plied. We also implemented a baseline link-based formulation of the optimal one shot

mapping (see Appendix C). We identify and name the compared solutions in table

6.4.

Since ViNEOPT requires a very long time (in excess of 1 hour for a single embed-

ding involving a substrate network of 60 nodes and a virtual network of 10 nodes)

to perform an embedding, simulations evaluating this algorithm have been restricted

52 3.7. Performance Evaluation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 300 500 700 900 1100 1300 1500

A
cc

e
p

ta
n

ce
 R

a
ti

o

Number of Arrivals

PaGeViNE

CNMMCF

VNA-I

GNMSP

Figure 3-7: Average Acceptance Ratio - 100 SN Nodes

to substrate networks with 20 nodes and virtual networks with nodes from 3 − 10.

However, an extra simulation for acceptance ratio using larger sized networks has

be performed so as to reflect more practical network sizes. This simulation excludes

ViNEOPT.

3.7.4 Results

From the graphs in Fig. 3-6 it is evident that PaGeViNE achieves an average accep-

tance ratio close to that obtained by the optimal solution ViNE-OPT. In addition

Fig. 3-6 and Fig. 3-7 show that PaGeViNE outperforms state-of-the-art solutions in

terms of average acceptance ratio. These two figures also confirm that the embedding

efficiency of PaGeViNE is not affected by increasing the size of substrate and virtual

networks. It is also evident from the graphs in figures 3-8 and 3-9 that PaGeViNE

achieves a better utilization ratio for substrate node and link resources compared to

other solutions. However, we note that CNMMCF has a link utilization ratio that is

comparatively close to that of PaGeViNE. The fact that CNMMCF is underperform-

ing PaGeViNE with respect to the average acceptance ratio and resource utilization

can be attributed to the fact that CNMMCF is using more resources at the link map-

ping stage since it performs node and link mappings separately. For VNA-1, while

Chapter 3. Column Generation-based VNE 53

0.1

0.2

0.3

0.4

0.5

100 300 500 700 900 1100 1300 1500

N
o

d
e

 U
ti

li
sa

ti
o

n

Number of Arrivals

GNMSP

VNA-I

CNMMCF

PaGeViNE

ViNEOPT

Figure 3-8: Average Node Utilisation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100 300 500 700 900 1100 1300 1500

Li
n

k
 U

ti
li

sa
ti

o
n

Number of Arrivals

GNMSP

VNA-I

CNMMCF

PaGeViNE

ViNEOPT

Figure 3-9: Average Link Utilisation

the node and link mapping is done in one shot, they are carried out sequentially, con-

sidering specific clusters of the substrate network each time. It is therefore expected

that the results would not be as good as those achieved by a global solution based

on mathematical programming. With respect to time complexity, the graphs in Fig.

3-10 show that the running times of GNMSP and VNA-1 are comparatively lower

than those of PaGeViNE. Once again, this can be explained by the fact that these

two solutions do not solve a mathematical program as PaGeViNE does. We also note

that the computation time of PaGeViNE is slightly higher than that of CNMMCF.

This can be attributed to the fact that PaGeViNE solves three mathematical pro-

54 3.7. Performance Evaluation

0

20

40

60

80

100

120

140

160

180

200

20 30 40 50 60 70 80 90 100

Co
m

p
u

ta
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Number of Substrate Network Nodes

GNMSP

VNA-I

CNMMCF

PaGeViNE

ViNEOPT

Figure 3-10: Average Computatation Time

grams, while CNMMCF solves only two. Moreover, it is expected that solving the

problem in one shot requires more computation than solving it in two stages, since

some of the mathematical programs solved in PaGeViNE are binary. With regard to

ViNE-OPT we see that the computation time quickly grows exponentially. In fact,

ViNE-OPT could not find a solution even after 1 hour for 60 substrate nodes1.

We therefore note a significant improvement in time complexity of PaGeViNE

compared to ViNE-OPT, while ensuring that the embedding quality is not greatly

diminished. We are however mindful of the fact that we can reduce the computation

time even more, if we use better ways of adding paths after the LP−D solution, than

adding all possible shortest paths. We intend to investigate this further in future

work, specifically by seeking better methods of performing the pricing for the dual

variables for instance using more advanced search techniques.

3.7.5 Time Complexity

The mathematical formulation (3.21)−(3.29) involves solving a binary program. This

problem is NP-hard in the general case, and only exponential algorithms are known

to solve it in practice [113, 114]. Our approach is to reduce the number of input

1Once again, this is why the simulations for acceptance ratio were split into one with 20 substrate
network nodes and another with 100 substrate nodes.

Chapter 3. Column Generation-based VNE 55

variables to the program using path generation. While a significant improvement in

computation time is achieved compared to the optimal solution, the computation time

is still slightly higher than that of CNMMCF and VNA-1 (see Fig. 3-10). Therefore,

even though in practice there are high performance tools (such as [111]) for solving

binary programs, more work can still be done for instance seeking a relaxation to the

program which permits to solve it in polynomial time.

3.8 Conclusion

In this Chapter, we have proposed a near optimal one shot virtual network embedding

solution that is based on column generation.

We started by defining a method that yields an initial solution whose objective

was to keep the computation time of the solution as low as possible by including only

the possible virtual to substrate node combinations, and to minimize the possibility

of failure at the link mapping stage, by making the node mapping aware of the link

mapping stage through the use of weights that bias the choice of virtual to substrate

node mappings.

The VNE problem was then formulated as a MCF problem where each virtual

link was represented as a flow to be mapped onto a substrate path. The dual of the

problem was then derived, and the corresponding pricing problems determined. To

ensure a faster solution, instead of performing iterative improvements in the initial

solution, as would be in a typical column generation approach, this Chapter proposed

a mechanism of achieving a good solution in only one iteration.

Through simulations, which include three models of state-of-the-art alternative

proposals, we conclude that our approach has a comparative advantage over previous

approaches in terms of solution quality. That is, we get a higher acceptance ratio of

virtual networks and a higher level of resource utilisation in the substrate network.

Specifically, compared with the best state-of-the-art approach, our proposal improves

the acceptance ratio by about 35% while being only about 5% short of the optimal

solution. In addition, the average node and link resource utilisations are improved by

56 3.8. Conclusion

about 12% and 10% respectively. These improvements would directly translate into

better profitability for infrastructure providers.

Further more, our approach significantly reduces the time complexity with respect

to the optimal solution for the same problem conditions. Numerically, for a substrate

network of 50 nodes, our proposal improves the computation time by about 1500%

compared to the optimal solution, while remaining comparable with the state-of-art

approaches. After 50 nodes, the optimal solution diverges exponentially, but our

proposal remains comparable to the state-of-art approaches, encountering only a 25%

deviation from current approaches for a substrate network of 100 nodes. Therefore,

the results in this Chapter confirm hypothesises 1 and 2 as outlined in Section 1.2.

However, the mathematical programs formulated and solved in this Chapter can

still be relaxed and heuristics that ensure that the virtual network embedding con-

straints are satisfied devised. This will be an objective of future research activi-

ties. In particular, we will investigate the feasibility of applying artificial intelligence

techniques such as particle swarm optimisation [115] and tabu search [116] to the

enhancement of our proposal.

Chapter 4

Reinforcement Learning-based

Dynamic Resource Allocation

4.1 Introduction

The virtual network embedding proposal in Chapter 3 performs static embeddings in

that it does not consider the possibility of re-mapping or adjusting resource allocation

to one or more virtual networks. Specifically, it allocates a fixed amount of resources

to the virtual nodes and links for the entire lifetime of the virtual network. Since user

traffic is non-uniform (not static), fixed resource allocation could lead to an inefficient

utilisation of overall network resources, especially if an infrastructure provider rejects

requests to embed new virtual networks while reserving the resources for virtual

networks that are not currently using them (are lightly loaded). It would therefore

be important to dynamically allocate resources to virtual nodes and links taking into

consideration actual need for these resources at any time.

While most existing works on dynamic resource allocation are based on control

theory [32, 33], performance dynamics modeling [34, 35] and workload prediction [36,

37], it has been shown from artificial intelligence communities that distributed systems

of autonomous learning entities can efficiently and dynamically allocate resources in

different application domains [117, 118, 119].

In this Chapter, instead of allocating a fixed amount of resources to a given vir-

57

58 4.2. Reinforcement Learning

tual network throughout its lifetime, we dynamically and opportunistically allocate

resources to virtual nodes and links depending on their perceived needs. The oppor-

tunistic use of resources involves carefully taking advantage of unused virtual node

and link resources to ensure that new virtual network requests are not rejected when

resources reserved to already embedded virtual networks are idle. To this end, we

use a demand-driven dynamic approach that allocates resources to virtual nodes and

links using reinforcement learning (RL) [15].

The rest of the Chapter is organised as follows: We introduce reinforcement learn-

ing in Section 4.2, followed by a definition of the dynamic resource allocation problem

in the context of network virtualisation in Section 4.3. The proposed reinforcement

learning approach is then presented in Section 4.4 and evaluated and discussed in

Section 4.5. We conclude the Chapter in Section 4.6.

4.2 Reinforcement Learning

Reinforcement Learning (RL) is a technique from artificial intelligence [120] in which

an agent placed in an environment performs actions from which it gets numerical

rewards. Fig. 4-1 shows an interaction between an agent and an environment in a

typical RL scenario. For each learning episode [15], the agent perceives the current

state of the environment and takes an action. The action leads to a change in the

state of the environment (state transition), and the desirability of this change is

communicated to the agent through a scalar reward, which is an evaluation of the

desirability of the agents’ action. In the next subsections, the three major components

of a RL agent as shown in Fig. 4-1 are defined.

4.2.1 Learning Algorithm

There are many learning algorithms in RL, all falling with in three broad learning

methods, which are: dynamic programming, Monte Carlo, and time difference meth-

ods [15].

Dynamic programming [121] uses the concepts of a dynamic system’s state and

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 59

Action

State
Transition

ENVIRONMENTAGENT

State, 𝑆𝑇+1

State, 𝑆𝑇

Reward

Learning
Algorithm

Action
Selection

Policy

State

Figure 4-1: Agent-Environment interactions in Reinforcement Learning

of a value function to define a functional equation, which represents a controller for

the system. It requires the knowledge of the probability of transiting from one state

to another, and assumes that the measurements available on the system’s state are

detailed enough so that the the controller can avoid reasoning about how to collect

information about the state [122]. Problems with these characteristics are best de-

scribed in the framework of Markovian Decision Processes (MDPs) [123]. Therefore,

the dynamic programming approach is to transform the problem of finding a good

controller into the problem of finding a good value function. However, Dynamic pro-

gramming suffers from the curse of dimensionality, meaning that its computational

requirements grow exponentially with the number of state variables [15, 124]. On

the other hand, Monte Carlo [125] and time difference (TD) [126] methods are pri-

marily concerned with how an agent ought to take actions in an environment so as

to minimise the notion of long-term cost, that is, so as to obtain the optimal policy,

when the state transition probabilities are not known in advance. Specifically, if state

transition probability is not known, but a sample transition model of states, actions

and costs can be built, Monte Carlo methods can be applied to solve the problem,

while, if the only way to collect information about the environment is to interact with

it, TD methods are used. TD methods combine elements of dynamic programming

60 4.2. Reinforcement Learning

and Monte Carlo ideas, they learn directly from experience which is a characteristic

of Monte Carlo methods and they gradually update prior estimate values, which is

common of dynamic programming [127].

Since for the problem of dynamic resource allocation in network virtualisation we

do not have an estimate of the state transition probabilities, and because information

about states, actions and rewards can only be obtained over time through interactions

with both substrate and virtual networks, the natural reinforcement method of choice

should come from TD methods. And since the most common TD learning algorithm

is Q-learning [15, 128], the remainder of this Chapter will design and evaluate a

Q-learning based algorithm for the opportunistic allocation of resources in network

virtualisation.

Q-Learning

This is a time difference [15] learning algorithm that gradually builds information

about the best actions to take in each possible state. This is achieved by finding

a policy that maximises some long-term measure of reinforcement. Therefore, the

main objective of a Q-learning agent is to maximise the overall reward it achieves

throughout the learning period. In general, the objective of a learning algorithm is

to learn an optimal policy. In algorithm 3, the generic psuedocode of a Q-learning

agent is given.

4.2.2 Policy

A policy defines the learning agent’s way of behaving at a given time. It is a mapping

from each environment state to actions to be taken when in that state [15]. In Q-

learning, a policy is composed of a Q-value, Q(s, a) for each of the possible state-action

combinations. Q(s, a) is a measure of the desirability of each action, a while in the

state, s. The learning process therefore involves continuously updating these values

until they guide the agent to taking the best action while in any of the possible states

[15].

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 61

Policy Update

While using the Q-learning algorithm, after every learning episode, an agent updates

its Q-values using the Q-learning rule in (4.1).

Q(sp, ap)← (1− α)Q(sp, ap) + α

{

rp + λmax
a∈A

Q(sn, a)

}

(4.1)

where Q(sp, ap) is the new value of state sp corresponding to action ap, rp is the

reward obtained from taking the action ap while in state sp and sn is the next state

resulting from taking the action ap while in state sp, implying that Q(sn, a) is the

value associated with the action a of the state sn. The parameters 0 ≤ α ≤ 1 and

0 ≤ λ ≤ 1 are referred to as learning rate and discount factor respectively.

Learning rate: The learning rate (α) determines the extent to which newly acquired

information overrides old information. If α = 0 the agent does not learn anything,

while a value of 1 for α would make the agent consider only the most recent informa-

tion.

Discount factor: The discount factor (λ) models the importance that is attached to

future rewards in comparison with immediate reward. Therefore, λ = 0 would make

the agent short-sighted in that it would only give importance to current rewards,

while a value close to 1 would make it strive for high rewards in the long-term, even

if this means getting negative rewards in the short run.

4.2.3 Action Selection

A reinforcement learning agent usually has one of two possible strategies with regard

to how actions are selected; (1) exploit the knowledge that it has found for the current

state s by taking the action a that maximises Q(s, a) i.e. take the action that it

already knows is the best in that state, or (2) explore by selecting a different action

from the one that it currently thinks is best, with the objective of trying to learn if

there is an action better than what it currently thinks is best.

Balancing the ratio of exploration and/or exploitation is a great challenge in RL

since it influences the convergence (learning) time and the quality of learned policies.

62 4.2. Reinforcement Learning

On one hand, too much exploration prevents the agent from maximising the short-

term reward because selected exploration actions may yield negative reward from the

environment. But on the other hand, exploiting uncertain environment knowledge

prevents agents from maximising the long-term reward since selected actions may not

be optimal [129]. Whether an agent explores or exploits its knowledge can generally

be determined by its action selection criterion. The two most common action selection

criteria are ǫ-greedy and softmax [15].

ǫ-greedy action selection

In ǫ-greedy, a greedy action (i.e. action with the highest Q-value) is selected most of

the time, and − using a small probability, ǫ − a random action is chosen once in a

while. This ensures that after many learning episodes, all the possible actions will be

tried a high number of times, leading to an optimal policy. Although ǫ-greedy action

selection is an effective and popular means of balancing exploration and exploitation

in reinforcement learning, one drawback is that when it explores, it chooses equally

among all actions. This means that it is as likely to choose the worst-appearing

action as it is to choose the next-to-best action. In tasks where the worst actions

are very bad, this may be unsatisfactory. The obvious solution is to vary the action

probabilities as a graded function of their estimated values [15].

Softmax action selection

Softmax differs from ǫ-greedy in the way the random action is selected. A weight

is assigned to each of the actions depending on their estimated values. A random

action is selected based on the weight associated with it, ensuring that worst actions

are unlikely to be chosen. When using softmax, an agent takes a random action a

while in state s with a probability P(a|s) which is commonly defined by a Gibbs or

Boltzmann distribution [130] as shown in equation (4.2).

P(a|s) =
exp{Q(s, a)/τ}
∑

â 6=a

exp{Q(s, â)/τ}
(4.2)

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 63

Algorithm 3 Q− Learning(States, Actions, λ, α)

1: Initialise: States, Actions, λ, α
2: Initialise q − values, Q(s, a), arbitrarily
3: repeat
4: for Each Learning Episode do
5: Choose ap from s using policy derived from Q (e.g. ǫ-greedy)
6: Take action ap, observe rp, sn
7: Q(sp, ap)← (1− α)Q(sp, ap) + α {rp + λmaxa∈A Q(sn, a)}
8: sp ← sn
9: end for
10: until Learning ends

where τ is a positive parameter called the temperature. High temperatures (τ →∞)

cause the actions to be almost equiprobable, while lower temperatures (τ → 0+) cause

the probability to be dependent on the Q-values.

Both methods (ǫ-greedy and softmax) have only one parameter that must be set

[15]. Whether softmax action selection or ǫ-greedy action selection is better is unclear

and usually depends on the task being considered.

4.2.4 Multi Agent Systems

When more than one agent interacts with each other, the resulting system is called

a multiagent system [18]. A multiagent system (MAS) can be defined as a group

of autonomous, interacting entities sharing a common environment, which they per-

ceive with sensors and upon which they act with actuators [131]. Depending on the

application, the interaction between the agents in a MAS can either be cooperative

or competitive. As stated by [132], multiagent systems are ideal for problems that

require autonomous decision making capabilities. Specifically, multiagent systems are

rapidly finding applications in a variety of domains, including robotics, distributed

control, telecommunications, and economics [131]. Needless to mention, dynamic re-

source allocation in network virtualisation can be classified both under distributed

control and telecommunications.

64 4.3. Problem Description: DRA in NVEs

BE C

F F

AD

Y

X Z

Q

P

S

RVN1

Substrate Network

Virtual Network
Embedding

1

Dynamic Resource
Allocation

2

VN2

Figure 4-2: Dynamic Resource Allocation in Network Virtualisation

4.3 Problem Description: DRA in NVEs

The dynamic resource allocation problem considers that virtual network resource

management does not stop at the embedding of virtual nodes and links to substrate

nodes and paths. Instead, as illustrated in Fig. 4-2, after a successful virtual network

embedding, there should be a lifecycle management of resources allocated/reserved

for the mapped VN, aimed at ensuring efficient utilisation of overall SN resources.

Our consideration is that SPs reserve resources to be used for transmitting user traffic,

and therefore, after successful mapping of a given VN, user traffic in form of packets

is transmitted over the VN. Actual usage of allocated resource is then monitored and

based on the level of utilisation, we dynamically and opportunistically adjust allocated

resources. The opportunistic use of resources involves carefully taking advantage

of unused virtual node and link resources to ensure that new VN requests are not

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 65

B

E

C

F G

AD

Node Agent Link Agent

Figure 4-3: Substrate Network Modeling

rejected when resources reserved to already mapped VNs are idle. It is however a

delicate trade-off which also ensures that the VNs always have enough resources to

guarantee that QoS parameters are kept as established in the corresponding SLAs (or

VN request specifications).

4.4 RL-based Dynamic Resource Allocation

As already mentioned, virtual network embedding allocates resources to virtual nodes

and links based on the specification in the VN requests. Stopping at the embedding

stage would result in a static allocation in which a fixed amount of substrate network

resources is reserved for each virtual link and node irrespective of actual utilisation.

The approach proposed in this Chapter is to dynamically adjust the resource allo-

cation using RL. To this end, we represent the substrate network as a multiagent

system shown in Fig. 4-3, in which each substrate node and link is represented by

a node agent na ∈ Na and a link agent la ∈ La, where Na and La are the sets of

node agents and link agents respectively. The node agents manage node queue sizes

while the link agents manage link bandwidths. The agents dynamically adjust the re-

66 4.4. RL-based Dynamic Resource Allocation

State

State,
Action,
Next State

Performance Evaluation

Reward

Le
ar

ne
d

Po
lic

y

Action

Reward
Function

Policy

States Model

Action

Q-Learning

Node Queue Size or
Link Bandwidth

Agent

Resource Usage Status

1

2

3

4

5

Figure 4-4: Learning System Modelling: Case of a single substrate node/link

sources allocated to virtual nodes and links, ensuring that resources are not left under

utilised, and that enough resources are available to serve user requests. We consider

that each na ∈ Na has information about the substrate node resource availability as

well as the resource allocation and utilisation of all virtual nodes mapped onto the

substrate node. In the same way, we expect that each la ∈ La has information about

substrate link bandwidth as well as the allocation and utilisation of these resources

by all virtual links mapped to it. In case a given virtual link is mapped onto more

than one substrate link, then each of the la ∈ La agents coordinate to ensure that

their allocations do not conflict.

While RL is well studied, its application to dynamic resource allocation in network

virtualisation is not trivial. In particular, it requires that all aspects of the RL

scenario represented in Fig. 4-1 are modelled in the context of a network virtualisation

environment. In Fig. 4-4, we show the proposed RL model for a given substrate

node/link. As can be noted, the learning is made up of five steps. The agent starts by

getting a resource usage status, which could have information such as the percentage

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 67

ACTION VALUE

000 000 000 0.500 15.50

000 000 000 0.125 1.34

.

.

001 101 100 0.25 .

.

.

111 111 111 -0.375 14.50

111 111 111 -0.500 18.23

STATE

Figure 4-5: Example of Agent Policy: Look-up Table

of substrate node/link resources available and the ratio of total virtual node/link

demand currently allocated. With this information, the agent takes an action, which

could involve increasing or reducing the amount of resource allocated to the virtual

node/link. The virtual node/link is then monitored to evaluate its performance e.g. in

form of link delays (in case of virtual links) or packet drops (in case of virtual nodes).

This evaluation is communicated to the agent in form of a reward, and based on this,

the agent adjusts its policy so as to ensure that its future resource allocation actions

are better. Each of the components of the model in 4-4 is detailed in subsequent

subsections.

4.4.1 Policy

The policy is implemented by means of a lookup table which, for each state, maintains

an updated evaluation (in form of Q-values) of all the possible actions. Since we have

9 possible actions and 512 possible states (as explained in the next two paragraphs),

the size of our policy is 9 × 512 = 4608 state-action values. An example of some

entries for the policy used in this Chapter is shown in Fig. 4-5.

68 4.4. RL-based Dynamic Resource Allocation

Table 4.1: Variable States

Code Percentage Value

000 0 < Variable ≤ 12.5

001 12.5 < Variable ≤ 25

010 25 < Variable ≤ 37.5

011 37.5 < Variable ≤ 50

100 50 < Variable ≤ 67.5

101 67.5 < Variable ≤ 75

110 75 < Variable ≤ 87.5

111 87.5 < Variable ≤ 100

Substrate Node

Virtual Nodes

To
ta

l D
em

an
d,

 𝑇 𝐷
Al

lo
ca

te
d

U
ti

lis
at

io
n

𝑹𝒖𝒛

𝑹𝒂𝒗
𝑹𝒖𝒗 . . .

Figure 4-6: Learning Model: Illustration of Agent States (Case of a Node)

States: The state of any agent is a vector S with each term s ∈ S representing

the state of one of the virtual links/nodes mapped onto it. The states in this work

are discrete. We consider that the total resource demand of each virtual node or link

can be divided into at least 8 resource chunks, each representing 12.5% of its total

resource demand. For example, a virtual node could be allocated 12.5%, 25%, 37.5%,

50%, 62.5%, 75%, 87.5% and 100% of its total demand. It is important to remark

that these re-allocations are performed after a successful embedding. Therefore, all

embeddings are performed based on the total demand of any given virtual node or

link.

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 69

Table 4.2: Action Definitions

Action Description

A0 Decrease allocated resources by 50.0 percent

A1 Decrease allocated resources by 37.5 percent

A2 Decrease allocated resources by 25.0 percent

A3 Decrease allocated resources by 12.5 percent

A4 Maintain Currently allocated resources

A5 Increase allocated resources by 12.5 percent

A6 Increase allocated resources by 25.0 percent

A7 Increase allocated resources by 37.5 percent

A8 Increase allocated resources by 50.0 percent

We model the state of any virtual resource (node queue size or link bandwidth)

v hosted on a substrate resource z, by a 3-tuple, s =
(

Rv
a, R

v
u, R

z
u

)

, where Rv
a is

the percentage of the virtual resource demand currently allocated to it, Rv
u is the

percentage of allocated resources currently unused, and Rz
u is the percentage of total

substrate resources currently unused. Each of the 3 variables is allowed to take up

8 different states, each made up of 3 bits, e.g., [010]. These values are based on

the relationship between a current value and a benchmark, for example, if a virtual

node is allocated between 37.5% and 50.0% of its total demand, then Rv
a = 011. The

complete set of these variables is shown in Table 4.1, which is valid for Rv
a, R

v
u and

Rz
u. Therefore, each term of the state vector has 9 bits e.g. (001, 100, 111), implying

that we have n = 29 = 512 possible states. In Fig. 4-6, we represent a substrate node

hosting several virtual nodes, and illustrate how each of the variables Rv
a, R

z
u and Rv

u

are determined for any given virtual node.

Actions: The output of each agent is a vector A indicating an action a ∈ A for

each of the virtual nodes/links mapped onto it. An agent can choose to increase or

decrease the resources (queue size or bandwidth) allocated to any virtual node or link

respectively. Specifically, as shown in Table 4.2, at any point each agent can choose

1 of the 9 possible actions, a ∈ A = (A0, A1, . . . , A8) each of which leads to a discrete

70 4.4. RL-based Dynamic Resource Allocation

Low Allocation,
High Utilisation

Average Allocation,
Average Utilisation

Action:𝑅𝑎𝑣 = 𝑅𝑎𝑣 + 0.125𝑇𝐷

Figure 4-7: Learning Model: Illustration of Agent Actions

change in resource allocation.1 In Fig. 4-7, we illustrate the effect of agent actions

by showing an initial state of a virtual resource with a low resource allocation and a

high level of utilisation, and the effect resulting from the agents’ decision to increase

the resource allocation by 12.5% of the total virtual resource demand, TD

States Model

The states model mimics the behaviour of the environment. When provided with a

given status of the substrate and virtual networks resource allocation and utilisation

levels i.e. the values Rv
a, R

v
u, and Rz

u, a states model returns a state s ∈ S. In the

same way, when provided with a given state sp =
(

Rv
ap
, Rv

up
, Rz

up

)

and an action ap,

the states model provides the next state sn =
(

Rv
an
, Rv

un
, Rz

un

)

. It is in general a

model of the substrate and virtual network resources and how the different possible

actions affect the allocation of substrate resources to virtual networks.

4.4.2 Reward Function

When an agent takes an action, the networks are monitored, recording the link delays,

packet drops and virtual and substrate network resource utilisation so as to determine

1In all cases, the percentage change is with respect to the total demand of the virtual node or
link.

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 71

a reward. Specifically, the reward resulting from a learning episode of any agent is a

vector R in which each term r(v) corresponds to the reward of an allocation to the

virtual resource2 v, and is dependent on the percentage resource allocation Rv
a, the

percentage resource utilisation R̂u i.e. R̂u = 1 − Rv
u, the link delay D̂ij in case of

la ∈ La and the the number of dropped packets P̂i in the case of na ∈ Na.

r(v) =

−100 if Rv
a ≤ 0.25

νR̂u −
(

κD̂ij + ηP̂i

)

otherwise

Where ν, κ and η are constants aimed at adjusting the influence of the variables R̂u,

D̂ij and P̂i to the overall reward. In this Chapter, the values ν = 100, κ = 1000

and η = 10 are used. These values have been determined through simulations, for

example, by noting that the values of P̂i are about 100 times more than those of

D̂ij (See Figs. 4-15 and 4-17). We therefore aim at scaling them to comparable

magnitudes so that they can have the same effect on r(v). D̂ij and P̂i are measures of

the performances of link agents and node agents respectively. Therefore, for na ∈ Na,

D̂ij = 0 while P̂i = 0 for la ∈ La. The objective of the reward function is to encourage

high virtual resource utilisation while punishing na ∈ Na for dropping packets and

la ∈ La for having a high delay. We also assign a punitive reward of −100 to resource

allocations below 25% to ensure that this is the minimum allocation to a virtual

resource and therefore avoid adverse effects to QoS in cases of fast changes from very

low to high VN loading.

4.4.3 Q-Learning

In this subsection, we propose a decentralised Q-learning based algorithm to itera-

tively approximate the state-action values, and then use these values to select actions

for the allocation of substrate resources to the virtual nodes and links. As shown in

algorithm 4 the learning algorithm is made up of three major steps; policy initiali-

sation, policy update and action selection. It is worth noting that this algorithm is

2We use the term virtual resource to mean either a virtual node queue or virtual link bandwidth.

72 4.4. RL-based Dynamic Resource Allocation

Algorithm 4 Agent Learning Algorithm
1: POLICY INITIALISATION:
2: for s ∈ S, a ∈ A do
3: Initialize the Q-table values Q(s, a)
4: end for
5: Determine current state sc
6: previous state, sp = sc, previous action, ap = A0, next state, sn.
7: repeat
8: Wait(Learning Interval)
9: POLICY UPDATE:
10: Read sp, ap, sn
11: Observe Virtual Network Performance and Determine reward for previous ac-

tion rp.
12: Update the Q-Table using the equation (4.1)
13: ACTION SELECTION:
14: Determine current state, sc.
15: Choose an action, ac ∈ A, for that state using a given action selection criterion

16: Take the action, ac and determine next state s.
17: Set sp = sc, ap = ac, sn = s
18: until Learning is stopped

slightly different from the “conventional” Q-learning algorithm [15] because instead

of getting a reward immediately, in our case the reward of a given learning episode

are used just before the following episode after a performance evaluation has been

made. We briefly describe each of these steps in the following paragraphs.

Policy Initialisation

Before learning can start, we need to initialise the learning policy. One possible

approach is to assign random or constant values to all states and actions. However,

since Q-learning requires all state-action pairs to be visited at least once so as to reach

optimality, using random or constant initial values may lead to a slow convergence

especially for a policy with many state-action values like we have in our approach.

The idea is to start with a Q-table with values that more easily represent the expected

actions of the agents. We therefore propose an initialisation approach, given by (4.3),

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 73

that improves the rate of convergence.

Q(s, a) =
a

Ψ
× (s− 255) (4.3)

Where Ψ is a constant aimed at scaling the Q(s, a) values to the required ranges. The

formula in equation (4.3) is based on observing that the free substrate and virtual

resources increase as we move from state (000, 000, 000) to (111, 111, 111). There-

fore, the rationale behind equation (4.3) is to generally bias the agents to increase

resource allocation to the virtual network whenever it finds itself in a state closer

to (000, 000, 000) and reduce the allocation while in states closer to (111, 111, 111).

To this end, we represent each of the states s ∈ S with integers [0, 511] and all the

actions a ∈ A with integers [0, 8]. We then divide the total state space into two;

such that while in states [0 − 255] the agents in general allocate more resources to

the virtual network and then allocate less while in the states [256− 512]. In Fig. 4-8,

we show the different possible combinations with their respective values. As shown

in the figure, for the same state (000, 000, 000), action A0 has a Q-value of 0 while

action A8 has −20.4. This initialization strategy has been proven useful as it will be

shown in Section 4.5.2.

Policy Update

The idea of learning is to gradually improve the policy until an optimal or near

optimal policy is reached. This is achieved by updating the policy table after every

learning episode. In our work, the policy table (see Fig. 4-5) is updated using the

Q-learning equation (4.1).

Action Selection

An agent can select one out of the 9 possible actions. Since the suitability of any of

the two action selection methods described in Section 4.2.3 depends on the nature of

the task, in this thesis, we evaluate both of them with respect to our specific learning

task, and their respective performances are discussed in Section 4.5.2.

74 4.4. RL-based Dynamic Resource Allocation

Q
-V

a
lu

e
s

Figure 4-8: Proposed Policy Initialisation Function

4.4.4 Time Complexity of the Proposed Learning Algorithm

We now formally analyse the time complexity of Algorithm 4. The initialisation step

in Line 2 requires initialisation of the learning policy and can be solved in O(|Ns−a−v|),

where Ns−a−v is the number of state-action-values (4608 in this proposal). Lines 5,

14 and 16 may each require iteration through all possible states in the worst case

and can therefore be solved in O(|S|). Finally, the ”for” loop in Line 15 runs in time

O(|A|). Therefore, each episode of the proposed algorithm can be solved in linear

time determined by the policy size.

4.4.5 Cooperation between Agents

Since a virtual link can be mapped to more than one substrate link, the agents

la ∈ La that support the given virtual link must cooperate to avoid conflicting resource

allocations. We accomplish this by allowing the agents to exchange messages. We

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 75

consider that each agent la ∈ La maintains a record of other agents l′a ∈ La with

which it is managing the resources of a given virtual link. This set of collaborating

agents changes dynamically for each agent as new virtual networks are embedded and

old ones leave. To ensure that the agents la ∈ La do not perform conflicting actions,

only one of them learns at any given time. This is achieved by starting the learning

processes of each agent at different times on their creation and thereafter performing

learning at regular intervals. After each learning episode, if an agent la ∈ La needs

to change an allocation, and the virtual link under consideration is mapped onto

more than one substrate link, a message is sent to all the other affected substrate

link agents l′a ∈ La with information about the proposed allocation. This allows for

a synchronised allocation of virtual link resources i.e. all agents controlling a given

virtual link take similar actions. This is reasonable since all agents belong to the

same organisation (the SN) and learn the same policy; as they cannot have conflicting

objectives. It would however be interesting to consider a more advanced cooperation

protocol that allows for possibilities of agents accepting or rejecting proposals of other

agents, which would be ideal in heterogeneous environments where the agents belong

to different organisations and hence have different objectives.

4.4.6 Scalabity of Proposed Learning Algorithm

It is worth noting that in general, a virtual link is mapped to 2−3 substrate links. This

means that at any point, a given agent only needs to send update messages to about

1−2 other agents3. We consider that this number of update messages is manageable,

and would not congest the network. In addition, since the communicating agents

represent substrate links that are part of a simple substrate paths, they should be

connected to each other, and hence the update messages are restricted to small regions

even for big network sizes.

3This is determined by observing VNE results from CPLEX using a one-shot mathematical
program to perform the embedding.

76 4.5. Performance Evaluation

VN 2VN 1

Virtual Network

Embedding (VNE)

Dynamic Resource

Allocation

User Traffic User Traffic

Virtual Network

Users

B

E

C

F G

AD

Y

X Z

Q

P

S

R

Substrate Network

1

2

Figure 4-9: Simulation Setup

4.5 Performance Evaluation

4.5.1 Simulation Setup

To evaluate the performance of the proposed approach, Fig. 4-9 shows the setup of

the simulation that was used. Specifically, we added a network virtualisation module

to NS3 [133]. Table 4.3 shows the NS3 parameters used in our simulations. The

setup is such that every time a virtual network request is accepted by the substrate

network, the virtual network topology is created in NS3, and a traffic application

starts transferring packets over the virtual network. The traffic used in this simulation

is based on real traffic traces from CAIDA anonymised Internet traces [134]. This

data set contains anonymised passive traffic traces from CAIDA’s equinix-chicago

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 77

Table 4.3: NS3 Parameters used in Simulation

Parameter Value

Queue Type Drop Tail

Queue drop Mode Bytes

Maximum Queue Size 6,553,500 Bytes

Maximum Packets Per VN 3500 Packets

Number of VNs 1024

Network Mask 255.255.224.0

IP Adress Range 10.0.0.0− 10.255.224.0

Network Protocol IPv4

Transport Protocol TCP

Packet MTU 1518 Bytes

Packet Error Rate 0.000001 per Byte

Error distribution Uniform (0, 1)

Port 8080

and equinix-sanjose monitors on high-speed Internet backbone links, and is mainly

used for research on the characteristics of Internet traffic, including flow volume and

duration [134]. The trace source was collected on 20th December 2012 and contains

over 3.5Million packets. We divide these packets amoung 1000 virtual networks, so

that each virtual network receives about 3500 packets. These traces are used to

obtain packet sizes and time between packet arrivals for each VN. As the source and

destination of the packets are anonymised, for each packet in a given VN, we generate

a source and destination IP address in NS-3 using a uniform distribution.

The substrate and virtual network topologies are generated using Brite [110] with

settings shown in Table 4.4. Simulations were run on an Ubuntu 12.04 LTS Virtual

Machine with 4.00GB RAM and 3.00GHz CPU specifications. Both substrate and

virtual networks were generated on a 250× 250 grid. The queue size and bandwidth

capacities of substrate nodes and links as well as the demands of virtual networks

78 4.5. Performance Evaluation

Table 4.4: Brite Network Topology Generation Parameters

Parameter Substrate Network Virtual Network

Name (Model) Router Waxman Router Waxman

Size of main plane (HS) 250 250

Size of inner plane (LS) 250 250

Node Placement Random Random

GrowthType Incremental Incremental

Neighbouring Nodes 3 2

alpha (Waxman Parameter) 0.15 0.15

beta (Waxman Parameter) 0.2 0.2

BWDist Uniform Uniform

Minimum BW (BWMin) 2× 106 bps 1× 106 bps

Maximum Dev. (BWMax) 8× 106 bps 1× 106 bps

are all uniformly distributed between values shown in Table 4.5. Link delays are as

determined by Brite. Each virtual node is allowed to be located within a uniformly

distributed distance 7.5 ≤ x ≤ 15 of its requested location, measured in grid units.

We assumed that virtual network requests arrive following a Poisson distribution with

an average rate of 1 per minute. The average service time of each virtual network is

60 minutes and is assumed to follow a negative exponential distribution.

4.5.2 Initial Evaluations

The initial evaluations are aimed at determining the appropriate action selection

method for our task, as well as the effectiveness of the proposed policy initialisation

scheme. Both of these evaluations are based on a comparison of agent actions with

optimal actions. We define an optimal action for an agent as that action that would

lead to a resource allocation equal to what the network is actually using. The devi-

ations in these evaluations are therefore with reference to actual resource usage in a

similar network that is not performing dynamic allocations.

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 79

0

0.2

0.4

0.6

0.8

1

50 300 550 800 1050

%
 o

f
O

p
ti

m
a

l
A

ct
io

n

Learning Episode
Thousands

∈ - Greedy Softmax

Figure 4-10: Performance Comparison of ǫ-greedy and Softmax

0

0.2

0.4

0.6

0.8

1

50 300 550 800 1050

%
 o

f
O

p
ti

m
a

l
V

a
lu

e

Learning Episode
Thousands

Random Policy

Initialised Policy

356,185 Episodes

Figure 4-11: Effect of biased policy initialisation

Fig. 4-10 compares the performance of the action selection methods ǫ-greedy and

softmax. It is evident that for this task, softmax performs better than ǫ-greedy. The

difference in performance can be attributed to the fact that for ǫ-greedy, when ran-

dom actions are chosen, the worst possible action is just as likely to be selected as the

second best, yet softmax favours actions with better values. This could also explain

why softmax actions appear to be relatively stable as compared to those by ǫ-greedy.

In Fig. 4-11, we show the effect of the proposed initialisation method (action selec-

tion based on softmax). We observe that an initialised policy requires about 350, 000

learning episodes less to converge than a random policy. This can be attributed to the

80 4.5. Performance Evaluation

Table 4.5: Simulated Substrate and Virtual Network Properties

Parameter Substrate Network Virtual Network

Minimum Number of Nodes 25 5

Maximum Number of Nodes 25 10

Minimum Node Queue Size (100× 1518) Bytes (10× 1518) Bytes

Maximum Node Queue Size (200× 1518) Bytes (20× 1518) Bytes

Minimum Link Bandwidth 2.0Mbps 1.0Mbps

Maximum Link Bandwidth 10.0Mbps 2.0Mbps

agents not having to explore all possible actions in all states as initialisation makes

some actions more valuable than others.

For these evaluations as well as those in the next subsection the reinforcement

learning parameters used are: learning rate, α = 0.8, discount factor, λ = 0.1 and

temperature, τ = 1. We remark that based on the results of the evaluations in this

subsection, the rest of the simulations in this Chapter are based on an initialised

policy and the action selection method is softmax.

4.5.3 Performance Metrics

We evaluate the performance of our proposal on two fronts; the quality of the em-

beddings, as well as the quality of service of the virtual networks. The idea is that

the opportunistic use of virtual network resources should not be at the expense of the

service quality expectations of the network users.

Embedding Quality

This is evaluated using the acceptance ratio and total instantaneous accepted virtual

networks. The acceptance ratio is a measure of the long term number of virtual

network requests that are accepted by the substrate network. The total instantaneous

accepted virtual networks is a measure of the embedding cost incurred by a given

substrate network, as a substrate network that incurs a lower embedding cost normally

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 81

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

Total Requests

Static Dynamic

Figure 4-12: VN Acceptance Ratio

0

10

20

30

40

50

0 200 400 600 800 1000

N
u

m
b

e
r

o
f

V
N

s

Total Requests

Static Dynamic

Figure 4-13: Number of Accepted Virtual Networks

has more extra resources at any point and hence is able to have many embedded

virtual networks at any point.

Quality of Service

We use the packet delay and drop ratio as indications of the quality of service. We

define the packet delay as the total time a packet takes to travel from its source to

its final destination. The drop ratio is defined as the ratio of the number of packets

dropped by the network to the total number of packets sent. As shown in Table 4.3,

we model the networks to drop packets due to both node buffer overflow as well as

82 4.5. Performance Evaluation

0

0.05

0.1

0.15

0.2

100 700 1300 1900

D
ro

p
 R

a
te

Total Number of Packets
Thousands

Static Dynamic

Figure 4-14: Node Packet Drop Ratio

0

10

20

30

40

50

100 700 1300 1900

N
u

m
b

e
r

o
f

D
ro

p
p

e
d

P
a

c
k

e
ts

Total Number of Packets
Thousands

Static Dynamic

Figure 4-15: Node Packet Drop Ratio Variation

packet errors. In addition, as it is more important in some applications, we define

the variations of these two parameters. The jitter (delay variation) is defined as the

difference between delays during different time periods, while the drop ratio variation

is defined as the variation between packet drops in different time periods. The time

interval to update the measurements corresponds to the transmission of 50 packets.

4.5.4 Discussion of Results

The simulation results are shown in Fig. 4-12 − 4-17. As can be seen from Fig. 4-12,

the dynamic approach performs better than the static one in terms of virtual network

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 83

0

0.5

1

1.5

2

0 200 400 600 800 1000

T
o

ta
l

P
a

c
k
e

t
D

e
la

y
 (

S
e

c
o

n
d

s
)

Learning Episode
Thousands

Static Dynamic

Figure 4-16: Link Packet Delay

0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000

D
e

la
y

 V
a

ri
a

ti
o

n

Learning Episode Thousands

Static Dynamic

Figure 4-17: Link Packet Delay Variation

acceptance ratio. This can be attributed to the fact that in the dynamic approach

the substrate network always has more available resources than in the static case, as

only the resources needed for actual transfer of packets is allocated and/or reserved

for virtual networks. This is further confirmed by Fig. 4-13 which shows that at any

given point a substrate network that dynamically manages its resources is able to

embed more VNs than a static one.

Fig. 4-14 shows that the packet drop ratio of the static approach is in general

constant (due to packet errors as well as buffer overflows) while that of the dynamic

approach is initially high, but gradually reduces. The poor performance of the dy-

84 4.6. Conclusion

namic approach at the start of the simulations can be attributed to the fact that at

the beginning of the simulation when the agents are still learning, the virtual node

queue sizes are allocated varying node buffers that lead to more packet drops. In fact,

this initial number of packet drops affects the rate at which the overall drop ratio

reduces towards the one for the static approach. This can be confirmed by observing

the actual periodic drops in packets as shown in Fig. 4-15 which show that the total

number of packets dropped by both approaches is comparable towards the end of the

simulation.

Similarly, Fig. 4-16 shows that the packets in the dynamic approach initially have

higher delays than those in the static approach. Once more, the reason for this is

the initial learning period of the agents. This is again confirmed by observing that

the delay variations in Fig. 4-17 easily converge to those of the static approach. It is

however worth noting that unlike the packet drop ratio (Fig. 4-14), the actual delay

(Fig. 4-16) of the dynamic approach finally converges to that of the static approach.

Again, this could confirm that the slow convergence of the drop ratio is due to the

initial packet drops, since initial packets delays would not affect the delays of other

packets, yet initial packet drops remain factors in the final drop ratio.

4.6 Conclusion

This Chapter has proposed a dynamic approach to the management of resources in

virtual networks, that opportunistically takes advantage of unused virtual network

resources by allocating them to other virtual networks that need them, while ensuring

that at any point, if needed, all virtual networks can have their originally assigned

resources.

We started by modelling the substrate network as a distributed set of autonomous

entities, in which each node and link was represented by an intelligent agent. These

agents were then tasked to dynamically allocate substrate network resources ensuring

that while virtual nodes and links do not keep idle resources, they always have enough

resources to minimise node packet drops as well as link delays. We also proposed a

Chapter 4. Reinforcement Learning-based Dynamic Resource Allocation 85

method of initialising the agent learning policy that biases the agents to making

certain decisions while at the beginning of the learning phase, and an agent action

coordination approach that ensures that link agents do not take conflicting actions.

We have been able to show, through simulation, that our proposal improves the

acceptance ratio of virtual networks by about 40% compared to a static resource

allocation scheme (which would directly translate into better revenue for the substrate

network providers), while ensuring that, after the agents have learnt an allocation

policy, the quality of service (measured in terms of node packet drop ratio and link

delays) to the virtual networks is not negatively affected. We have also been able to

enhance the convergence rate of the learning algorithm by about 60% through the

use a policy initialisation. Needless to mention, these results confirm hypothesises 3

and 4 as outlined in Section 1.2.

We are however mindful of the fact that it could require a much higher number

of learning episodes for the overall packet drop ratio in Fig. 4-14 to finally converge

to that of the static approach. This is because we used a learning policy with 4608

state-action values. With this high number of state-action values, the agents require

a lot of time to learn an optimal policy. Moreover, it could improve the accuracy

and precision of the agents’ actions even more if the state-action values (policy size)

were increased. It would therefore be better to use function approximation [135] or

a more compact parameterised function representation to model the agents’ policy

other than a look-up table. In the next Chapter, a neural network-based approach is

proposed to do away with the need for a look-up table based policy.

86 4.6. Conclusion

Chapter 5

Artificial Neural Network-based

Dynamic Resource Allocation

5.1 Introduction

The decentralised reinforcement learning-based dynamic resource allocation scheme

proposed in Chapter 4 uses a look-up table based policy. Since a look-up table

representation suffers from the curse of dimensionality [136], the state and action

spaces in Chapter 4 were discretised to limit the size, as well as the high memory

required for reading, writing, and storage of the learning policy. This however comes

at a cost of efficiency, as the learning algorithm is constrained in terms of perception

and action granularity.

In this Chapter, we improve the efficiency of the approach in Chapter 4 by propos-

ing an autonomous system based on artificial neural networks (ANN) [137] to achieve

a self-adaptive allocation of resources to virtual networks, without restricting the

input-output space dimensions. We start by representing each substrate node and

link as an ANN whose input is the network resource usage status and the output

an allocation action. We then use a reinforcement-like error function to evaluate the

desirability of ANN outputs, and hence perform online training of the ANN. The

use of neural a network has a great advantage over a lookup table in the context of

our problem in that it has the ability to generalise [138]. This means that the neu-

87

88 5.2. Artificial Neural Networks (ANN)

ral network would still provide us with an appropriate state-action value even when

presented with a previously un encountered virtual-substrate network resource state.

The rest of this Chapter is organised as follows: Section 5.2 gives a brief theoretical

background on artificial neural networks. The proposed approach is presented in

Section 5.3 and evaluated in Section 6.7. Finally, Section 6.8 concludes the Chapter.

5.2 Artificial Neural Networks (ANN)

ANNs are computational methodologies inspired by networks of biological neurons

to perform multifactorial analyses [16]. A major strength of neural networks is their

ability to handle high-dimensional input, as they do not suffer from the curse of

dimensionality [139]. Therefore, although their complexity can make them difficult

to harness, neural networks can be very efficient. In particular, they have excellent

generalisation capabilities, which can help to solve difficult reinforcement-learning

tasks, especially when the dimension of the state space is high [140].

5.2.1 Structure of a Neuron

Neural networks are made up of simple interconnected computing nodes known as

neurons ; which are connected by links. As shown in Fig. 5-1, a neuron operates as

nonlinear summing device. It receives one or more inputs, which are first multiplied

by weights1 along each link, and then summed to produce a weighted sum. The

weighted sum is then passed through an activation function (such as the logistic (or

sigmoid) function [137]), which determines the input-output behaviour of the neuron.

5.2.2 Neural Network Structure

In ANNs, neurons are arranged in layers, with each layer consisting of one or more

neurons. Fig. 5-2 shows the most commonly used structure of ANNs, which is

1The weights are a set of predefined numbers.

Chapter 5. Artificial Neural Network-based Dynamic Resource Allocation 89

1
x

2x

3x

4x

5x

Summation Sigmoid
1w

2w

3w

4w

5w

Neuron

𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥3𝑤3 + 𝑥4𝑤4 + 𝑥5𝑤5

Neuron

Inputs

Weights

Neuron

Outputs

Figure 5-1: Structure of a Neuron

made up of 3 layers; an input layer, a hidden layer and an output layer [141]. Each

layer consists of one or more neurons. While in general information can flow in

both directions (with feedback paths), what we consider in this Chapter are ANNs

where information flow is from input to output. These are called feed forward neural

networks. It is also important to note that the neurons in the input layer are passive

(they do not modify the data) as each of them receives a single value at its input,

and duplicates the value to its multiple outputs and sends it to all hidden nodes (in

case of fully connected networks [142]). On the other hand, the nodes of the hidden

and output layer are active since they actually modify the data at their inputs.

5.2.3 Learning in Neural Networks

Before neural networks can be used for any task, they should be trained. The learning

process of neural networks is represented in Fig. 5-3. Learning in ANNs consists of

determining the proper set of connection weights to estimate a given training set.

This requires that for every input, a desired/target output must be known so as

to determine the error. The expected output is compared with an actual output

to determine an error. It is this error that is used to adjust the weights along the

links of the neural network, with the objective of gradually minimising the error.

Training continues until a neural network produces outcome values that match the

90 5.2. Artificial Neural Networks (ANN)

Output

Input Layer
(Passive Nodes)

Hidden Layer
(Active Nodes)

Output Layer
(Active Nodes)

Input – Hidden
Layer Weights

Hidden – Output
Layer Weights

In
pu

ts

Figure 5-2: Example of a Neural Network

known outcome values within a specified accuracy level, or until it satisfies some

other stopping criteria. The most popular method for learning in ANNs is called

back-propagation (BP) [120].

5.2.4 Back-propagation (BP) Algorithm

Just like the algorithm’s name, in BP, after an output is obtained, an error signal is

determined, and “propagated backwards” from the output layer to the input layer.

This is achieved by calculating the gradient of the error of the network regarding the

network’s modifiable weights [143]. This gradient is almost always used in a simple

stochastic gradient descent algorithm to find weights that minimize the sum squared

error. Often the term ”back propagation” is used in a more general sense, to refer to

the entire procedure encompassing both the calculation of the gradient and its use in

stochastic gradient descent [144].

To illustrate the back propagation algorithm, Fig. 5-4 shows a block diagram with

Chapter 5. Artificial Neural Network-based Dynamic Resource Allocation 91

Desired
Output

Input Neural Network

+

-

Actual
Output

Error Signal for Training Neural Network

Figure 5-3: Neural Network Learning Model

the processes involved. The weights between the input layer (i) and the hidden layer

(j) are represented as wij while those between the hidden layer and the output layer

(k) are represented as wjk. Therefore, in BP, for every input, the output is determined

(feed forward step). Using the target output, an error is then determined. This error

is then propagated backwards (error back propagation), first adjusting the weights

between the output layer and hidden layer, wjk, and then those between the hidden

layer and the output layer, wij. In fact, for each set of weights, what the BP algorithm

determines is the required change in weights ∆w. This is determined using equation

(5.1)[145] for weights wkj as an example.

∆wkj = αδjyk (5.1)

where ∆wkj is the amount by which weight wkj should be changed so as to reduce the

error, 0 ≤ α ≤ 1 is referred to as learning rate, and it determines how fast learning

occurs. yk is the output of the node in layer k. δj represents the product of the

error with the derivative of the activation function [145]. Algorithm 5 shows the back

propagation procedure in full.

92 5.3. Proposed DRA Model

Input
Layer

Hidden
Layer

Output
Layer

Feed Forward

Error Back Propagation

i j k

𝑤𝑖𝑗 𝑤𝑗𝑘

Figure 5-4: Neural Network Back Propagation

5.3 Proposed DRA Model

The system model used for our proposal is shown in Fig. 5-5. As can be observed from

the figure, there are three main components: the multi-agent system representing the

substrate network, the ANN that represents the internal components of each agent,

and the evaluative feedback block that produces the error signal. In the following

subsections, each of these elements of the model is detailed.

5.3.1 Multi-Agent System

The multi-agent system consists of all the agents that represent the SN. Specifically,

each substrate node and link is represented by a node agent na ∈ Na and a link agent

la ∈ La, whereNa and La are the sets of node agents and link agents respectively. The

node agents manage node queue sizes while the link agents manage link bandwidths.

The agents dynamically adjust the resources allocated to virtual nodes and links,

ensuring that resources are not left under-utilised, and that enough resources are

available to meet VN requirements. As shown in Fig. 5-5, a given agent receives as

input the state, s of the substrate node it manages, and outputs an action, a.

Chapter 5. Artificial Neural Network-based Dynamic Resource Allocation 93

Algorithm 5 BackPropagation

1: Initialize network weights (often with small random values)
2: repeat
3: for Each training example do
4: Feed Forward: Determine actual output
5: Get desired output
6: Determine error (i.e error = desired - actual) at the output layer
7: Error back propagation: Compute ∆wjk for all weights from hidden layer to

output layer
8: Error back propagation: Compute ∆wij for all weights from input layer to

hidden layer
9: update network weights
10: end for
11: until The errors are acceptable

5.3.2 Artificial Neural Network

Our proposal uses a 3-layer ANN. An important design issue of any ANN is deter-

mining network topology, i.e. number of neurons in each of the network layers.

Input Layer

We model the state of any virtual resource (node queue size or link bandwidth)

v hosted on a substrate resource z, by a 3-tuple, s =
(

Rv
a, R

v
u, R

z
u

)

, where Rv
a is

the percentage of the virtual resource demand currently allocated to it, Rv
u is the

percentage of allocated resources currently unused, and Rz
u is the percentage of total

substrate resources currently unused. Therefore, the input layer consists of 3 neurons,

one for each of the variables Rv
a, R

v
u and Rz

u.

Output Layer

During each learning episode, an agent should perceive the state s and give an output.

This output, a, is a scalar that indicates which action should be taken to change

the resource allocation for the virtual resource v under consideration. The action

may be aimed at increasing (if it is positive) or reducing the resources allocated

to any virtual node or link respectively. Therefore, the output layer consists of 1

neuron, representing the action, a. To illustrate the effect of an action, if a given

94 5.3. Proposed DRA Model

 Substrate Network

Multi-Agent System

𝑅𝑎𝑣
𝑅𝑢𝑣
𝑅𝑢𝑧 ANN

Error

Function

Action, a

Evaluative

Feedback

Agent that

manages a

node

SN-VN State

(Crisp Inputs)

VN Resource

Allocation (Action)

Outpu

Input – Hidden

Layer Weights

Hidden – Output

Layer Weights

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Performance Evaluation

Error Signal

State, s

Node Queue Size

Figure 5-5: Artificial Neural Network-based Resource Allocation Model

virtual resource v has total allocated resources vr and the agent action is a (where

−1 ≤ a ≤ +1), then the resulting resource allocation is: vr = vr + a× vt, where vt is

the total initial demand of the virtual resource (as specified in the VN request before

the VNE). It is worth mentioning that the agent only takes a given action if it does

not violate resource allocation requirements, for example, at any point, vr ≥ 0 and

vr ≤ vt.

Hidden Layer

The optimal number of neurons in a hidden layer of any ANN is problem specific, and

is still an open research question [137]. In this Chapter, we determine this number by

Chapter 5. Artificial Neural Network-based Dynamic Resource Allocation 95

0.04

0.06

0.08

0.1

0 2 4 6 8 10 12 14 16

R
o

o
m

 M
e

a
n

 S
q

u
a

r
e

 E
r
r
o

r

Number of Neurons in Hidden Layer

Optimal Number of Hidden

Layer Neurons

Figure 5-6: Variation of RMSE with Number of Neurons in Hidden Layer

experimentation. We perform a search from number of hidden layer neurons, NHL = 1

to 15.

In order to achieve this, we need a test dataset. The dataset used for this purpose

was saved from the q-table of a RL approach proposed in [146]. This q-table was a

result of a learning system for a similar DRA task and it gives the state-action-values

for the learning task. This dataset contains 512 entries, each showing the best action

value in each of the possible 512 states.

With the above training set, a 10−fold cross-validation was performed in Weka 3.6

[147], using the default parameters (learning rate, validation threshold, momentum,

etc.) for the multilayer perceptron in Weka. Fig. 5-6 shows the average root mean

square error (RMSE) values for 20 experiments. From the figure, the optimal number

of neurons for the hidden layer is 4. The reason for choosing to use 4 neurons is not

only to allow for a low RMSE, but also to avoid a possibility of over-fitting which could

be caused by a network with too many neurons. This experimentation also provides

initial weights that are used to initialise the neural network, and hence avoid the slow

learning characteristics (and hence slow convergence) of BP.

96 5.3. Proposed DRA Model

ANN Learning

Since for the network virtualisation problem under consideration it is not possible to

have a target output for each input, the training of the ANN is achieved by determin-

ing the error using a reinforcement learning-like approach. Therefore, our approach

combines both ANNs and RL. One of the most remarkable achievements in the com-

bination of ANNs and RL in machine learning research was its implementation as

a backgammon player [148]. In addition, other combinations of ANNs and RL have

been applied to many problems such as [149, 150, 140]. In these proposals, ANNs are

used as function approximators for the RL policy. The proposal in this thesis differs

from these works on two fronts: (1) we use RL to train the ANN rather than using

ANNs to approximate the RL policy. This, remarkably, allows us the possibility to

do away with the need for training examples and/or target outputs usually needed

for learning in neural networks2, and (2) we apply the combination ANN and RL to

a network virtualisation environment.

5.3.3 Evaluative Feedback

After each learning episode, the affected substrate and virtual nodes/links are mon-

itored, taking note of average utilisation of substrate resources, the delay on virtual

links and packets dropped by virtual nodes due to buffer overflows. These values are

fed back to the agent in form of a performance evaluation, used by the error function

to produce an error signal, which is used by the BP algorithm to adjust the weights

of the ANN, and hence improve future actions.

Error Function

The error e(v), is an indication of the deviation of the agent’s actual , from a target

action. The objective of the error function is to encourage high virtual resource

2While we still use some training examples in our proposal (see Section 5.3.2), it is only aimed
at guiding in the ANN structure design as well as ensuring a faster convergence of the algorithm
(through problem specific weight initialisation) rather than as a requirement as would have been in
a typical ANN learning scenario.

Chapter 5. Artificial Neural Network-based Dynamic Resource Allocation 97

utilisation while punishing na ∈ Na for dropping packets and la ∈ La for having high

delays. Good actions by an agent are characterised by an e(v) equal or close to 0,

while any deviations indicate undesirable actions. Therefore, the value of e(v) gives

the degree of desirability or undesirability the agent’s action, and is dependent on

resources allocated to the virtual resources, unutilised resources, link delay in case of

la ∈ La and the number of dropped packets in the case of na ∈ Na. The proposed

error function is shown in (6.9).

e(v) =

(

Rv
u + αPv

)

∀na ∈ Na

(

Rv
u + βDv

)

∀la ∈ La

(5.2a)

(5.2b)

where α and β are constants aimed at ensuring that the magnitudes of the two terms

in each of (5.2a) and (5.2b) are comparable. The values α = 0.05 and β = 40 used

in this Chapter, were determined by simulations. For example, looking at Fig. 5-9

shows that the maximum value of Pv is about 20. Therefore, to make these values

comparable to 0 ≤ Rv
u ≤ 1, we divide each value by 20 (multiply it by α = 0.05). Pv is

the number of packets dropped by node na ∈ Na from the time the allocation action

was taken, and Dv is the extra delay encountered by a packet using la ∈ La. The extra

delay is calculated as the difference between actual delay and the theoretical delay.

We define theoretical delay as the delay the virtual link would have if it was allocated

100% of its bandwidth demand3. The actual delay is determined as the difference

between when a packet is received at one end of the link, to when it is delivered to

the other end. Once the error is determined, the ANN weights are adjusted using BP.

3The simulations in this Chapter determine this value from a parallel simulation using a virtual
network with 100% resource allocation.

98 5.4. Performance Evaluation

Table 5.1: SN and VN Properties

Parameter Substrate Network Virtual Network

Minimum Number of Nodes 25 5

Maximum Number of Nodes 35 15

Minimum Node Queue Size (100× 1518) Bytes (10× 1518) Bytes

Maximum Node Queue Size (200× 1518) Bytes (20× 1518) Bytes

Minimum Link Bandwidth 2.0Mbps 1.0Mbps

Maximum Link Bandwidth 10.0Mbps 2.0Mbps

5.4 Performance Evaluation

5.4.1 Simulation Environment

To evaluate our proposal, a simulation scenario similar to Fig. 4-9 was setup. SN

and VN topologies were generated using Brite [110] with settings shown in Table 4.4.

Thereafter, VN requests arrive, one at a time to the SN. Whenever a VN request

is accepted by the SN, the VN topology is created in NS3 [133] using the network

virtualisation module and real traffic traces explained in Section 4.5. Simulations

were run on an Ubuntu 12.04 LTS Virtual Machine with 4.00GB RAM and 3.00GHz

CPU specifications.

5.4.2 Simulation Parameters

Both substrate and virtual networks were generated on a 250 × 250 grid. The queue

size and bandwidth capacities of substrate nodes and links as well as the demands

of virtual networks are all uniformly distributed between minimum and maximum

values shown in Table 5.1. Link delays are as determined by Brite. Each virtual

node is allowed to be located within a uniformly distributed distance 7.5 ≤ x ≤ 15 of

its requested location, measured in grid units. We assumed that VN requests arrive

following a Poisson distribution with an average rate of 1 per minute. The average

service time of each VN is 60 minutes and is assumed to follow a negative exponential

Chapter 5. Artificial Neural Network-based Dynamic Resource Allocation 99

Table 5.2: Compared Algorithms

Code Resource Allocation Approach

D-ANN Dynamic, based on Artificial Neural Networks [Our Contribution]

D-RL Dynamic, based on Reinforcement Learning[146]

S-CNMMCF Static, Coordinated Node Mapping and MCF for link mapping[8]

S-OS Static, link based optimal one shot Virtual Network Embedding[146]

distribution. The ANN algorithm runs every minute4.

5.4.3 Compared Algorithms

We compare the performance of our proposal with 3 representative state-of-art solu-

tions. The first is a DRA approach that uses RL [146] (as proposed in Chapter 4); the

second performs a coordinated node and link mapping [8]; and the third is also a static

baseline formulation that performs a one shot mapping, and also used in performance

evaluations in [146]. The solution in [8] was adapted to fit into our formulation of

the problem. In particular, for [8] the link delay requirements were neglected at the

embedding stage, and for this reason, it is not used in QoS evaluations. In addition,

our consideration in these simulations is for unsplittable flows. We identify and name

the compared approaches in table 6.4. The mathematical programs in all proposals

are solved using CPLEX 12.5 [111].

5.4.4 Performance Metrics

Embedding Quality

We define embedding quality as a measure of how efficiently the algorithm uses the

SN resources for accepting VN requests. This is evaluated using the acceptance ratio

and the average level of utilisation of SN resources. The acceptance ratio is a measure

4It is worth remarking that while this thesis has not studied the effect of the frequency of running
the algorithm, we expect that a lower running frequency would make the dynamic allocation become
comparable to the static one, while a higher frequency might negatively impact system stability.

100 5.4. Performance Evaluation

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

A
cc

e
p

ta
n

ce
 R

a
ti

o

Total Requests

S-OS D-ANN

D-RL S-CNMMCF

Figure 5-7: Acceptance Ratio

of the long term number of VN requests that are accepted by the substrate network.

The average level of utilisation of substrate resources is a measure of how efficiently

the SN resources are used.

Quality of Service

We use both packet drop a well as delay variation as indications of the quality of

service. As shown in Table 4.3, we model the networks to drop packets due to both

node buffer overflow as well as packet errors. We determine the packet delay variation

as the difference in delays encountered by packets transmitted over the network over

two successive time intervals, while packet drop is the number of packets dropped by

a given VN during a given time interval. For these evaluations, the time interval used

to update these measurements corresponds to the transmission of every 100 packets.

5.4.5 Discussion of Results

The simulation results are shown in Figs. 5-7 − 5-10. As can be seen from Fig.

5-7, while both dynamic approaches perform better than the static ones in terms of

VN acceptance ratio, the ANN approach outperforms all three. The reason for the

dynamic approaches performing better than the static ones is that in former cases, the

Chapter 5. Artificial Neural Network-based Dynamic Resource Allocation 101

0

0.2

0.4

0.6

0.8

1

100 400 700 1000

R
e

so
u

rc
e

 U
ti

li
sa

ti
o

n

Total Requests

S-OS S-CNMMCF

D-ANN D-RL

Figure 5-8: Resource Utilisation

0

5

10

15

20

0 500 1000 1500 2000

P
a

ck
e

t
D

ro
p

 (
p

a
ck

e
ts

)

Total Number of Packets Thousands

S-OS D-ANN D-RL

Figure 5-9: Packet Drop Ratio

substrate network always has more available resources than in the later case, which is

a direct result of allocating and reserving only the required resources for the virtual

networks. The fact that ANN outperforms the RL approach can be attributed to the

fact that the ANN approach models the states and actions with better granularity

i.e. without restricting the states and actions to few discrete levels. We also note

that S-OS has a better acceptance ratio than S-CNMMCF. This is due to the fact

that since S-CNMMCF performs node and link mapping in two separate steps, link

mappings could fail due to locations of already mapped nodes.

Fig. 5-8 shows the average utilisation of SN resources. It can be observed that

102 5.4. Performance Evaluation

0.005

0.010

0.015

0.020

0.025

0 200 400 600 800 1000

P
a

ck
e

t
D

e
la

y
 V

a
ri

at
io

n
 (

s)

Learning Episode Thousands

S-OS D-RL D-ANN

Figure 5-10: Delay Variation

except for S-CNMMCF, the other three approaches on average use the same amount of

SN resources. The fact that S-CNMMCF has a lower resource utilisation is expected

as a result of having slightly more resource requests rejected either due to a node

mapping that makes link mapping impossible, or for previous link mappings using

more resources. The fact that S-OS, D-RL and D-ANN all have on average the

same resource utilisation profile is mainly due to all of them having the same initial

mapping algorithm (which is S-OS). It can however be noted that while S-OS, D-RL

and D-ANN all have similar resource utilisation levels, D-ANN uses these resources

to achieve a higher acceptance of VNs, which further confirms the extra resource

allocation efficiency of the ANN approach.

Fig. 5-9 shows that S-OS has an almost constant packet drop ratio variation while

that for D-RL and D-ANN is initially high, but gradually converges to that of S-OS.

At the beginning of the learning processes, the dynamic approaches vary the queue

sizes quite considerably leading to more packet drops. The fact that D-ANN has a

lower packet drop ratio than D-RL over the learning period can be explained since

D-ANN has better granularity in perceiving the state of resources and allocation. We

also note that the initial drop ratio of D-ANN is lower than that of D-RL which can

be attributed to the weight initialisation obtained from Weka (See Section 5.3.2).

Finally, Fig. 5-10 shows that packet delay variations for the two dynamic ap-

Chapter 5. Artificial Neural Network-based Dynamic Resource Allocation 103

proaches is initially higher but reduces over the learning period. Once more, these

differences are attributed to the initial learning period, and the difference between

D-RL and D-ANN is due to better options in perception and action for D-ANN, as

well as the weight initialisation in D-ANN.

5.5 Conclusion

This Chapter has proposed an improved distributed and dynamic approach for al-

location of resources in virtual networks, that opportunistically takes advantage of

unused virtual network resources by allocating them to other virtual networks that

need them, while ensuring that at any point, if needed, all virtual networks can have

their originally assigned resources.

The substrate network was represented by a set of distributed 3-layer artificial

neural networks, which were required to dynamically perceive continuous substrate

and virtual network resource allocation and utilisation statuses, and perform continu-

ous actions to adjust the resources allocated to virtual nodes and links. An evaluative

feedback mechanism was proposed to train the neural networks to limit amount of idle

resources in virtual networks, while being aware of their QoS requirements. We also

performed experimentation in Weka, using the policy table of Chapter 4 to determine

the optimal number of neurons in the hidden layer.

Through simulation, we have been able to show that our proposal improves the ac-

ceptance ratio of virtual networks by about 10% compared to a reinforcement learning

based solution, and about 50% over a static resource allocation approach. We have

also confirmed that this performance improvement can be achieved without incurring

a penalty on the quality of service requirements of the virtual networks, especially

after the neural networks have learned their weights. In addition, initial weight ini-

tialisation proposed in this Chapter improves the speed of convergence5 by about 50%

compared to the reinforcement learning approach.

5Measured from the rate at which the packet drops and delay in the dynamic approach converge
to that of the static approach.

104 5.5. Conclusion

However, while the neural network system proposed in this Chapter improves

performance, there are still more possibilities for improvement. In particular, in this

Chapter, the neural network only learns the link weights, always maintaining the same

network structure. It is also worth noting that a neural network approach requires

specific modelling at the beginning, for example, to determine the number of neurons

in the hidden layer, for which there is no defined way of optimisation of the network

structure. The next Chapter builds on the advantages of the proposal in this Chapter,

by adding a fuzzy system that allows a purely dynamic network structure.

Chapter 6

Neuro Fuzzy System-based

Dynamic Resource Allocation

6.1 Introduction

In Chapter 5, a dynamic resource allocation system based on neural networks was

proposed. However, while neural networks are important for their learning and gen-

eralisation capabilities, they do not have a clearly defined way on how the number

of layers as well as the number of neurons in its layers are determined. In addition,

due to the difficulties in modelling and interpreting a neural network structure, it is

difficult to have a dynamically changing neural network structure, which would be

important especially given the dynamic nature of resources in network virtualisation

environments.

This Chapter extends the previous one by proposing an adaptive, hybrid neuro-

fuzzy system (NFS)[17] which learns by use of a reinforcement learning-like reward to

achieve dynamic resource allocation in virtualised networks. The NFS is composed

of a set of rules that define the objectives of the system. Thereafter, the system does

not only dynamically adjust the network weights (fuzzy weights), but also adjusts the

network structure by adding or removing links (in form of rules).

We represent the substrate network by multiple neuro-fuzzy agents, each of which

is tasked to dynamically adapt its knowledge base so as to efficiently utilise the

105

106 6.2. Fuzzy Systems (FS)

resources of the substrate network. To this end, we start by creating an initial knowl-

edge base for each agent using supervised learning. This is achieved by defining the

maximum possible rule base, biasing it by use of expert knowledge, and then pruning

it using examples from a training data set. We then use an unsupervised, RL-based

evaluative feedback mechanism to continuously improve the knowledge base by en-

suring that the agents learn from their actions. In addition, the agents cooperate so

as to prevent conflicting actions and do share their knowledge so as to enhance their

respective performances, and ensure faster convergence to optimal actions.

The rest of the Chapter is organised as follows: Sections 6.2 and 6.2.1 briefly

introduce fuzzy systems and neuro-fuzzy systems respectively, while the proposed

NFS is described in Section 6.3. The proposed evaluative feedback and rule base

initialisation approaches are presented in Sections 6.4 and 6.5 respectively, while we

define an agent cooperation scheme in Section 6.6. The evaluation of performance is

given in Section 6.7, and the Chapter is concluded in Section 6.8.

6.2 Fuzzy Systems (FS)

FSs are rule-based expert systems, which use fuzzy rules and fuzzy inference [151].

As shown in Fig. 6-1, fuzzy systems are usually made up of three functional blocks:

fuzzification, knowledge base and inference, and defuzzification. At the fuzzification

step, the values of numerical inputs are compared with membership functions (MFs)

so as to determine their degree of membership in the respective fuzzy sets1. The

knowledge base and inference block contains the fuzzy rules (rule base), a database of

fuzzy sets (represented by membership functions) used to represent the fuzzy rules,

and a decision making unit which performs inference on the fuzzy rules. A fuzzy rule

represents knowledge and skills, and is of the form:

IF < Antecedent > THEN < Consequent > (6.1)

1While we have done our best to make this thesis self-contained, a reader who is not familiar
with such terms as fuzzy variable, fuzzy set, fuzzy logic, fuzzy rule, t-norm, t-conorm, membership
functions is referred to [151] for an introduction.

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 107

Database (Membership Functions)

Fuzzification DefuzzificationInference

Rule Base

Knowledge Base & Inference

Figure 6-1: Functional components of a Fuzzy System

An example of an antecedent could be altitude is high while that of a consequent could

be temperature is low. In this case, altitude and temperature are fuzzy variables, while

high and low are fuzzy sets and are usually represented by membership functions

such as triangular, trapezoidal or monotonic. Membership functions therefore give a

mapping of the fuzzy sets to real numbers R → [0, 1]. An example of a fuzzy rule Ri

in the form of (6.1) is shown in (6.2).

IF x1 is µ
1

i AND ... AND xm is µ
m
i THEN a is λi (6.2)

where x1, ..., xm ∈ R are input variables and µm
i ∈ R→ [0, 1] are their possible fuzzy sets,

while a ∈ R is an output variable and λi ∈ R → [0, 1] are its possible fuzzy sets. In

general, it is usually required to evaluate the antecedent of each rule and thereafter

to combine more than one rule to obtain a final result. This is known as inference.

Inference takes two steps: evaluating the antecedent of each rule (the set of ANDs) so

as to determine its consequent, and a way of aggregating the consequents of different

rules to form a final result. The AND in the antecedents of each rule is usually

108 6.2. Fuzzy Systems (FS)

evaluated by a t − norm, usually the minimum operation [17]. Then, the different

rules are combined using the maximum operation. Therefore, the complete inference

process involves the max−min operation shown in (6.3), and leads to an output fuzzy

set λ(a).

λ(a) = max
Ri

(

min
(

µ1
i (x1), ..., µ

m
i (xm), λi(a)

)

)

(6.3)

Finally, in the deffuzification function, the fuzzy set λ(a) resulting from the inference

of rules is transformed back into a crisp value. In general, there are many methods

for performing deffuzification. Most fuzzy systems use the centre of gravity method

for this purpose [151].

6.2.1 Neuro-Fuzzy System (NFS)

Since fuzzy systems are created from explicit knowledge in form of rules and mem-

bership functions (MFs), applying them in dynamic systems requires a way of auto-

matically tuning these parameters (rules and MFs), or even changing the structure

of the system. One of the most popular ways of dynamically tuning these parame-

ters and/or adapting the structure of fuzzy systems is by use of neural networks. A

combination of neural networks and fuzzy systems leads to NFSs.

The key advantage of neuro-fuzzy approach over traditional ones (i.e individual

neural or fuzzy approaches) lies in the fact that the former does not require a mathe-

matical description of the system while modeling [152]. Moreover, in contrast to pure

neural or fuzzy methods, the neural fuzzy method possesses both of their advantages;

it brings the low-level learning and computational power of neural networks into

fuzzy systems and provides the high-level human-like thinking and reasoning of fuzzy

systems into neural networks [153, 154, 155]. Therefore, neural networks and fuzzy

systems can be combined to benefit from both their advantages while solving their

individual weaknesses. In particular, neural networks introduce its computational

characteristics of learning in the fuzzy systems and receive from them the interpre-

tation and clarity of systems representation. Thus, the disadvantages of the fuzzy

systems are compensated by the capacities of the neural networks. These techniques

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 109

PE: Performance Evaluation

Bandwidth

𝑅𝑎𝑣 𝑅𝑢𝑣 𝑅𝑢𝑧
Fuzzifier

State, sAction, a

Learning Neuro-Fuzzy System

PE

Node Agent Link Agent

Rule Base Database

Inference
RDI

M

EF ACReward Function ARW

Learning

EF: Evaluative Feedback, AC: Agent Cooperation, ARW: Adaptive Rule Weighting

FS+MF

MD

Learning Result

FS: Fuzzy Set, MF: Membership Function, MD: Membership Degree, M: See Section 6.3.2

Substrate Link

Agent that
manages the link

B

E

C

F G

AD

Defuzzifier

Figure 6-2: Learning Neuro-Fuzzy System VN Resource Allocation Model

are complementary, which justifies its use together [156].

A NFS can be viewed as a special 3-layer feedforward neural network in which

the neurons use t-norms and t-conorms instead of the usual neural network activa-

tion functions [17]. The first layer represents the input variables, the hidden layer

represents the fuzzy rules and the third layer represents output variables. The fuzzy

sets are encoded as (fuzzy) connection weights. The knowledge and hence accuracy

of the network is determined by its structure (the different connections), as well as

the fuzzy weights on these connections. We model the interactions between the dif-

ferent components of the designed NFS, as well as with the multi-agent system for

the application to dynamic virtual network resource management in 6.3.

110 6.3. Proposed NFS-based DRA Model

6.3 Proposed NFS-based DRA Model

As mentioned in Section 5.2, VNE approaches allocate resources to each virtual node

and link as specified in VN requests. In static allocation schemes, the amount of

allocated resources is kept fixed irrespective of actual utilisation, which leads to in-

efficient utilisation of substrate network resources [146]. Our approach dynamically

adjusts the resources allocated to each virtual node and link using a neuro-fuzzy sys-

tem. The overall system model used for this purpose is shown in Fig. 6-2. As can

be observed from the model, we highlight the multi-agent system representing the

substrate network and the learning neuro-fuzzy system that represents the internal

components of each agent. We further split the learning neuro-fuzzy system into four

functional modules: fuzzifier, RDI (rule base, database, inference), defuzzifier, and

learning (EF, AC, ARW). In the following subsections, each of these elements of the

model and their respective interactions is detailed.

6.3.1 Multi-agent Environment

The multi-agent environment2 consists of all the agents that represent the substrate

network. Specifically, each substrate node and link is represented by a node agent

na ∈ Na and a link agent la ∈ La, where Na and La are the sets of node agents and link

agents respectively. The node agents manage node queue sizes while the link agents

manage link bandwidths. The agents dynamically adjust the resources allocated to

virtual nodes and links, ensuring that resources are not left under-utilised, and that

enough resources are available to serve user requests. As shown in Fig. 6-2, a given

link agent receives as input the state of the substrate link it manages.

The state of any resource is a vector S with each term s ∈ S representing the state

of one of the virtual links/nodes mapped onto it. More specifically, this state, for any

given virtual resource v hosted on a substrate resource z, is represented by a 3-tuple,

s =
(

Rv
a, R

v
u, R

z
u

)

, where Rv
a is the percentage of the virtual resource demand currently

2The multi-agent environment, the modelling of the states and actions in this subsection are all
similar to the ones in Chapters 4 and 5. We re-state them here only for completeness.

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 111

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0𝑅𝑎𝑣 = 0.75

𝑦 = 0.17

𝑦 = 0.83

𝑅𝑢𝑧 = 0.38 𝑅𝑢𝑣 = 0.28

𝑦 = 0.73

𝑦 = 0.07

𝑦 = 0.40

Figure 6-3: Monotonic MFs for input (state) fuzzy sets

allocated to it, Rv
u is the percentage of allocated resources currently unused, and Rz

u is

the percentage of total substrate resources currently unused. While in a given state, s,

the agent gives as output, an action. The action of each agent is a vector A, where each

term a ∈ A indicates which action should be taken to change the resources for each

of the virtual node/link mapped onto it. The action may be aimed at increasing or

reducing the resources (queue size or bandwidth) allocated to any virtual node or link

respectively. Each element in A corresponds to a unique element in S. Based on how

well a given action drives the objectives of the system, the agent gets a performance

evaluation (PE), which is used to learn so as to improve future actions. We consider

that each na ∈ Na has information about the substrate node resource availability as

well as the resource allocation and utilisation of all virtual nodes mapped onto the

substrate node. In the same way, we expect that each la ∈ La has information about

substrate link bandwidth as well as the allocation and utilisation of these resources

by all virtual links mapped to it.

112 6.3. Proposed NFS-based DRA Model

0.0

0.2

0.4

0.6

0.8

1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

Figure 6-4: Monotonic MFs for output (action) fuzzy sets

6.3.2 Learning Neuro-Fuzzy System (NFS)

Database

The database is a definition of the fuzzy sets (FS) and the membership functions

(MF) that represent them, and is used in the creation of fuzzy rules. We have defined

six fuzzy sets into which the input variables can fall. These are: very low (VL), low

(L), lower medium (LM), higher medium (HM), high (H) and very high (VH). These

fuzzy sets are represented by the monotonic membership functions in Fig. 6-3. Each

membership function y = µ(x) in Fig. 6-3 is characterised by two parameters p and

q such that µ(p) = 0 and µ(q) = 1 as defined in equation (6.4). The MFs are used to

determine a value or degree of membership, which quantifies the grade of membership

of a given variable to the fuzzy sets.

y = µ(x) =

p− x

p− q
if
(

(p ≤ q) ∧ (x ∈ [p, q])
)

p− x

p− q
if
(

(p > q) ∧ (x ∈ [q, p])
)

0 otherwise

(6.4a)

(6.4b)

(6.4c)

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 113

In the same way, we have defined eight fuzzy sets for the output variable. These

are: negative large (NL), negative medium (NM), negative small (NS), negative zero

(NZ), positive zero (PZ), positive small (PS), positive medium (PM) and positive

large (PL). These fuzzy sets are represented by the monotonic membership functions

in Fig. 6-4, and have similar definitions as in (6.4).

Rule Base

The rule base consists of the rules that are used by the agents to take actions while

in given states. These rules are based on the input and output fuzzy sets defined in

Figs. 6-3 and 6-4. As an example, (6.5) presents four possible rules that could be

formulated for the system under consideration.

R1 : if Rv
a is VH and Rv

u is L and Rz
u is LM then O is PZ

(6.5a)

R2 : if Rv
a is L and Rv

u is H and Rz
u is HM then O is NZ

(6.5b)

R3 : if Rv
a is H and Rv

u is L and Rz
u is L then O is PS

(6.5c)

R4 : if Rv
u is VL then O is PS

(6.5d)

In words, rule (6.5a) states that: if the resource allocation to the virtual node/link v

is very high AND a low percentage of these resources are unused AND the substrate

node/link z onto which it is embedded has a low−medium percentage of free resources,

then the action should be to increase the amount of resources allocated to v by an

amount determined by positive zero. In general, each agent will have more than one

rule at any given time. Therefore, since we have 3 input variables each with 6 possible

fuzzy sets and 1 output variable with 8 possible fuzzy sets, the maximum number of

rules we can have in the system is 6× 6× 6× 8 = 1728. Initialising a system with this

number of rules would take a long time before the NFS has reduced the rules to the

114 6.3. Proposed NFS-based DRA Model

necessary ones3. In this thesis, we propose supervised learning-based rule initialisation

scheme that is aimed at enhancing the learning speed of the agents. This scheme is

presented in Section 6.5.

Fuzzifier

Given a state s represented by the real-valued variables Rv
a, Rv

u and Rz
u, a fuzzifier

determines the set of rules R′ ⊆ R that are satisfied (fired), where R is the rule

base. Then, for each satisfied rule, fuzzification involves determining the membership

degree (MD) of each input variable in the respective fuzzy set. This is the result of

the function µ(x) for a particular input variable, rule and membership function, and

is is calculated using equations (6.4). To illustrate this, consider that rule (6.5a) has

been satisfied by a given input state. Then, the fuzzifier would have to determine

the membership degrees µVH
5a (Rv

a), µ
L
5a(R

v
u) and µLM

5a (Rz
u) to which the inputs Rv

a, R
v
u and

Rz
u belong to the fuzzy sets VH, L and LM respectively. As can be noted from Fig.

6-3, a given input variable can belong to one or more MFs. For example, the variable

Rv
a = 0.75 belongs to both H and VH with membership degrees y = µH

i (0.75) = 0.83

and y = µVH
i (0.75) = 0.17 respectively. In a similar way, given values of Rv

u = 0.28 and

Rz
u = 0.38, their degrees of membership to the respective fuzzy sets can be determined

as shown in Fig. 6-3.

Inference

The inference block receives, for each rule Ri ∈ R′, a membership degree y
Rv

a

i , yR
v
u

i and

y
Rz

u

i for each of the variables Rv
a, Rv

u and Rz
u respectively. Ideally, standard inference

would involve a max − min operation on these membership degrees [151]. However,

due to the nature of the deffuzification function used in this Chapter (see 6.3.2),

inference only involves the min operation. This operation results into the minimum

membership degree ymin = min
(

y
Rv

a

i , y
Rv

u

i , y
Rz

u

i

)

for each rule. Then, the inverse λ−1(ymin)

3We refer to rules as being necessary if they are often required by an agent, and their actions
usually lead the agent to efficient resource allocations.

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 115

of each ymin is determined from (6.6).

x = λ−1(y) = p− y(p− q) (6.6)

(6.6) is similar to (6.4), re-arranged to make x the subject. A matrix M is then created

with the each row containing the value ymin in the first column and λ−1(ymin) in the

second column. Therefore, the matrix M has as many rows as the number of fired

rules. It is this matrix that is used at the deffuzification step.

Defuzzifier

The output of the inference block is a matrix M of membership degrees and their

respective inverse values. The role of the defuzzifier is to convert this matrix into an

output action a for the agent. In this thesis, we adopt a non-standard defuzzification

approach proposed in [157], in which the crisp output a is given by (6.7).

a =

n
∑

i=1

(

mi1 ×mi2

)

n
∑

i=1

mi1

(6.7)

where n = |R′| is the number of fired rules, and mi1 and mi2 are the elements in the

first and second columns respectively of the ith row of M . The rationale behind (6.7)

is to determine a weighted average of the potentially applicable actions by their cor-

responding membership values. It is worth noting that this simplified deffuzification

process is a direct result of the monotonic membership functions used to define the

output fuzzy sets. These membership functions make it unnecessary to make any

translations of the inverse µymin
of each rule as these values are already crisp [157].

The use of monotonic membership functions for the input fuzzy sets is for simplicity.

Example: Fuzzification, Inference, Deffuzification To illustrate the processes

described above with regard to the VN resource allocation problem, we revisit the

four rules defined in (6.5). Consider that the state of a given substrate resource z

and a virtual resource v is such that Rv
a = 0.75, Rv

u = 0.28 and Rz
u = 0.38 as shown in

116 6.3. Proposed NFS-based DRA Model

Table 6.1: Running Example - Fuzzification

Input Variable Fuzzy Sets Satisfied Rules Membership Degrees

Rv
a = 0.75 VH, H R1, R3, R4 µV H

1
(0.75) = 0.17, µH

3
(0.75) = 0.83

Rv
u = 0.28 VL, L R1, R3, R4 µL

1
(0.28) = 0.73, µL

3
(0.28) = 0.73, µV L

4
(0.28) = 0.07

Rz
u = 0.38 LM, L R1, R3, R4 µLM

1
(0.38) = 0.4, µL

3
(0.38) = 0.4

Fig. 6-3. In the fuzzification step, we note that the input variable Rv
a = 0.75 lies in

two fuzzy sets VH and H with membership degrees µV H(Rv
a) = 0.17 and µH(Rv

a) = 0.83

respectively. In a similar way, the membership degrees of Rv
u = 0.28 and Rz

u = 0.38 to

their respective fuzzy sets can be determined. We see that the rule R2 is not satisfied

(e.g. since Rv
a does not belong to the fuzzy set L) while rules R1, R3 and R4 are

satisfied. In Table 6.1, we show these details for each input variable. For R1, the

inference step is y1min = min(0.17, 0.73, 0.4) = 0.17, that for R3 is y3min = 0.4, and that for R4

is y4min = 0.07. We therefore have the membership degrees for the three output fuzzy

sets: PZ, PS and PS for rules R1, R3 and R4 respectively. We now find the inverse

for each ymin using (6.6). As can be seen from Fig. 6-4, for R1, p = 0.1 while q = 0.0.

Therefore, λ−1(y1min) = 0.1 − 0.17 × (0.1 − 0.0) = 0.083. In a similar way, λ−1(y3min) = 0.12

and λ−1(y4min) = 0.021. Finally, the input into the output layer node is a n × 2 matrix

where each row i contains the output yimin of the ith rule (Ri) in the first column and

its inverse λ−1
i (yimin) in the second column. For our example, the matrix, M below will

be the input to the output node (deffuzifier).

M =

0.17 0.0830

0.40 0.1200

0.07 0.0210

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 117

The last step is deffuzification and uses equation (6.7) on the contents of M to produce

the agent action. The action a in this case would be

(0.17× 0.083) + (0.4× 0.12) + (0.07× 0.021)

0.17 + 0.4 + 0.07
= 0.11

This would mean that the resources allocated to the virtual resource in question has

to be increased by 11% of its total demand.

Learning

After an agent takes an action, we evaluate the action so as to determine if it led

to a better utilisation of substrate resources without negatively impacting the QoS

requirements of the virtual node or link. Therefore, as shown in Fig. 6-2, the learning

module receives as input the agent’s action, and an evaluation of the performance (PE)

that resulted from this action. Then, the module outputs a “learning result” that is

aimed at adjusting the knowledge base, and hence lead to better actions in future.

The agents designed in this work perform learning to achieve one or more of three

objectives, which are aimed at (1) deleting rules deemed unnecessary, (2) adding rules

expected to be useful in future, and (3) adjusting the membership functions. In order

to achieve these objectives, the learning module is made up of three sub-modules,

each of which is associated to one of the objectives as detailed in what follows.

Adaptive Rule Weighting (ARW) Adaptive rule weighting involves adjusting a

weight wi. The weight wi is defined, initialised and attached to each rule Ri during the

rule base initialisation step (see Section 6.5). After each learning episode, the weight

wi is adjusted in two ways; First, wi is decremented by a constant ϕ1 = 1 if rule Ri was

fired, and incremented by a constant ϕ2 = 0.5 if the rule was not fired. The reason

for adjusting wi based on whether a rule was fired or not is that if a given rule is

consistently not used by an agent, then it is more likely that the rule is unnecessary,

and should therefore be dropped from the rule base. In this thesis, rules with lower

values of wi are considered more important than those with higher values; in fact, in

118 6.3. Proposed NFS-based DRA Model

our proposal, when the value of wi is greater or equal to a constant Ψ1, the agent can

consider the rule unnecessary or counterproductive and hence the rule Ri is deleted

from the rule base.

In addition, for all fired rules, wi is changed according to equation (6.8).

wnew
i = wi − r(v) (6.8)

where r(v) is a dynamic evaluation reward defined in (6.9). The objective of (6.8)

is to reduce the weight wi whenever the rule contributes to a correct action (r(v) is

positive), and increase it otherwise.

Agent Cooperation (AC) While adaptive rule weighting helps an agent get rid of

unnecessary rules, it does not help the agent acquire more rules that are expected to

be important to future actions. Agent cooperation can be used for this purpose. Our

proposal in this regard involves a cooperation between different agents in two ways.

First, the agents coordinate to avoid conflicting actions, and then, at predefined

times, agents share information aimed at improving their individual performances.

By sharing knowledge, the agents can either add or delete rules from their rule bases.

We describe cooperation between agents in Section 6.6.

Evaluative Feedback (EF) Both ARW and AC can only add or delete a rule

from the rule base. However, it is also necessary to be able to adjust a given rule, by

changing the parameters of the membership functions so as to improve the output of

those rules that remain in the rule base. This is achieved by using a reinforcement

learning-based evaluative feedback mechanism that uses a reward function to adjust

the membership functions. We describe the reward function used in this Chapter in

6.4.1, and then derive the rule updating mechanism used to learn the parameters of

rule membership functions in 6.4.2.

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 119

6.4 Evaluative Feedback

6.4.1 Reward Function

After each learning episode, the affected substrate and virtual nodes/links are mon-

itored, taking note of average utilisation of substrate resources, the delay on virtual

links and packets dropped by virtual nodes due to buffer overflows. These values are

fed back to the agent in form of a performance evaluation (PE). The reward resulting

from a learning episode of any agent is therefore a vector R in which each term r(v)

corresponds to the reward of an allocation to the virtual resource v. This reward is

an indication of the deviation of the agent’s actual action from a desired action, and is

therefore aimed at minimising this deviation. The objective of the reward function

is to encourage high virtual resource utilisation while punishing na ∈ Na for dropping

packets and la ∈ La for having high delays. The reward function defined in this Chap-

ter is designed so as to carry two pieces of information; a magnitude and a direction. If

the agent’s action was desirable, r(v) is positive, otherwise it is negative. The mag-

nitude of r(v) gives the degree of desirability or undesirability of the agent’s action,

and is dependent on resources allocated to the virtual resources, unutilised resources,

link delay in case of la ∈ La and the number of dropped packets in the case of na ∈ Na.

The resulting reward function is presented in (6.9).

r(v) =

κτ if
(

τ < 0.0
)

(

Rv −Dv

)

∀la ∈ La

(

Rv − Pv

)

∀na ∈ Na

(6.9a)

(6.9b)

(6.9c)

where κ is a constant, and τ is an index of the correctness of the action adopted by the

agent. Specifically, τ gives an indication of whether the action a taken by the agent

should have been increasing resource allocation or reducing it, and can take on positive

or negative values based on the perceived expected direction of action. It is worth

noting that (6.9a) takes precedence over (6.9b) and (6.9c), implying that whenever it

120 6.4. Evaluative Feedback

is satisfied, the reward is calculated from it. Equations (6.9b) and (6.9c) respectively

apply for link and node agents. The value of τ is defined in equations (6.10).

τ =

a if
(

(Rv
a ≤ ξ1

)

∧
(

a < 0.0)
)

a if
(

(Rv
u ≤ ξ2

)

∧
(

a < 0.0)
)

− a if
(

(Rv
u ≥ ξ3

)

∧
(

a > 0.0)
)

0 otherwise

(6.10a)

(6.10b)

(6.10c)

(6.10d)

where ξ1, ξ2, and ξ3 are constants, and a is the crisp output value of the agent. The

definition of τ is aimed at ensuring that actions that could possibly lead an agent

away from its objective receive a negative feedback. In fact, equation (6.10a) is aimed

at ensuring that resource allocations below ξ1 are avoided as this could easily have

a negative impact on the QoS requirements of the virtual resource. In particular,

(6.10a) states that: if the resource allocated to v is already below a given minimum ξ1

and the agent’s action is to further reduce the allocation (a < 0.0), then the reward

for this agent should be negative, proportional to the amount by which resource

allocation was reduced. In the same way, equation (6.10c) states that if at least ξ3 of

the resources allocated to the virtual resource v are unutilised and the agent decides

to increase the resource allocation (a > 0.0), then this action takes the agent in the

wrong direction, and as a result, τ should be negative. The constant κ in equation

(6.9a) can be adjusted to result into higher/lower negative rewards so as to guide the

agent away from situations where τ < 0.0. The values κ = 1, ξ1 = ξ2 = 0.25 and ξ3 = 0.75

were used in this Chapter.

Rv is the utilisation of resources allocated to v and is derived from Rv
u, while Dv

and Pv are measures of the performances of link agents and node agents respectively,

and their values are derived from the link delay Dij and number of lost packets Pi.

Rv = 1−Rv
u, Dv =

Dij

0.1
and Pv =

Pi

100

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 121

The reason for scaling Dv and Pv is to ensure that 0 ≤ Dv ≤ 1 and 0 ≤ Pv ≤ 1 which is

also part of the effort to ensure that −1 ≤ r(v) ≤ 1. The choice of the values 100 and

0.1 is based simulations in which we observed that 0 ≤ Dij ≤ 0.1 and 0 ≤ Pi ≤ 100. In

any case, the values of Dv and Pv are capped at a value 1 and if the scaling results

into a value greater than 1, then the maximum value 1 is used.

6.4.2 Membership Function Learning

With the overall reward determined, we now need to determine the contribution of

each fired rule Ri ∈ R′ to the reward, and use it in the learning process to update

the membership functions. We can derive the contribution of each rule as a gradient

descent (6.11) on squared error (6.14), and thereafter adjust a parameter, ε of the

membership functions belonging to the rule Ri so as to reduce the general error.

∆ε = −α

(

∂E

∂ε

)

(6.11)

where ∆ε is the amount by which parameter ε should be changed so as to reduce

the error E in its action, 0 ≤ α ≤ 1 is referred to as learning rate, and it determines

how fast learning occurs. Therefore, an updated value εnew of the parameter can be

determined from its current value ε using equation (6.12).

∆ε = εnew − ε (6.12)

Combining (6.11) and (6.12) results into the general learning rule for ε shown in (6.13)

εnew = ε− α

(

∂E

∂ε

)

(6.13)

The error E is a measure of the difference between the expected optimal action a∗

and the actual action a, and is usually given by a square of the difference between a∗

and a as shown in (6.14).

E =
1

2
(a∗ − a)2 (6.14)

122 6.4. Evaluative Feedback

In order to determine a learning procedure over ε, we start by determining the error

rate ∂E/∂ε, which can be derived using the chain rule shown in (6.15).

∂E

∂ε
=

∂E

∂a
×

∂a

∂µ
×

∂µ

∂ε
(6.15)

Using (6.14), ∂E/∂a = −(a∗−a), and as defined in 6.4.1, the difference between expected

and actual actions (a∗−a) is given by the reward function r(v). ∂a/∂µ is the contribution

of membership function µ to the overall action a (and hence its contribution towards

the error). For this work, the value λ−1(ymin) as defined in 6.3.2 as the inference result

of the antecedent of the rule under consideration is used. Finally, if the parameter ε

is along the horizontal axis of the membership function, then ∂µ/∂ε is the gradient of

the membership function (i.e. ∂µ/∂ε = ∂y/∂x) and is given by 1/(q−p) (using equation

(6.6)). Therefore, (6.15) becomes

∂E

∂ε
= −r(v)× λ−1(ymin)×

1

(q − p)
(6.16)

Substituting (6.16) into (6.13) gives (6.17), which is the membership parameter learning

equation used in this thesis.

εnew = ε+ α

(

r(v)

(q − p)
× λ−1(ymin)

)

(6.17)

In this thesis, the membership parameter ε to be learnt is chosen as q. This is based on

the observation, from equation (6.17), that for negative values of r(v) (i.e. the action

taken by the agent was undesirable), the new value εnew increases if p > q and reduces

otherwise. Choosing to learn the value of q ensures that whenever an undesirable

action is taken, the value ∆x = |q − p| is reduced (the gradient of the membership

function is increased), hence making the rule under consideration less likely to be

fired by inputs in the same range. On the other hand, for positive values of r(v) (a

good action was taken), we do increase ∆x, making the rule more likely to be used

by inputs in a close range. To avoid possibilities of division by zero (when p = q), we

add a small constant δ0 to the value (q − p) in the denominator of (6.17). Therefore,

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 123

𝑅𝑎𝑣
Crisp Output

Fuzzy Weights

(Antecedents)

Fuzzy Weights

(Consequents)

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .

IF THEN

SN-VN State

(Crisp Inputs)

VN Resource

Allocation (Action)

Input Layer Rule Layer

(Hidden Layer)

Output Layer

𝑅𝑢𝑣
𝑅𝑢𝑧

. .
. .

. .
. .

Figure 6-5: Neuro-Fuzzy Network for VN Resource Allocation

the final membership function parameter learning rule is given in (6.18).

qnew = q + α

(

r(v)

(q − p) + δ0
× λ−1(ymin)

)

(6.18)

Since the crisp value of the output is based on a combination of the different input

membership functions, adjustments in input MFs directly affect future outputs of

the same rule. For this reason, in this proposal, the updating of the membership

functions is restricted to antecedents of the rules.

6.4.3 Neuro-Fuzzy System Network Structure

With the overall model defined, the next step is to design the actual neuro-fuzzy net-

work. We propose a 3-layer feedforward network with an input layer, a rule (hidden)

layer and an output layer. In Fig. 6-5 we show such type of network, designed for

124 6.5. Rulebase Initialisation

the resource allocation model represented in Fig. 6-2. As can be seen, the input

layer contains 3 neurons and has as inputs the three variables Rv
a, R

v
u and Rz

u which

we use to define the state of system resources. The output layer contains a single

neuron, and its output is an action a ∈ A aimed at changing resource allocation. The

rule (hidden) layer contains fuzzy if-then rules that are used by the system to make

resource allocation decisions. On the left side of the rule layer are fuzzy weights µx
i

that represent the weight of each connection from an input to a rule node Ri, and

using the fuzzy set x. Similarly, the right hand side of the rule layer has another

set of fuzzy weights λx
i connecting a rule Ri to the output, represented a fuzzy set x.

While it is possible for different rule nodes to share some weights on either side, the

network designed in this thesis creates a unique fuzzy weight for each rule. This way,

the rule addition/deletion described in 6.3.2 involves creating/cutting connections

between the appropriate input-rule-output nodes of the network. In the same way,

membership function learning involves adjusting these weights for the appropriate

connections/rules.

6.5 Rulebase Initialisation

At the beginning of the learning process, the system has no rules. Therefore, we need

to define a way of establishing an initial rule base. One rule initialisation possibility

is a decremental rule learning proposed in [17] in which all the possible rules are

initialised into the system and then subsequently reduced as the agent learns. As

already mentioned our system can work with up to 1728 i.e. (6 × 6 × 6 × 8) rules, and

starting the learning process with this high number of rules would slow down the

learning process. Our proposal starts by creating the maximum possible rule base

with 1728 rules. A weight wi = 0 is then attached to each rule Ri, and is used to perform

a weighting and pruning process that is based on expert knowledge. The initialisation

proposed in this thesis includes three sequential steps as described below.

1. The first step takes into account the likelihood that a rule may not be required

when in optimal operation. This is based on the design objectives of the system.

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 125

Table 6.2: Action and State to Membership Function Mapping

(a)

Previous Action MF

Maintain Rv
a unchanged PZ

Decrease Rv
a by 50.0% NL

Decrease Rv
a by 37.5% NM

Decrease Rv
a by 25.0% NS

Decrease Rv
a by 17.5% NZ

Increase Rv
a by 17.5% PZ

Increase Rv
a by 25.0% PS

Increase Rv
a by 37.5% PM

Increase Rv
a by 50.0% PL

(b)

Previous State (% Value) MF

0 < Variable ≤ 12.5 VL

12.5 < Variable ≤ 25 L

25 < Variable ≤ 37.5 LM

37.5 < Variable ≤ 50 LM

50 < Variable ≤ 67.5 HM

67.5 < Variable ≤ 75 HM

75 < Variable ≤ 87.5 H

87.5 < Variable ≤ 100 VH

Table 6.3: Output Membership function to Integer Mapping
NL NM NS NZ PZ PS PM PL

−4 −3 −2 −1 1 2 3 4

Specifically, since we would like the system to be mindful of the QoS require-

ments of VNs, the system is unlikely to be in states where Rv
a = VL. Similarly,

efficient substrate resource utilisation would ensure that states with Rv
u = VH

and/or Rz
u = VH are less likely to occur. For each of such rules, the weight wi

is incremented by δ1.

2. The second takes into account the likelihood that a given rule could cause the

agent to take a wrong action. Examples of such rules could be in situations

where a given resource allocation is very high, but the selected action is to in-

crease the allocation even more by a very high percentage. In particular, rules

in which Rv
a = VH with actions PM and PL, Rv

a = VL with actions NM and

126 6.5. Rulebase Initialisation

NL and those Rv
u = VL with actions NM and NL are likely to lead to wrong

actions. For each of such rules, the weight wi is incremented by δ2.

3. In the final step, each of the rules is evaluated based on an input-output dataset,

and the weight wi adjusted again. The dataset used for this purpose was saved

from the q-table of a reinforcement learning approach proposed in [146]. This q-

table was a result of a resource allocation learning system for a similar resource

allocation task and it gives the state-action-values for the learning task. The

table is made up of 3 columns, one for the state (which is also defined by three

variables Rv
a, Rv

u and Rz
u), another for a possible action, and the other for a

value that shows the desirability of taking the action while in the given state.

However, before the dataset can be used for the pruning proposed in this thesis,

we need to process it so as to put in a form similar to fuzzy rules. In 6.5.1, we

describe the preprocessing steps taken. After this process, all rules for which

the weight wi is greater than a pre-established constant Ψ2 are pruned from the

rule base.

6.5.1 Dataset Preprocessing

The training dataset is made up of 4608 entries (resulting from 512 possible states and

9 possible actions), each showing the value of every possible action while in each state.

The first step is to choose only those entries corresponding to the best possible action

(actions with the best values) for each state. This leaves us with 512 entries. We then

convert these state-action-values into fuzzy rules. However, this requires a mapping

from the state and action codes used in [146] to the fuzzy sets used in this thesis. In

Tables 6.2(a) and 6.2(b) we show the mapping that has been performed on the states

and actions. However, since each of the state MFs can only take on 6 values for the

3 input variables, the maximum number of possible unique antecedent combinations

is 6 × 6 × 6 = 216. Therefore, we again prune the training dataset eliminating entries

with the same antecedent (remaining with one rule with the highest original state-

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 127

action-value for all duplicate rules). After this final step, we have a training rule set

RRL with 216 rules that we can use as a training set for an initial pruning of the rule

base.

6.5.2 Initial Rule Base Pruning

For each rule rj ∈ RRL, each rule Ri ∈ R in the rule base is evaluated so as to determine

the correctness of its consequent. To this end, a rule matching procedure is performed.

This determines whether the antecedent of rj is the same as that of Ri. The rule

matching step involves comparing the fuzzy sets representing the input and/or output

variables. For this initialisation step, two rules match if all the three corresponding

antecedent fuzzy sets are the same. The result of a rule matching process is either

a success if the rules match, or a failure otherwise. If Ri matches rj then an error,

which is a measure of how the consequent of rj differs from that of Ri, is evaluated.

To achieve this, we model each of the 8 possible consequents with an integer value.

These values are shown in Table 6.3. The absolute value, of the difference between the

value aj for the consequent of rule rj and ai for rule Ri is then used to increment the

weight wi for rule Ri.

We show the pseudocode for the rule initialisation in Algorithm 6. In the algo-

rithm, µ1
i , µ2

i , µ3
i and λ1

i are the initial fuzzy sets for the variables Rv
a, Rv

a, Rv
a and O

respectively. The fuzzy sets shown Figs. 6-3 and 6-4 are used for the initialisation

stage, but as learning progresses, these sets change for the respective rules. After the

weighting and pruning stage, the proposed initialisation algorithm reduces the initial

1728 rules to 1215 rules4.

4The initial rule base, training dataset and final initialised rule base can be downloaded from:
http://www.maps.upc.edu/rashid/files/nfsrules.rar.

http://www.maps.upc.edu/rashid/files/nfsrules.rar
http://www.maps.upc.edu/rashid/files/nfsrules.rar
http://www.maps.upc.edu/rashid/files/nfsrules.rar

128 6.5. Rulebase Initialisation

Algorithm 6 Rule Base Initialisation

1: Initial Rule Base R Creation

2: Initialise rule weight: i = 1

3: for µ1
i ∈ µ do

4: for µ2
i ∈ µ do

5: for µ3
i ∈ µ do

6: for λ1
i ∈ λ do

7: Create Rule: Ri if
(

Rv
a is µ1

i and Rv
u is µ2

i

8: and Rz
u is µ3

i

)

then O is λ1
i

9: Initialise weight: wi = 0

10: Increment rule weight: i++

11: end for

12: end for

13: end for

14: end for

15: Rule Weighting and Pruning

16: for Ri ∈ R do

17: Step 1: Efficiency and QoS Awareness

18: if (µ1
i = V L) or (µ2

i = V H) or (µ3
i = V H) then

19: wi = wi + δ1

20: end if

21: Step 2: Protection against wrong actions

22: if

(µ1
i = VH and λ1

i = PM) or...or (µ2
i = VL and λ1

i = NL)

then

23: wi = wi + δ2

24: end if

25: Step 3: Learning from Dataset

26: for rj ∈ RRL do

27: Perform Rule Matching (rj, Ri)

28: if (Matching = Success) then

29: wi = wi + (|oj − oi|)

30: if wi >= Ψ2 then

31: DELETE Ri

32: end if

33: end if

34: end for

35: end for

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 129

6.5.3 Time Complexity of Rule Base Initialisation

The initial rule base creation stage in Lines 2−13 involves three basic operations (Lines

6, 8 and 9) for each of the possible rules R. Therefore, this step can be performed

in time O(|3R|). The rule matching operation involves at most four operations (3 for

the antecedent and 1 for the consequent). Therefore, Lines 24 − 30 includes at most

six operations, implying that the for loop from Lines 23 − 31 runs in time O(|6RRL|).

Including the two operations on Lines 16 and 21 leads to the time O
(

|(6RRL+2)R|
)

for

the Lines 14− 32. Therefore, the dominating factor in Algorithm 6 is O
(

|RRL ×R|
)

. It

is worth noting that both |R| and |RRL| are predefined as 1728 and 216 respectively.

6.6 Agent Cooperation

In this approach, the substrate node or link agents can cooperate on two fronts.

The first is an action coordination aimed at conflict prevention, while the other is a

knowledge sharing aimed at learning enhancement. We briefly describe both of them

below.

6.6.1 Coordination amoung Agents

From the VNE problem formulation, a given virtual link lij may be mapped onto more

than one substrate link. This creates a possibility of more than one substrate link

agent dynamically managing the resources allocated to such a virtual link. In this

case, the set of agents L
lij
a ⊂ La that are able to change the resource allocation to lij

must coordinate their actions to avoid conflicting resource allocations. The first step

in the conflict prevention proposed in this Chapter is the creation of the agent set Llij
a .

After every VNE step, each substrate link agent that participated in the embedding

determines - for each new embedded virtual link - the set of other substrate link agents

that manage the virtual link resources. Since we consider that all the agents in our

model belong to the same organisation (the infrastructure provider), we consider that

this kind of information is readily available to all agents. The next step is to allow

130 6.6. Agent Cooperation

each agent la ∈ L
lij
a to communicate with every other agent in the same set, sharing

resource allocation information every time an allocation is performed. Therefore, after

each learning episode, if an agent la ∈ L
lij
a decides to change the amount of resources

allocated to lij, it sends an update to other agents in L
lij
a providing information about

the action a to be taken as well as the final percentage resource allocation R
lij
a resulting

from the action. All the agents in L
lij
a therefore perform the resource change at the

same time, ensuring that the final percentage resource allocation to the virtual link

is R
lij
a . Once again, the fact that a given agent is able to trust and take actions based

on decisions of another agent is reasonable since all these agents belong to the same

organisation and as such, they cannot have conflicting objectives. Finally, in order

to ensure that the actions and information sharing of the agents L
lij
a is synchronised,

only one of them learns at any given time. This is achieved by starting the learning

processes of each agent at different times on their creation and thereafter performing

learning at regular intervals.

Scalability consideration of the Agent Cooperation mechanism

It is worth noting that in general, if the link mapping algorithm is efficient, the agent

set L
lij
a will contain an average of 2 − 3 agents5. This means that at any point, a

given agent la ∈ L
lij
a only needs to send update messages to about 1− 2 other agents.

We consider that this number of update messages is manageable, and would not

congest the network. In addition, we specifically avoid the exchange of “acknowledge”

messages to diminish as much as possible the traffic among agents, instead preferring

to use an update message that also includes the final resource allocation to lij. This

ensures that if for any reason a given agent does not get an update message, this can

be corrected at the next learning episode.

5Based on simulations carried out using the S-OS algorithm (see Table 6.4) for average link
bandwidth utilisation levels between 50% and 70%.

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 131

Algorithm 7 Neuro− Fuzzy Learning Algorithm

1: Initialisationnfs

2: Initialise Rule Base, R

3: Determine current state, sc
4: Define: previous state, sp = sc, previous action, ap = 0.0, next state, sn = sc, set

of fired rules F = ∅.

5: Thread1: Learn from others (Knowledge Sharing)

6: repeat

7: Wait(Cooperation Interval)

8: Receive rule base Rx from other agents

9: for Rj ∈ Rx do

10: if Rj ∈ R then

11: for Ri ∈ R do

12: Update pi as described in 6.6.2

13: end for

14: else

15: Add Rj to R

16: end if

17: end for

18: until Learning is stopped

19: Thread2: Learn from actions (Evaluative Feedback)

20: repeat

21: Wait(Learning Interval)

22: Read sp, ap, sn, F

23: Determine r(v) using equation (6.9)

24: for ri ∈ F do

25: for λx
i ∈ ri do

26: Determine q
λx
i

new using equation (6.18)

27: end for

28: Update weight wi as using ARW in 6.3.2

29: end for

30: Set F = ∅

31: for Ri ∈ R do

32: if wi ≥ Ψ1 then

33: Delete Ri

34: end if

35: end for

36: Determine current state sc, add all fired rules to F

37: Determine action, a ∈ A as explained in 6.3.2 - 6.3.2

38: Take action a, and determine next state, s′n
39: Set sp = sc, ap = a, sn = s′n
40: until Learning is stopped

132 6.6. Agent Cooperation

6.6.2 Knowledge Sharing amoung Agents

The second form of cooperation between agents involves sharing of their knowledge

bases. In this proposal, each learning agent as ∈ (La ∪ Na) periodically shares its rule

base Ras
as well as database of membership functions fas

with other agents at ∈ At,

where At ⊂ (La ∪ Na). For a given link agent, At consists of the node node agents at

its ends, while for a node agent, At includes all the link agents for the substrate links

connected to the node6.

There are two advantages that are derived from this cooperation. First, it leads

to performance enhancement if it leads to addition of new knowledge to the base or

to improvement of the membership functions of existing rules and then it allows a

faster convergence to optimal network structure in case it leads to deletion of some

rules. For each newly received rule Ri
as
∈ Ras

, the integration into the rule base is

a four-step matching and elimination process. The receiving agent at compares Ri
as

to each of the rules in its rule base, performing a rule matching (described in 6.5.2)

over both the input and output variable fuzzy sets. If the result of matching for the

whole rule base is a failure (the rule Ri
as

does not match any of the rules in the rule

base), then the agent adds the rule Ri
as

together with its membership functions to its

knowledge base. On the other hand, if the result of matching is a success (there is a

rule that is similar to Ri
as
), then the agent learns from the membership functions of

Ri
as
.

This is achieved by replacing the p − values of the membership functions of the

matching rule Ri with a weighted sum defined in (6.19).

pnew = (γ × p1) + (β × p2) (6.19)

where p1 is the old p-value and p2 is the p-value of the received rule. γ and β are

constants intended to bias the sensitivity of the agent to knew information. γ+β = 1.

In this Chapter, the values γ = 0.7 and β = 0.3 are used. Needless to mention, the

6The restriction of the respective sets of agents is for scalability reasons as explained later in this
subsection

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 133

overall learning scheme proposed in this thesis learns both the p and q parameters of

the membership functions. The q parameter is learnt through the evaluative feedback

described in 6.4.2 while this subsection has defined a learning procedure for the p

values.

Scalability of the Knowledge Sharing Mechanism

Allowing every agent as ∈ (La ∪ Na) to communicate and share knowledge with every

other agent in the system would be non-scalable. In this thesis, we restrict each agent

to only share knowledge with its direct neighbours. This means that any link agent

la ∈ La can only share experience with at most two node agents at either end of the

link. In the same way, any given node agent na ∈ Na can only share knowledge with

only those link agents that directly connect it to its adjacent nodes.

The complete learning algorithm proposed in this Chapter is shown in Algorithm 7.

As can be seen, the learning process is made up of different steps as already described.

However, we note that some of the processes take place in parallel, for example, the

agents continuously learn from each other (knowledge sharing) independently of the

learning achieved from the evaluative feedback.

6.6.3 Time Complexity of Neuro-Fuzzy Learning Algorithm

The initialisation in Line 1 can be performed in time O
(

|RRL × R|
)

as established in

6.5.3. Lines 7−15 require at most O(|R|2) time, while the for loop in lines 21−26 can run

in time O(|5R|). Finally, Lines 28− 32 can be performed in time O(|R|). Since R > RRL,

the overall time complexity of algorithm 7 is O(|R|2). Therefore, both algorithms

proposed in this Chapter run in polynomial time.

134 6.7. Performance Evaluation

Table 6.4: Compared Algorithms

Code Resource Allocation Approach

D-NFS Dynamic, based on Neuro-Fuzzy System [Our Contribution]

D-RL Dynamic, based on Reinforcement Learning[146]

D-ANN Dynamic, based on Artificial Neural Networks [158]

S-CNMMCF Static, Coordinated Node Mapping and MCF for link mapping[8]

S-OS Static, link based optimal one shot Virtual Network Embedding[146]

Table 6.5: Compared Approaches - Initilisation and Agent Cooperation

Code Resource Allocation Approach

D-RL Reinforcement Learning[146]

D-ANN Artificial Neural Networks[159]

I-C Initialised Rule Base, Cooperating Agents

I-NC Initialised Rule Base, Non Cooperating Agents

NI-C Non Initialised Rule Base, Cooperating Agents

NI-NC Non Initialised Rule Base, Non Cooperating Agents

6.7 Performance Evaluation

6.7.1 Simulation Model

To evaluate our proposal, a simulation scenario similar to Fig. 4-9 was setup. SN

and VN topologies were generated using Brite [110] with settings shown in Table 4.4.

Thereafter, VN requests arrive, one at a time to the SN. Whenever a VN request

is accepted by the SN, the VN topology is created in NS3 [133] using the network

virtualisation module and real traffic traces explained in Section 4.5. Simulations were

run on an Ubuntu 12.04 LTS Virtual Machine with 4.00GB RAM and 3.00GHz CPU

specifications. The substrate and virtual network topologies are created according to

parameters described in Section 5.4.2.

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 135

6.7.2 Comparison against Alternatives

We compare the performance of our proposed solution with closely related solutions.

In particular, four representative solutions from the literature are chosen. The first

two perform dynamic resource allocation using one shot VNE for the first step and

reinforcement learning [146] (our approach in Chapter 4) and artificial neural networks

[159] (our approach in Chapter 5) respectively for resource management, the third

is a static allocation approach that performs a coordinated node and link mapping

[8]; and the last one is also a static baseline formulation that performs a one shot

mapping, and also used in performance evaluations in [146]. The solution in [8] was

adapted to fit into our formulation of the problem. In particular, for [8] the link delay

requirements were neglected at the embedding stage, and for this reason, it is not used

in QoS evaluations. In addition, our consideration in this Chapter is for unsplittable

flows. We identify and name the compared solutions in table 6.4. We also compare

different variations of our proposal to determine the effect of initialising rule bases as

well as sharing knowledge between the agents. Details of these variations are shown

in Table 6.5.

6.7.3 Performance Metrics

We evaluate the performance of our proposal on two fronts; the embedding quality, as

well as the quality of service of the virtual networks. Our goal is that the opportunistic

use of virtual network resources should not be at the expense of the service quality

expectations of the network users.

Embedding Quality

We define embedding quality as a measure of how efficiently the algorithm uses the

substrate network resources for accepting virtual network requests. This is evaluated

using the acceptance ratio and the total instantaneous accepted virtual networks. The

acceptance ratio is a measure of the long term number of virtual network requests

that are accepted by the substrate network. The total instantaneous accepted virtual

136 6.7. Performance Evaluation

networks is a measure of the embedding cost incurred by a given substrate network,

as a substrate network that incurs a lower embedding cost normally has more extra

resources at any point and hence is able to have many embedded virtual networks at

any point.

Quality of Service

We use the packet delay and drop ratio as indications of the quality of service. We

define the packet delay as the total time a packet takes to travel from its source to

its final destination. The drop ratio is defined as the ratio of the number of packets

dropped by the network to the total number of packets sent. As shown in Table 4.3,

we model the networks to drop packets due to both node buffer overflow as well as

packet errors. In addition, as it is more important in some applications, we define

the variations of these two parameters. The jitter (delay variation) is defined as the

difference between delays during different time periods, while the drop ratio variation

is defined as the variation between packet drops in different time periods. The time

interval to update the measurements corresponds to the transmission of 500 packets.

6.7.4 Discussion of Results

The simulation results are shown in Fig. 6-6 − 6-13. As can be seen from Fig. 6-6,

while all three dynamic approaches perform better than the static ones in terms of

virtual network acceptance ratio, the neuro-fuzzy approach outperforms all four. The

reason for the dynamic approaches performing better than the static ones is that

in former cases, the substrate network always has more available resources than in

the later case, which is a direct result of allocating and reserving only the required

resources for the virtual networks. The fact that NFS outperforms the RL approach

can be attributed to two factors: (1) the NFS system models the states and actions

with better granularity i.e. without restricting the states and actions to few discrete

levels, and (2) the NFS system is more dynamic in the sense that it continuously

changes its knowledge base by adding rules, modifying them, and deleting others.

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 137

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000

A
c
c
e
p
ta

n
c
e
 R

a
ti
o

Total Requests

S-CNMMCF S-OS D-RL D-NFS D-ANN

Figure 6-6: VN Acceptance Ratio

On the other hand, the superiority in performance of D-NFS over D-ANN can be

attributed to the fact that the network structure in the D-NFS approach is more

dynamic (the addition/removal of rules implies addition/removal of network links)

compared to a static network structure in D-ANN.

We also note that S-OS has a better acceptance ratio than S-CNMMCF. This

is due to the fact that since S-CNMMCF performs node and link mapping in two

separate steps, link mappings could fail due to locations of already mapped nodes.

In addition, the link mapping phases could potentially use more resources than if

both steps are performed once. A similar performance pattern can be noted from

Fig. 6-7 which further confirms that at any given point, the substrate networks that

dynamically manage resources are able to embed more VNs than the static ones, and

that D-NFS performs better than both D-RL and D-ANN, and S-OS better than

S-CNMMCF.

Fig. 6-8 and Fig. 6-9 show the average utilisation of substrate node queue size and

link bandwidth respectively. It can be observed that except for S-CNMMCF, the other

138 6.7. Performance Evaluation

0

5

10

15

20

25

30

35

40

200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r

o
f

V
N

s

Total Requests

S-CNMMCF S-OS D-RL D-NFS D-ANN

Figure 6-7: Number of Accepted Virtual Networks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 300 400 500 600 700 800 900 1000

A
v
e

ra
g

e
 Q

u
e

u
e

 U
ti

li
s
a

ti
o

n

Total Requests

S-CNMMCF S-OS D-RL D-NFS D-ANN

Figure 6-8: Average SN Queue Size Utilisation

four approaches on average use the same amount of substrate network resources. The

fact the S-CNMMCF has a lower resource utilisation is expected as a result of having

slightly more resource requests rejected either due to a node mapping that makes

link mapping impossible, or for previous link mappings using more resources. The

fact that S-OS, D-RL, D-ANN and D-NFS all have on average the same utilisation is

mainly due to all of them having the same initial mapping algorithm (which is S-OS).

However the interesting point from looking at Figures 6-6 − 6-7 is that while S-OS,

D-RL, D-ANN and D-NFS all have a similar resource utilisation levels, D-NFS uses

these resources to serve a higher number of VNs at any given time, which confirms

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 139

0

0.2

0.4

0.6

0.8

1

200 300 400 500 600 700 800 900 1000

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 U
ti
li
s
a
ti
o
n

Total Requests

S-CNMMCF S-OS D-RL D-NFS D-ANN

Figure 6-9: Average SN Bandwidth Utilisation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

200 600 1000 1400 1800

P
ac

ke
t

D
ro

p
 R

at
io

Total Number of Packets
Thousands

S-OS D-RL D-NFS D-ANN

Figure 6-10: Node Packet Drop Ratio

the extra efficiency introduced by the proposed approach.

Fig. 6-10 shows that S-OS has an almost constant packet drop ratio while that

for D-RL, D-ANN and D-NFS is initially high, but gradually reduces. The fact that

the dynamic approaches initially perform badly is expected, since, at the beginning of

the learning processes the agents may vary the queue sizes quite considerably leading

to more packet drops. This high initial packet drop also affects the overall speed

at which the drop ratio converges to the one in the static approach. This can be

confirmed by noting from Fig. 6-11, that in fact, the periodic drops in packets by all

approaches finally converge. Once again, the fact that D-NFS has a lower packet drop

140 6.7. Performance Evaluation

0

10

20

30

40

50

60

70

80

200 600 1000 1400 1800

N
u

m
b

e
r

o
f

D
ro

p
p

e
d

 P
a
ck

e
ts

Total Number of Packets
Thousands

S-OS D-RL D-NFS D-ANN

Figure 6-11: Node Packet Drop Ratio Variation

0.01

0.02

0.03

0.04

0.05

0.06

200 300 400 500 600 700 800 900 1000

To
ta

l
P
a
ck

e
t

D
e
la

y
 (

s)

Learning Episode
Thousands

S-OS D-RL D-NFS D-ANN

Figure 6-12: Link Packet Delay

ratio than D-RL over the learning period can be explained since D-NFS has better

granularity in perceiving the state of resources and allocation. It can however be

noted that both D-ANN and D-NFS have a roughly similar packet drop profile. This

can be explained from the fact that both of them are initially trained (initialised)

using a similar data set (See [158], [158]).

In a similar way, Fig. 6-12 shows that the packet delays for the two dynamic

approaches is initially higher but reduces over the learning period, while 6-13 shows

that in fact the variations in this delay converge to the static approach. Again, these

differences are attributed to the initial learning phase, and the difference in D-RL and

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 141

0

0.002

0.004

0.006

0.008

0.01

200 300 400 500 600 700 800 900 1000

D
el

ay
 V

ar
ia

ti
on

Learning Episode
Thousands

S-OS D-RL D-NFS D-ANN

Figure 6-13: Link Packet Delay Variation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

%
 o

f
O

p
ti

m
a
l
A

ct
io

n

Learning Episode

Thousands

I-WC I-C NI-C NI-NC

Figure 6-14: Initialisation and Agent Cooperation

D-NFS is due to better options in perception and action for D-NFS. We also note,

once more, that due to being initially trained from the same data set, both D-ANN

and D-NFS have closely matching packet delay profiles.

Finally, Figs 6-14 and 6-15 show how fast the agents learn optimal rules (for D-

NFS), optimal weights (for D-ANN), and an optimal policy (for D-RL). The actions

of the agents are compared with optimal actions. An optimal action for an agent is that

action that would lead to a resource allocation equal to what the network is actually

using [146]. The deviations in these evaluations are therefore with reference to actual

resource usage in a similar network that is not performing dynamic allocations. The

142 6.7. Performance Evaluation

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

%
 o

f
O

p
ti

m
a
l
A

ct
io

n

Learning Episode

Thousands

D-NFS D-RL D-ANN

Figure 6-15: Convergence Rate of Machine Learning Approaches

approaches compared in this regard are shown in Table 6.5. Fig. 6-14 shows different

variants of D-NFS, while 6-15 compares the best convergence of D-NFS with that of

D-ANN and D-RL.

It can be observed from Fig. 6-15, that in general, after convergence, the actions

from D-NFS have a slightly higher optimality than those from D-RL and D-ANN.

As earlier explained, this is expected due to the granularity of actions taken by D-

NFS (with respect to D-RL), and due to a more dynamic network structure (with

respect to D-ANN). However, we also note that D-RL and D-ANN both converge to

optimal actions slightly faster than D-NFS. This can be explained by the fact that

D-NFS does not only need to learn its fuzzy weights, but also its structure, which

understandably requires a slightly higher time.

Finally, we also note from the graphs in Fig. 6-14, that the approaches proposed

for rule base initialisation and agent cooperation do enhance the speed at which the

agents’ actions converge optimal ones. However, as can be seen from the graphs, even

without rule base initialisation and no cooperation between the agents (NI-NC), the

Chapter 6. Neuro Fuzzy System-based Dynamic Resource Allocation 143

actions would finally converge to the optimal ones, albeit at a much later stage than

others.

6.8 Conclusion

This Chapter has proposed an autonomous system that uses an adaptive and hybrid

rule-based system which is a combination of neural networks, fuzzy systems and

reinforcement learning to achieve dynamic self-management of resources in network

virtualisation.

We modelled the substrate network as a distributed system of autonomous, adap-

tive and cooperative intelligent agents. We started by defining an initial set of fuzzy

rules - the knowledge base - for each agent, which were then pruned by use of a hybrid

initialisation algorithm which uses supervised learning to initialise the rule base and

then uses unsupervised learning to adapt the rule base and fuzzy sets of each rule. A

procedure for the agents to cooperate and hence coordinate their resource allocation

actions to avoid conflicts and to share their knowledge so as to enhance their learn-

ing speed and improve action selection efficiency was then proposed, and finally, a

reinforcement learning based algorithm for continuously changing the structure and

weights of the designed neuro-fuzzy network is proposed.

We have extensively evaluated the proposed algorithms through comparisons with

state-of-the-art approaches and been able to show that our proposal lead to better

utilisation of substrate network resources by accepting more virtual network requests,

compared to both a tradition reinforcement learning and artificial neural network

based solution. Once again, we have also shown that when the agents have learnt

a network structure and fuzzy weights, the agents are able to ensure that the QoS

requirements of the virtual networks are not negatively impacted.

It is however worth noting that in addition to the improvements in the performance

that are obtained by combining neural networks, reinforcement learning, and fuzzy

systems, the most important improvement achieved by our approach is in fact un

quantifiable. It is in the fact that when the network modelling is represented by

144 6.8. Conclusion

physical rules, it is easy to duplicate the designed system to multiple applications,

by only adjusting the rules to suit related system tasks. It also avoids the difficulties

encountered in designing neural networks, such as the determination of the number

of neurons in the hidden layer.

Chapter 7

Virtual Network Survivability

7.1 Introduction

The resource management proposals in Chapters 3 - 6 perform substrate to virtual

network resource mappings and allocations in single infrastructure provider environ-

ments, and they assume that the substrate network remains fully functional at all

times. However, in practice, physical networks do not remain operational at all times

[160], hence making the provisioning of resources for service restoration an inevitable

part of any survivable network resource management approach. In addition, while

multi-provider environments are common in practice, current approaches to surviv-

able VNE have focused on the single provider environment [61], yet an extension

of survivability from the single to multi domain environments is not trivial since it

involves both intra and inter domain link failures [26]. In a multi-domain setting,

provisioning a back-up for protection and/or restoration of a failed substrate resource

could involve using resources of more than one InP, which are normally not only com-

petitive, but also secretive. This calls for mechanisms that allow InPs to dynamically

and autonomously negotiate these aspects of resource allocation and to be able to

make coalitions so as to achieve not only their independent and self-interested goals,

but also those of the VNPs whose assembled VNs are distributed across multiple

InPs1.

1The roles of InPs and VNPs will be clarified in a subsequent section.

145

146 7.1. Introduction

In this Chapter, we propose a distributed, multi-attribute negotiation approach

based on a multi-entity negotiating system to support survivability in a multi-domain

virtual network environment. The objective is to make each of the VNPs adaptive and

dynamic by giving them the capacity to perform price-based back-ups2 and restora-

tions in case of physical link failures.

To this end, we model each of the InPs and VNPs as an intelligent autonomic

negotiating entity [120]. The objectives of the VNP and InP negotiating entities are

conflicting; with the VNP aiming at achieving survivable embeddings (by ensurig

that the VN it assembles has minimal QoS violations resulting from physical resource

failures) at lower costs, while the InPs try to maximise their profits, keeping their

resource deployment and pricing strategies private. Our proposed distributed system

of negotiating entities is clearly a competitive one, not only between VNPs and InPs,

but also amongst InPs as each of them tries to maximise their profits. Therefore, we

propose an auction-based multi-attribute negotiation approach that allows InPs to

form resource coalitions iteratively, autonomously and selfishly amongst each other,

and then pass on final resource proposals to the VNP with which final negotiations

occur. We refer to the negotiation as multi-attribute, as it is based not only on the

quoted price of the resource, but also on QoS aspects such as expected link delay and

data rate.

Since network link failures occur about 10 times more than node failures [61], and

given that about 70% of unplanned link failures are single link failures [161], this

thesis focusses on protecting and restoring single substrate link failures. We however

note that any node failure can be considered as a failure of links adjacent to the node

[26], and as such, our proposal can be extended to cover multiple link failures, and

hence node failures.

The major contributions of this Chapter are as follows: a negotiation protocol

that ensures virtual network survivability with minimum communication message

2The back-ups are referred to as “price-based” because the InPs decide whether (or not) to reserve
resources for the back-up of a given virtual link depending on the prices that have been quoted (by
InPs) for the back-up resources, for example, if the cost of the back-up resources are higher than
the “reserve price” of the VNP for that virtual link, then the back-up will not be done.

Chapter 7. Virtual Network Survivability 147

overhead; VNP and InP negotiation strategies that minimise QoS violation penalties,

hence ensuring both VNP and InP profitability; and a dynamic substrate resource

pricing model that ensures efficient utilisation of resources. To the best of our knowl-

edge, this is the first endeavor to propose survivability in independent multi-domain

virtual network environments.

The rest of this Chapter is organised as follows: We formulates the virtual network

survivability problem in Section 7.2, and propose negotiation algorithms to achieve

survivable virtual networks in Section 7.3. Our proposals are evaluated and discussed

in Section 7.4, and we conclude the Chapter in Section 7.5.

7.2 Problem Formulation

7.2.1 Business Model

The network virtualisation model considered in this Chapter is shown in Fig. 7-1,

where a virtual network operator (VNO) assembles and owns virtual networks, using

physical resources from one or more infrastructure providers (InPs). In order for the

VNO to be able to deal with multiple InPs, the model includes a virtual network

provider (VNP) which plays a VNO/InP mediation role (i.e. acts as a broker) to

locate and aggregate virtual resources that compose a VN3.

In Fig. 7-1, the interfaces between the three players (VNO, VNP, and InP) are

represented by numbers 1 − 3, and they are defined in Table 7.1. These interfaces

represent two types of relationships; vertical (interface 1) and horizontal (interface

2). The vertical interface represents a relationship between a VNP and InPs and

mainly represents initial service requests from the VNP to InPs, and the subsequent

negotiations resulting from it, while the horizontal relationship is amoung InPs, and

involves either forwarding of a service request that could not be completed (from one

InP to another) or requests to setup inter-domain substrate paths.

However, while this thesis considers that all the InPs have business relationships

3See Section 2.2 for a description of Business models and roles in NVEs

148 7.2. Problem Formulation

𝐼𝑛𝑃𝑖

2

2

1

A
B

C

2

𝐼𝑛𝑃𝑘 𝐼𝑛𝑃𝑙 𝐼𝑛𝑃𝑗
P

Q

R

S
T

U

V
InP

3

VNP

VNO

Figure 7-1: Multi-Domain Virtual Network Embedding Problem Formulation

Table 7.1: Network Virtualisation Interfaces
Number Players Interface Description

1 VNP/InP Request and negotiation of virtual resources

2 InP/InP Setup of inter-domain virtual links

3 VNO/VNP Virtual network description and request

with a single VNP, it is worth noting that our proposal can be extended to consider

a third level of horizontal relationships between two or more VNPs who could, by

virtue of different InP policies or resource limit restrictions, have access to different

sets of InPs, and thereby have the capacity to re-lease out resources to other VNPs.

7.2.2 Problem Description

Link failures can be managed by either provisioning backup resources, or by attempt-

ing to perform re-routing upon failures [26]. While it would be more resource efficient

to wait for links to fail and thereafter perform re-routing of the affected paths, re-

routing schemes can be time consuming since the availability (or not) of resources to

support backup links has to be established at fault time [162].

From the business model described in Section 7.2.1, VNOs provide all their re-

quirements for creating VNs to VNPs, and they (VNOs and VNPs) have SLAs with

regard to VN provisioning, for example, in terms of virtual network downtime. We

Chapter 7. Virtual Network Survivability 149

consider that the agreements between VNOs and VNPs involve varying penalties for

violating QoS, and that the biggest contributors to QoS violation are substrate link

failures, which ultimately lead to virtual link failures. Therefore, to guard against

high penalties resulting from QoS violation, a VNP takes decisions with regard to

backing up of virtual links. The objective of the VNPs is to maximise its profits by

minimising both QoS violation penalties as well as the high expenses from resource

backup reservations.

Except for the penalties due to failed links, the overall relationship between VNOs

and VNPs is well defined in the state of the art (as presented in Section 1.5), and

mainly involves virtual network modelling (see Section 2.4.1) and virtual network

embedding. For this reason, this thesis starts after a successful VNE4. We concentrate

on the interactions between the VNP and InPs after the initial embedding stage, which

consist of creating survivable virtual links, by provisioning back-up links for each

of the already mapped virtual links, and the negotiation algorithms which provide

support to these interactions. The idea is to reserve resources that can be used by

virtual links in case of failures in the substrate network. This, however, must be done

carefully to avoid that VNPs incur very high costs for resource reservations. This is

why, for any virtual link, the VNPs determine a maximum cost that they are ready

to incur for provisioning reserve resources.

7.2.3 Work Flow

In order to give a general description of the work flow in the proposed negotiation

algorithms, we use Fig. 7-1, and consider that a VNP wants to provision backup

resources for the virtual link lij. We assume that the virtual link lij has already been

mapped, with its two ends A and B being mapped by InPs InPi and InPj respectively5.

The VNP starts by determining an initial set of InPs to which the request can be

sent. This initial set of InPs is such that it includes InPs that performed the initial

4The initial multi-domain VNE is performed by use of PolyViNE [75].
5It is worth noting that while the description in this subsection only considers a single link,

the general process will involve identical processes for each of the virtual links that are part of an
embedded VN, and subsequently multiple VNs arriving one at a time.

150 7.2. Problem Formulation

mapping (and/or their direct neighbours) of the virtual link under consideration. For

virtual link lij, the initial set would include the InPs InPi and InPj. The procedure,

and justification for selecting the InP set is described in 7.3.2. With the InP set

determined, the VNP sends the same service request (request to provision backup

resources for a given virtual link) to each of the InPs in the set. The request includes

the identity of the InPs that are mapping each end of the virtual link.

On reception of a request from the VNP, a given InP begins by determining if it

is able to complete the mapping on its own, i.e. if both ends of the virtual link are

mapped with in its domain, and it has enough substrate link resources to provision

the link. If the InP can perform the mapping on its own, then, it uses the model

proposed in 7.3.2 to determine the price, and then sends a proposal to the VNP.

However, in the example of Fig. 7-1, InPi is not able to complete the mapping on its

own since one end of the virtual link is mapped by a different InP. In this case, InPi

would forward the request to (its direct neighbour) InPk.

Whenever an InP receives a forwarded request from one of his neighbours, it

starts by ensuring that the inter-domain link connecting them has enough capacity

to support the service being requested. If the inter-domain link does not have this

capacity, then, the mapping cannot be completed, and the VNP will be informed

about the failure. In our case, this means that InPi must be able to provision link

resources from node P (which maps one end of the virtual link), to node R (in the

InP where the request has been forwarded). For instance, these resources could be

along the substrate path PQR. At this point, since InPk already has a connection to

the node A of the virtual link (through the path PQR), the request issues from InPk

will include InPk as the “most recent connection to the virtual node” (see subsection

7.2.4). Therefore, the requests forwarded by InPk will be a provisioning request for

a link starting from InPk to InPj. Following a similar procedure, InPl and InPk will

collaborate to create the connection RST, and finally, InPl and InPj will create the

final path TUV. At this point, InPj will send back its cost to InPl, who would, after

adding his own cost forward his proposal to InPk, and so on, until a final mapping

proposal is delivered to the VNP. On reception of a proposal, the VNP may accept or

Chapter 7. Virtual Network Survivability 151

reject it based on its own evaluation (see Section 7.3.2). In the rest of this Chapter,

we detail the negotiation procedures and the justification of the decision making

processes explained in this sub section.

7.2.4 Virtual and Substrate Network Modelling

To achieve inter-domain mapping, InPs should make inter-domain connections to

InPs that map the two ends of a virtual link. Considering Fig. 7-1, the two ends A

and B of virtual link lij have been mapped by InPs InPi and InPj respectively. For

the link lij to be mapped, all the four InPs must participate in the mapping. Before

any InP that is not mapping any of the two end nodes (e.g. InPk and InPl) can

participate in the mapping, at least an immediate neighbour must have participated

in the mapping, or one of the end nodes of the virtual link must have been mapped by

its direct neighbour. As an example, for InPk to connect to virtual node B of virtual

link lij, then InPl must have a connection to the same via InPj i.e InPl should have

participated in the mapping. For this reason, in addition to the parameters used to

model virtual and substrate networks as described in Section 2.4.1, in this Chapter

each virtual link lij whose ends belong to InPi and InPj has to be characterised by

an InP, InP(liju), which performed the most recent connection to the virtual node u

of the link lij. This means that since the mapping of a given link may involve more

than one InP, the mapping always starts from one end and ends and the other (or

starts from both ends and joins in the middle). As an example, the virtual link lij in

Fig. 7-1 is mapped onto the multi-domain substrate path PQRSTUV. Assuming that

InPi makes an initial mapping for the substrate path PQ and forwards the mapping

request to InPk, then according to InPk, the most recent connection to virtual node

A was performed by InPi. This is necessary because before InPk attempts to add

its own intra-domain mapping RS, it should first connect to InPi to add the inter-

domain path QR. Therefore, the information is used during coalition formation to

allow InPs that receive link mapping requests to know which InP to contact so as

to perform inter-domain mapping, and hence ensure connectivity. This information

does not reveal any private information about InP(liju), except that it participated in

152 7.2. Problem Formulation

the resource coalition, and is only known to an adjacent InP. For the scenario in Fig.

7-1, for InPk to make a connection to the virtual node B, then InP(lijB) must be InPl.

In addition, each virtual link lij has a length lijx , a bandwidth requirement lijb , and a

QoS value, lijq units.

7.2.5 Design Considerations

In this subsection, we describe the design considerations which are the basis for most

of the decisions we have made with respect to the proposed negotiation system.

Scalability

The negotiation algorithms used by VNPs and InPs should scale. For this reason,

our proposal is fully distributed across the multi-InP domain, with each InP making

its own decisions about participation in resource coalition processes. In addition, the

communication overhead due to message exchange should be minimised. To achieve

this, each InP only forwards the mapping request to its direct neighbours. In addition,

the VNP also chooses the initial set of InPs (to which the original resource request is

sent) based on the previous mapping of a given virtual link i.e. based on the initial

VNE step. In addition, each original resource request has a lifetime beyond which it

is not forwarded to other InPs. This avoids flooding the network with a single request

which cannot be fulfilled.

Trust

We ensure that InPs both amoung each other, and between them and VNPs can

always trust that the price obtained for specific substrate resources is a trustworthy

valuation of the resources. This helps to achieve two objectives. On one hand, it

helps to avoid endless message exchange between InPs and VNP (in form of contra-

proposals), hence contributing to scalability; and on the other hand, it ensures that

the InPs do not exploit VNPs by overpricing resources.

Chapter 7. Virtual Network Survivability 153

Survivability Manager

Virtual Network Provider

NEGOTIATION PROTOCOL

To Virtual Network Operator

QoS

Monitoring

Negotiation-based

Service

(De)composition

Other
VNPs

InP

Resources

ServicesInfrastructure as
a Service

Other InPs

InP

Resources

ServicesInfrastructure as
a Service

Price-driven
negotiation

Price-driven
negotiation

Price- and
QoS-driven
negotiation

Price- and
QoS-driven
negotiation

Price- and
QoS-driven
negotiation

Figure 7-2: Proposed inter-domain negotiation model

Privacy

Our proposal is mindful of the fact that InPs are secretive. As such, it does not

require exchange of information that we believe may impact on the privacy of InPs.

As an example, during coalition formation, it is not required for InPs to know the

level of participation (e.g. in form of which part of a given link is mapped by a given

InP) of preceding InPs. All that is needed for any InP is information on whether a

direct neighbour performed the most recent mapping of a given virtual link, to be

able to collaborate in creating the inter-domain mapping.

7.3 Proposed Negotiation System

Negotiation is a process by which a group of entities communicate with each other

so as to try and come to a mutual agreement over some matter [163]. It is a key

form of interaction for resolving conflicts in distributed systems in which multiple

154 7.3. Proposed Negotiation System

stake holders are interconnected. Negotiation systems are usually intended to achieve

different objectives e.g to avoid negative interactions such as resource and time in-

compatibilities, or to get mutual benefits; for example in self-interested domains. Any

negotiation system should involve three major aspects; negotiation objects, negotia-

tion protocol, and negotiation strategy [164]. In the following subsections, we describe

these aspects with respect to our proposal, whose main components are graphically

depicted in Fig. 7-2.

7.3.1 Negotiation Objects

Negotiation objects are the range of issues over which agreement must be reached.

The main objective of both InPs and VNPs is profit maximisation. However, since

a given virtual link may be mapped across multiple InPs, instead of InPs taking the

responsibility to initiate virtual link backups, this responsibility is taken on by VNPs.

The VNP determines the level of necessity of the backup for any given virtual link

(and hence the price that can be paid of backup resources) according to the required

link QoS (see QoS Monitoring in Fig. 7-2), while InPs accept or reject proposals

from each other only based on prices. For this reason, negotiations between InPs

only involve a single attribute - price, while those between InPs and VNPs are multi-

attribute, including both price and QoS. In particular, in this proposal, the VNP

considers 3 attributes; price, expected delay, and expected data rate. As will be

detailed later, the VNP evaluates proposals from any InP by use of a rank resulting

from a combination of these 3 attributes.

7.3.2 Negotiation Strategies

This is a way in which a negotiating entity within the protocol (InPs, VNPs in Fig.

7-2) acts in an effort to get the best outcome of the negotiation. They are decision

making engines the participants employ to act in line with the negotiation protocol in

order to achieve their negotiation objectives and involve e.g. criteria for generating,

accepting or rejecting proposals.

Chapter 7. Virtual Network Survivability 155

VNP Income, QoS Violation Penalty, and Profit

For each unit length, and unit bandwidth demand of a given virtual link, lij, the VNP

earns an income, Ylij from VNOs for establishing the link, and pays, a fee Cp

lij
> 0 as

a cost for primary bandwidth, a fee Cs
lij
≥ 0 as a cost for backup bandwidth, and a

fee Qlij ≥ 0 as penalty for QoS violations6. The initial VNE step is out of the scope

of this thesis. We use the proposal in [75] to achieve this, and hence to determine

Cp

lij
. In this subsection, we formulate Ylij and Qlij , and then Cs

lij
is formulated in the

next subsection. We propose Ylij as a variable chosen uniformly between the ranges

in (7.1). The decision to make Ylij uniformly distributed is to account for other factors

(such as link location) which could affect it.

Ylij = U

[

Ymin ×

(

Ymax

Ymin

)lijq −1

, Ymax ×

(

Ymax

Ymin

)lijq −1]

(7.1)

where Ymin and Ymax are the minimum and maximum income from links with the lowest

quality of service. The motivation behind (7.1) is ensuring that virtual links that have

high QoS requirements always lead to a higher income for the VNP. Therefore, the

total income, Y earned by the VNP from all links it assembles is given by (7.2).

Y =
∑

lij

(

Ylij × lijx × lijb

)

(7.2)

where lijx and lijb are respectively, the length and bandwidth of virtual link lij. In

a similar way, the penalty for QoS violation Qs
lij

per unit of virtual link length and

bandwidth is given by a random variable between:

Qs
lij = U

[

Qmin ×

(

Qmax

Qmin

)lijq −1

, Qmax ×

(

Qmax

Qmin

)lijq −1]

(7.3)

where Qmin and Qmax are the minimum and maximum penalties per unit length and

unit bandwidth for links with the lowest quality of service. Needless to say, (7.3) is

aimed at ensuring that links that require high QoS also lead to higher penalties when

6Once more, we remark that our consideration in this thesis is that QoS violations and hence the
penalties resulting from them are only due to link failures.

156 7.3. Proposed Negotiation System

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

Pr
ic

e
(U

n
it

s)

Substrate Link Resource Utilisation

Maximum Price, Pmax

Link Utilisation-based PricingFixed Pricing Fixed Pricing

Figure 7-3: Substrate Resources Pricing Utility Function

their QoS is violated. The total cost for all QoS violations is therefore given by (7.4).

Q =
∑

lij

(

Qs
lij × lijx × lijb

)

(7.4)

At any point, the profit,
∏

of the VNP is given by:

∏

= Y −Q− Cs − Cp (7.5)

where Cs is the total fee paid for backup resources (see (7.7)), and Cp is that for

primary mapping resources. It is worth noting that the income, penalty and profit

values defined in (7.1)−(7.5) are per unit time, and hence total values are obtained as

integrals of the respective values over the time axis for the considered time periods.

Pricing Model

In order for InPs to generate proposals in response to a mapping request, they should

be able to determine prices for their resources. We have chosen to use a hybrid pricing

function that is based on the logistic function. This pricing model represents a dy-

namic pricing scheme that is based on the level of resource utilisation for the substrate

network, which is restricted at either end by maximum and minimum allowed prices

for the substrate resource in question. This pricing model has advantages over the

Chapter 7. Virtual Network Survivability 157

constant pricing model that has been used in most network virtualisation proposals

such as [8], [75] and [26], as it does not only allow prices to reflect network loading

(hence encouraging better resource utilisation, and minimising network failures from

over loading), but also ensures that resources have reserve prices (to cater to min-

imum fixed costs), and maximum prices to ensure competitiveness. Therefore, we

model the price per unit of flow P (s) on a substrate link s as shown in (7.6).

P (s) = lsx

(

P s
min +

P s
max − P s

min

1 + exp
(

c1 − c2u(s)
)

)

(7.6)

where P s
min is the minimum acceptable price for s whose resource utilisation level is

u(s) and length lsx, and P s
max is the maximum allowed price. c1 is a constant aimed at

shifting the pricing function horizontally (and hence affecting the levels of resource

utilisation where the minimum and maximum prices come into effect), and c2 is a con-

stant that determines the slope of the pricing function (and hence the rate at which

pricing changes from minimum pricing to maximum price). Therefore, the total price

Cs that should be paid for all the secondary flows i.e. flows over backup resources fs
v

is given by (7.7)

Cs =
∑

allfs
v

fs
vP (s) (7.7)

The resulting pricing curve is shown in Fig. 7-3. While in general a purely dynamic

environment would benefit if all the parameters (P s
max, P s

min, c1 and c2) in (7.6) are

dynamically adapting to resource availability and InP policies, it is out of the scope

of the current work to evaluate these possible advantages in network virtualisation

environments. As such, the evaluations in this Chapter consider that for any given

substrate link, these parameters are fixed. For the simulations in 7.4.1, for each

substrate link, the constants c1 and c2 have values normally distributed between 1

& 10 and 10 & 20 respectively. The choice of these ranges is aimed at maintaining

the shape of the pricing curve in Fig. 7-3. It should also be remarked that general

survivability approach in this thesis is independent of pricing model, and as such,

other pricing models could be used.

158 7.3. Proposed Negotiation System

InP Proposal Selection

To avoid network overload that would result from endless negotiations and counter-

proposals, truthful pricing of substrate network link resources is an important require-

ment of our proposal. For this reason, InPs use the sealed-bid second price auction

(SBSP) model [165] for proposal selection amoungst each other. In SBSP auctions,

a buyer selects the lowest bidder, but pays him the price for the second lowest bid.

This forces bidders to be truthful about their pricing, as the winning bidder can never

influence the price he or she pays. In this kind of negotiations, the dominant strategy

is to bid the true valuation of the good [166]. If only one proposal is received within

a given time limit, that proposal is accepted at its price.

VNP Multi-Attribute Evaluation

Since VNPs attempt to backup virtual links that have already been mapped, the

price Price for the original mapping is known. This price is used as a benchmark to

accept or reject decisions. Depending on the QoS requirement lijq of a given virtual

link lij, a reserve price Pres is determined using (7.8).

Pres = η × lijq × Price (7.8)

where η is a VNP specific constant aimed at scaling the reserve prices.

As the VNP receives mapping proposals, it must evaluate them with regard to

price, link delay, and expected data rate, based on the proposal contents. These three

attributes, should be combined to obtain a single evaluation index, E of the proposals.

For simplicity, our choice is a linear combination of the attributes. Therefore:

E = α(Price) + β(NumLinks) + γ(Loading) (7.9)

where α, β and γ are constants aimed at not only biasing the evaluation to price

sensitivity or QoS sensitivity, but also on normalising the three attributes as they all

have varying orders of magnitude. Using (7.9), the reserve evaluation Eres can also be

Chapter 7. Virtual Network Survivability 159

determined as (7.10).

Eres = α(Priceres) + β(NumLinks) + γ(Loading) (7.10)

For each Service Request, the VNP initialises a |InPset| × 5 rank matrix, M. Each of

the 5 columns of M represents InP , Price, NumLinks, Loading and E respectively. This

matrix is updated whenever the VNP receives a mapping proposal, by populating

each row with the: InP , Price, NumLinks, Loading, E; and thereafter sorted to ensure

that rows with the lowest value of E are always on top. When the VNP receives

replies from all contacted InPs, or when the Expiry time of a given SR is reached, the

VNP chooses from M the top row, and its evaluation value, Etop is compared with the

reserve evaluation Eres and a response is sent to the InP concerned according to:

Negotiation Result =

AP (ID, Price) if Etop ≤ Eres

RP (ID) if Etop > Eres

To ensure VNP profitability as well as QoS of mapped links, if VNP cannot accept

proposals, instead of considering raising the value η, we propose that the VNP waits

a random time dictated by an exponential backoff [167] to resend the SR, with a hope

that at one point the substrate network resources would have lower prices.

Determining the InPset

For scalability reasons, the VNP cannot send service requests to all InPs. The set of

InPs to which a SR is sent is determined dynamically for each substrate link which is

part of the path mapping a given virtual link. If the substrate link is an intra-domain

link, this set includes the InP that owns it, as well as all its direct neighbours. The

reasoning behind this is that we expect that either the original InP will be able to

perform the mapping for the backup resources on its own, or at the very minimum,

it will have to form coalitions with its neighbours. Using a similar argument, if the

substrate link under consideration is an inter-domain link (like the link lij in Fig. 7-1),

160 7.3. Proposed Negotiation System

both InPs at the end of the link, as well as both their respective direct neighbours

form part of the set of InPs. With reference to Fig. 7-1, this means that the InP set

would include all the four InPs, InPi, InPk, InPl and InPj. In each of these cases, a

given InP is added to the set, only if it is not in the Blacklist.

7.3.3 Negotiation Protocol

This is a set of rules that governs the interactions between entities, i.e. between InPs

and VNPs (see Fig. 7-2). Since Provisioning of the virtual links over multiple InP

domains requires collaboration and hence communication between VNPs and InPs

and amoung InPs, the protocol defines the flow of messages both amoung InPs, and

between InPs and VNPs. After a successful VNE, the Survivability Manager of the

VNP (see Fig. 7-2) sends out out multiple and independent service requests (SRs) to

InPs. Each SR represents a back up for a given substrate link making up the substrate

path for each of the mapped virtual links. Therefore, the Survivability Manager of

the VNP starts by replicating each virtual link into as many requests as the substrate

links onto which it is mapped. This allows the VNP to provision independent backup

paths for each part of the substrate path.

In what follows, we define the 7 messages that form the proposed negotiation

protocol, which in turn are graphically represented in Fig. 7-4 in a typical negotiation

process.

• Service Request(InPi, InPj, lijb , ID, BlackList, Expiry): A service request (SR) mes-

sage is sent by either a VNP (to initiate negotiation) or by InP (to forward mapping

request) to a given set of InPs to request for mapping of a given virtual link with a

unique identification ID. In case it is sent by a VNP, it is the first message in the

negotiation process, and initiates the provisioning of the backup for a virtual link.

In case it is sent by an InP, this message represents forwarding of a given virtual link

backup provisioning. InPi, InPj and lijb have been defined in Section 7.2.4. BlackList

is a set of InPs which cannot participate in the resource coalition. This may be due

to policy considerations, or the fact that a given InP has already participated in

Chapter 7. Virtual Network Survivability 161

VNP

InP1 InP2 InP3 InP4 InP5

SR

SR

SR

MP

MF

SR

SR

MF

LM

LR

RP

MP

RP

MP

AP

Figure 7-4: Message Exchange between InPs and VNP

the mapping, and hence re-sending a SR to this InP would only increase message

exchanges. It is worth noting that for privacy reasons, the actual substrate node

mapping the end nodes of the link are not revealed during the message exchanges,

instead giving the link ID so that the responsible InP can use it to find the actual

start and/or end node. Finally, each SR has a fixed life time represented by Expiry.

This ensures that the mapping attempts for a given link can only go on for a given

time, saving possibilities of flooding the network with mapping requests that cannot

be fulfilled.

• Mapping Proposal(ID, Price, NumLinks, Loading): After receiving a SR, an InP at-

tempts to perform a link mapping. If the mapping is successful, the InP replies

with a mapping proposal (MP) to the sender, giving details of the mapping such as

NumLinks which is the total number of substrate links onto which the virtual link

is mapped, (which is a measure of the total expected delay), Loading which is the

maximum of the percentage loadings of all of the substrate links participating in the

virtual link mapping (which is a measure of possible service invocation failures due

to diminished substrate link bandwidth, or substrate link failures due to over load-

ing), and the Price, which is the cost of the embedding, per unit bandwidth and time.

162 7.3. Proposed Negotiation System

• Reject Proposal(ID): After receiving a MP, a given InP or VNP may reject it either

due to policy violations, or being above the reserve cost expectation, or not the win-

ning bid. In this case, a reject proposal (RP) message is sent.

• Accept Proposal(ID, Price): If on the other hand a VNP or InP determines that a

given MP is the best, or acceptable considering both pricing and policy aspects, an

accept proposal (AP) message is sent to the corresponding InP. The Price is specif-

ically useful if the negotiation is between two InPs as this will usually be different

(higher) from the one which was proposed in the MP (see Section 7.3.2).

• Link Map(u, SNode, ID): In case of links that need to be mapped inter-domain, a

link map (LM) message is sent by an InP to InP (liju) that performed the last mapping

with respect to the virtual node u, which is at the end of the link ID, specifying the

inter domain substrate egress node SNode that it connects to. On reception of this

message, the receiving InP determines its node SNodex onto which u was last mapped,

and attempts to create a substrate path between SNodex and SNode. Before the LM

message is sent, the sending InP ensures that the inter-domain link connecting them

has enough resources to support the virtual link. Using the example of the virtual

link lij in Fig. 7-1 again, and assuming that InPi has made an initial mapping for

the substrate path PQ and forwarded the mapping request to InPk, then according

to InPk, the most recent connection to virtual node A was performed by InPi. There-

fore, InPk sends a LM(A, R, lij). With this, InPi would already know that this virtual

link was mapped onto node Q in its domain, and will therefore attempt to create the

inter-domain link QR.

• Link Result(ID, Price, Result): The link result (LR) message is sent in response to a

LM, after attempting to make a connection to the egress node of the sending InP.

Result is a binary value that is 1 if the mapping is successful, and 0 otherwise. If

Result == 1, then Price is the cost of the link mapping, which the sending InP should

Chapter 7. Virtual Network Survivability 163

add to its mapping cost.

• Mapping Failed(ID): The mapping failed (MF) message is sent by any InP to either

an InP or VNP when a mapping cannot be provided either due to policy violations

or resource constraint restrictions.

The algorithms described earlier for VNP negotiation as well as InP mapping and

negotiation are shown in algorithms 8 and 9.

Algorithm 8 VNP Negotiation Procedure

1: Thread1: Receive Proposals
2: while true do
3: Receive Proposal for virtual link lij

4: Determine E
5: Update and Sort M(lij), determine Etop

6: end while
7: if Etop ≤ Eres then
8: Accept corresponding proposal, reject others
9: else
10: Reject all proposals
11: Backoff
12: end if
13: Thread2: Survivability Management
14: while Expecting VN Requests do
15: Get VN and Perform VNE
16: if VNE Result ≡ False then
17: Mapping Failed
18: else
19: for Each virtual link lij accepted V N do
20: Determine Eres

21: for Each substrate link ls mapping lij do
22: Determine InPset for l

s

23: Initialise M(lij) = [|InPset|][5]
24: for InP ∈ InPset do
25: Send service request to InP
26: end for
27: end for
28: end for
29: end if
30: end while

164 7.3. Proposed Negotiation System

Algorithm 9 InP Mapping and Negotiation Procedure

1: for each virtual node u and v of the virtual link do

2: Determine latest mapping InP (liju) and InP (lijv)

3: end for

4: Initialise M = [|InPset|][4]

5: if InP (liju) ≡ InP (lijv) ≡ CurrentInP then

6: Perform intra-domain link mapping

7: if Result is True then

8: Return Mapping Proposal

9: else

10: Determine InPset

11: if InPset 6= ∅ then

12: Forward Service Request

13: while Expecting more proposals do

14: Receive Proposals, Update M

15: Determine Best Proposal BP

16: Get Price of 2nd Best Proposal, PSBP

17: end while

18: if M ≡ Empty then

19: Mapping Failed

20: else

21: Accept Proposal BP at price PSBP

22: end if

23: else

24: Mapping Failed

25: end if

26: end if

27: else

28: Send LM message to InP (liju) and/or InP (lijv)

29: if LM Result ≡ Success then

30: Update InP (liju) and/or InP (lijv)

31: Go To Line 4

32: else

33: Mapping Failed

34: end if

35: end if

Chapter 7. Virtual Network Survivability 165

Table 7.2: Simulation Parameters

Parameter Substrate Network Virtual Network

Number of Nodes [100, 150] [20, 40]

Number of Links From Brite From Brite

Link Bandwidth [200, 500] [100, 200]

Node CPU [100, 200] [50, 100]

Node Locations [0, 250] [0, 250]

7.4 Performance Evaluation

7.4.1 Simulation Setup

We start by creating a SN topology, and thereafter VN requests arrive one at a time

to the SN. The arrival rate is 10s and service time 300s, and both follow Poisson

distribution. All evaluations are performed for 1000 VN arrivals. The substrate and

virtual network topologies are generated using Brite [110]. The InPs are connected

to each other with an inter-domain link with probability of 0.5 and a bandwidth uni-

formly distributed between 500units and 1000units to form the multi-entity negotiation

system. Each of the InP and VNP negotiating entities is implemented in the Java

Agent Development Framework (JADE) [168], and the proposed negotiation protocol

is implemented as an extension to the ACLMessage [168], which is compliant to the

FIPA 2000 specifications [169]. Expiry time of each message is distributed uniformly

between 30 and 60s from time the message was created by VNP.

Substrate link minimum price Pmin is determined as a function of the link length.

Specifically, the simulations in this Chapter use the actual link length as the minimum

price per unit for the substrate link. Link lengths are determined from the output

of Brite. Maximum price Pmax is determined as (Pmin + Pdev), where deviation Pdev is

chosen from a uniform distribution between 0 and Pmin.

For each substrate link, the mean time between failures (MTBF) and mean time

166 7.4. Performance Evaluation

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000

Li
n

k
 U

ti
li

sa
ti

o
n

VN Requests

PolyViNE MDSViNE

Figure 7-5: Average Substrate Resource Utilisation

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000

A
cc

e
p

ta
n

ce
 R

a
ti

o

VN Requests

PolyViNE MDSViNE

Figure 7-6: Virtual Network Acceptance Ratio

to repair (MTTR) used in our simulation are based on a characterisation of link fail-

ures in a real ISP backbone performed in [161] and both follow a Weibull distribution

[170] with shape parameter, β = 0.5, and scale parameter, α = 0.4 and 0.2 for MTBF

and MTTR respectively. The quality of service lijq values for each virtual link are

uniformly distributed between 1 and 5 where 1 is the lowest QoS and 5 the high-

est. The rest of the substrate network and virtual network parameters are uniformly

distributed between values shown in Table 7.2.

Chapter 7. Virtual Network Survivability 167

0

10

20

30

40

50

60

200 400 600 800 1000

M
e

s
s
a

g
e

s

VN Requests

MDSViNE PolyViNE

Figure 7-7: Variation in Message Overhead

7.4.2 Comparison with other approaches

We compare the multi-domain survivable VNE (MDSViNE) proposal in this Chapter

with PolyViNE [75] which performs multi-domain embedding without consideration

for survivability. We also note that it is this approach which is used for performing

the initial VNE before our survivability proposals start. Node mapping is performed

using the greedy approach in [112] while link mapping is performed by formulating

the problem as a multicommodity flow (MCF) [27] and solving the resulting linear

program using CPLEX12.6 [111].

7.4.3 Performance Metrics

While the simulations in this Chapter have considered a range of aspects from mes-

sage overhead, VN acceptance ratio, to efficiency of resource utilisation, the main

performance evaluation metric is the profitability of the VNP. As already defined

in Section 7.3.2, this is a measure of the difference between the total income of the

VNP and the total expenses for initial mappings, back up resource reservations, and

penalties due to QoS violations.

168 7.4. Performance Evaluation

-0.05

0.01

0.06

0.11

0.16

0.21

0.26

0.31

600 650 700 750 800 850 900 950 1000

V
N

P
 C

o
s
t
s
,

In
c
o

m
e

,
P

r
o

f
it

VN Requests

PolyViNE-PrimaryCost PolyViNE-Penalty PolyViNE-Income

PolyViNE-Profit MDSViNE-PrimaryCost MDSViNE-BackUpCost

MDSViNE-Penalty MDSViNE-Income MDSViNE-Profit

Figure 7-8: VNP Average Costs, Income, Profits

7.4.4 Discussion of Results

Fig. 7-5 shows that MDSViNE has a better utilisation of substrate network resources

compared to PolyViNE. This is is expected since MDSViNE commits some of the link

resources for failures. For the same reason, since MDSiNE has less free resources to

accept resource requests, we note in Fig. 7-6 that PolyViNE has a marginally better

acceptance ratio for VN requests. In Fig. 7-7, we observe that PolyViNE involves

an exchange of fewer messages compared to MDSViNE. This is also expected, since

MDSViNE includes PolyViNE in the first stage, and also because PolyViNE is not

making any negotiations for backups. It can also be noted that, in general, the num-

ber of messages also increase with substrate resource utilisation as seen by comparing

both Fig. 7-5 and 7-7. This can be explained by the need for InPs to forward a

Chapter 7. Virtual Network Survivability 169

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

V
N

P
 C

o
s
t
s
,

In
c
o

m
e

,
P

r
o

f
it

Negotiation Strategy ()

Income PrimaryCost BackUp Penalty Profit

Figure 7-9: Effect of Negotiation Strategy

service request to many InPs possibly due to mapping resource shortages.

In Fig. 7-8 we show the VNP costs (primary mapping costs, back-up costs, QoS

violation penalties), income and profit. As it can be noted, while both approaches

have on average similar primary resource costs, PolyViNE incurs more costs as a re-

sult of QoS violation as compared to the total costs of both back-up resources and

QoS violations by MDSViNE, hence ensuring that better profitability for VNPs that

are survivability-aware.

In Fig. 7-9, we evaluate the VNP negotiation strategy7, and its effect on prof-

itability. We observe that by adjusting from being more profitability-biased η = 0 to

being more QoS-aware η = 1, while the cost of resource back-ups keep rising, the QoS

violation penalties decrease sharply and then remain constant, implying that it pays

7These simulations are repeated 10 times for each case, and what we present here are average
values.

170 7.4. Performance Evaluation

0

0.05

0.1

0.15

0.2

0.25

0.3

200 400 600 800 1000

V
N

P
/
In

P
 I

n
c
o

m
e

,
P

r
o

fi
t

VN Requests
InPIncome-With VNPProfit-With

InPIncome-With VNPProfit-Without

Figure 7-10: Effect of Pricing Model

for the VNP to use a lower value of η. This is attributed to the fact that since the

VNP does not have a immediate requirement for backup resources, it may chose to

periodically send the resource back up request until it receives a proposal below its

reserve evaluations.

Finally, Fig. 7-10 shows the effect of dynamic pricing on the income and prof-

itability of InPs and VNPs. Its clear that a dynamic pricing model leads to better

profitability for both InPs and VNPs. For the VNPs a dynamic pricing scheme allows

them to wait for periods when resource pricings are low so as to request for resource

backups, and this also gives more income to the InPs by avoiding that resources are

left idle when they could be priced lower in periods of lower load.

Chapter 7. Virtual Network Survivability 171

7.5 Conclusion

This Chapter has proposed a distributed, competitive and dynamic multi-attribute

negotiation solution that allows for a survivability-aware virtual network embedding

in multi-domain environments. We represented each infrastructure provider and vir-

tual network provider as agents with conflicting objectives. While the VNP agents

aimed at achieving survivable embeddings at lower costs, the InP agents tried to max-

imise their profits, keeping their resource deployment and pricing strategies private.

We proposed that after a given multi-domain VNE, the VNP should initiate ne-

gotiations for provisioning of backup paths for each mapped virtual link. To this end,

the VNP started by determining a set of InPs to which the mapping request is sent.

The objective of restricting the number of agents that receive mapping requests is to

minimize communication message overhead. Then upon receiving a mapping request,

an InP either performs the mapping on its own or if this cannot be done, the request

is forwarded to other InPs. For each InP, after a partial or complete mapping, the

substrate resources involved in the mapping were dynamically priced using a pricing

model that bases on available substrate resources to determine resource prices, and a

proposal forwarded to the VNP. The VNP used knowledge of possible QoS violation

penalties and actual costs of backup resources to either accept or reject the all the

received mapping proposals. Finally, for all virtual links for which a backup provision

was not effected immediately after the initial embedding, other attempts are made to

do this following a back-off mechanism.

We compared our proposal to a state-of-the-art multi-domain embedding ap-

proach, and through simulations, we have confirmed that our approach improves

the utilisation level of substrate link resources by about 20%, while achieving a com-

parable acceptance ratio and minimal extra message exchange. We have also shown

that our approach improves the profitability of InPs by over 1000%, and that the

pricing model improves the InP profit by about 200%. The results in this Chapter

confirm hypothesises 5 and 6 as outlined in Section 1.2.

172 7.5. Conclusion

Chapter 8

Conclusions and Future Work

8.1 Introduction

One of the fundamental requirements in network virtualisation is the assignment

of physical network resources to virtual networks. Because it determines how many

virtual networks can share a given set of physical resources at any given point, resource

management directly affects the profitability and hence attractiveness of network

virtualisation to infrastructure providers.

This thesis set out to make contributions to this very important part of network

virtualisation. To this end, the resource management problem was split into three

clear sub-problems; (1) virtual network embedding, (2) dynamic resource allocation,

and (3) virtual network survivability. For each of these sub-problems, the state-of-

the-art was analysed with an aim of determining areas that needed more research.

After, comprehensively analysing state-of-art approaches, it was observed that;

(1) there was need to not only perform the embedding in one shot, but also to devise

a way of improving the time complexity of the formulated problem, as it is computa-

tionally intractable, (2) most state of the art approaches were static, i.e. allocating a

fixed amount of resources to virtual networks through out their lifetime, which would

potentially be wasteful and hence lead to inefficient resource utilisation, and finally,

that (3) current approaches to virtual network survivability have only focussed on

intra-domain virtual network environments, yet practical reasons mean that virtual

173

174 8.2. Summary of Results

networks can span more than one domain.

For each of these three identified gaps in the state-of-art approaches, this thesis

set out to answer the following respective questions:

1. Can virtual network embedding be performed in one shot without incurring the

exponential computational time of the optimal formulation ?

2. Can resources be dynamically allocated to virtual nodes and links without a

negative impact on their QoS ?

3. What would be the impact of a dynamic pricing approach and a survivability-

aware resource allocation approach on the profitability of infrastructure providers

?

These questions led to the formulation of the six hypothesises presented in Section

1.2, all of which have been confirmed in this thesis. In the rest of this Chapter, we

summarise the main contributions and results with regard to each of the three sub-

problems identified, provide answers to the above respective questions, and finally,

an outlook for future work in line with each of the sub-problems. We conclude the

chapter and thesis by giving the expected practical applicability of the thesis results,

followed by a list of publications and other contributions to the scientific community.

8.2 Summary of Results

The main results of this thesis are chapter specific and were summarised at the end of

each of the Chapters 3 - 7. In this section, we summarise these results, grouped into

the three sub-problems which have been the subject of this thesis. In what follows,

each sub-section is divided into three parts, the main research question is re-stated,

the contributions of the thesis are presented, and the answer resulting from them

finally given.

Chapter 8. Conclusions and Future Work 175

8.2.1 Virtual Network Embedding

Question

Can virtual network embedding be performed in one shot without incurring the ex-

ponential computational time of the optimal formulation ?

Thesis Contributions

This thesis has applied column generation to the one shot virtual network embedding

problem. The objective was to achieve the embedding efficiency that results from a

one-shot mapping, while greatly enhancing its time complexity. Two mathematical

programs, a primal and dual, were formulated. A third mathematical program repre-

senting an initial solution was also formulated. Solving these three programs in turn

yielded the one-shot virtual network embedding.

In this regard, the main contributions of this thesis are as follows:

• A near optimal one-shot virtual network embedding approach that improves

substrate resource utilization compared to existing solutions.

• A path generation-based approach that significantly improves the time com-

plexity of the solution compared to the optimal solution.

To the best of our knowledge, this is the first path-based mathematical program-

ming solution to the one shot virtual network embedding problem. It is also the

first application of path generation to a multi−commodity flow problem in which the

source and end nodes of each commodity must also be determined.

Answer

Simulation results confirmed that:

• Our proposal does not only achieve an average acceptance ratio close to that

obtained by the optimal solution, but also outperforms state-of-the-art solutions

in this regard. It was also observed that the proposed approach achieves a

176 8.2. Summary of Results

better utilization ratio for substrate node and link resources compared to other

solutions.

• Importantly, it was established that for substrate networks up to about 60 nodes,

our proposal had time computations similar to state-of-art approaches. While

the complexity slightly diverged for bigger substrate networks, it still remained

comparable. In all these circumstances however, our proposal significantly out

performed the optimal solution.

8.2.2 Dynamic Resource Allocation

Question

Can resources be dynamically allocated to virtual nodes and links without a negative

impact on their QoS ?

Thesis Contributions

For dynamic resource allocations, this thesis proposed machine learning techniques,

with the objective of incorporating self-management capabilities in the allocation

of physical resources to virtual nodes and links. Three incremental approaches were

proposed. The first based on reinforcement learning, the second using artificial neural

networks, and the final one neuro-fuzzy systems. The overall idea in each of these

proposals was to take advantage of idle virtual network resources by allocating then

to other virtual networks that needed them. This had to be done while at the same

time ensuring that the QoS requirements of virtual networks were not being violated.

For each of the three approaches proposed in this respect, the following contributions

were made by this thesis:

1. Reinforcement Learning: A distributed reinforcement learning algorithm that al-

locates resources to virtual nodes and links dynamically and an initialisation

scheme that biases the learning policy to improve the rate of convergence.

Chapter 8. Conclusions and Future Work 177

2. Artificial Neural Networks: A neural network algorithm that improves the sensitiv-

ity of the reinforcement approach, due to perception and action on continuous

spaces. The use of reinforcement learning to training the neural network, do-

ing way with the usual need of training examples in typical neural network

applications.

3. Neuro-Fuzzy Systems: An adaptive neuro-fuzzy system in which a hybrid learning

mechanism uses supervised learning to initialise the rule base and then uses

unsupervised learning to adapt the rule base and fuzzy sets of each rule to

achieve efficient resource allocation. A cooperation scheme that allows the sub-

strate network agents to coordinate their actions so as to avoid conflicts and to

share their knowledge so as to enhance their learning speed and improve action

selection efficiency.

Answer

In addition to the respective improvements of each approach over the preceding one,

the major results from these contributions can be summarised as below:

• Opportunistically using virtual network resources significantly improves the ac-

ceptance ratio of virtual networks, and the overall number of virtual networks

that can be hosted on a substrate network at any point.

• The enhanced acceptance of virtual network requests can be obtained without

negatively impacting the QoS of the already embedded virtual networks, when

the allocating entities have learnt optimal resource allocation policies.

To the best of our knowledge, this is the first application of artificial intelligence-

based techniques to the self-management of resources in network virtualisation en-

vironments. It is also the first QoS-aware proposal for opportunistic use of virtual

network resources.

178 8.2. Summary of Results

8.2.3 Virtual Network Survivability

Finally, after observing that most current approaches to virtual network survivability

have only focussed on intra-domain virtual network environments, this thesis pro-

posed a system of negotiating entities. While the overall objective is to minimise the

penalties resulting from QoS violations on the side of InPs, it inevitably also ensures

that the VNP do not suffer QoS violations.

Question

What would be the impact of a dynamic pricing approach and a survivability-aware

resource allocation approach on the profitability of infrastructure providers ?

Thesis Contributions

In this regard, the major contributions of this thesis are as follows: a negotiation

protocol that ensures virtual network survivability with minimum communication

message overhead; VNP and InP negotiation strategies that minimise QoS violation

penalties, hence ensuring both VNP and InP profitability; and a dynamic substrate

resource pricing model that ensures efficient utilisation of resources. To the best

of our knowledge, this is the first endeavor to propose survivability in independent

multi-domain virtual network environments.

Answer

We have confirmed that our approach improves the utilisation level of substrate link

resources, while achieving a comparable acceptance ratio and minimal extra message

exchange compared to a state-of-art approach. We have also been able to confirm that

provisioning resources for survivability in multi domain virtual networks improves the

profitability of InPs by over 10 times, and that the dynamic pricing model improves

the InP profit 2-fold.

Chapter 8. Conclusions and Future Work 179

8.3 Future Work

The scale of the resource management problem in network virtualisation is extensive

and multifaceted even when considered at the level of each of the three identified sub-

problems. What follows is our expectations and recommendations for future work in

each one of them.

8.3.1 Virtual Network Embedding

There is still more work that can be done to further enhance the computational com-

plexity of the one-shot virtual network embedding. One possibility is to start by

formulating linear relaxations of the mathematical programs formulated in Chapter

3, and then proceeding to propose heuristics to determine final solutions. The chal-

lenge in this aspect would be ensuring that the solution from a linear relaxation can

be adapted to ensure that it still meets the embedding constraints such as capacity

or node location. One possible direction to take in this foray would be to explore

possible combinations between optimisation theory and some techniques from artifi-

cial intelligence such as particle swarm optimisation. Future research in this area will

study the feasibility of this solution approach

8.3.2 Dynamic Resource Allocation

One issue that has appeared across all the three variants of the dynamic resource

allocation proposals in this thesis have been the slightly bad performance at the

beginning of the learning process. Indeed, most machine learning techniques usu-

ally suffer from low convergence speed. While this thesis attempted to initialise the

learning to enhance the convergence speed, more work can still be done in the same

direction. Specifically, it is possible to create an initial offline learning step, such that

actual online resource allocations start from optimal policies. It will also be interest-

ing to extend the dynamic resource allocation to multi-domain virtual networks, in

which, instead of the link agents only cooperating, they compete amongst each other

and their respective secrecy considerations. It is also worth some effort to study how

180 8.3. Future Work

the rules/policies/weights in each agent vary in a given agent over time, with the aim

of determining possibilities for enhancing the effect of agent cooperation.

8.3.3 Virtual Network Survivability

This thesis only considered single substrate link failures. Future works will involve

extending the approach to consider multiple link failures, and hence node failures.

We will also extend the interfaces between virtualisation players to include scenarios

where VNPs are able to use policy-based considerations to re-lease resources to other

VNPs. In addition, we intend to explore possible improvements in the mechanism

of combining the negotiation attributes by, say, using a non-linear combination. We

will also study possibilities of making both VNP and InP entities more autonomic to

allowing them to take more decisions, say, changing minimum and maximum prices

by considering policies and resource utilisation, by employing learning techniques,

ensuring scalability and convergence to optimal results.

8.3.4 Other Related Areas

In addition to the three sub-problems considered in this thesis, there are still several

key challenges in the management of resources in network virtualisation. For example,

current virtualisation systems assume a cooperative environment where all virtual

network operators, and users collaborate. As virtualisation matures and becomes

more widely deployed, it is important to consider the effects of and possible defenses

against malicious operators and users, especially given that these users share the same

medium. It will also be important to defined more elaborate frameworks to ensure

and manage QoS especially in multi-domain virtual network environments. Finally,

recent research has introduced new concepts such as software defined networking and

network function virtualisation, both of which have requirements similar to those

of network virtualisation, and specifically to virtual network embedding. Resource

management in these future Internet technologies will also become important future

research areas.

Chapter 8. Conclusions and Future Work 181

PART OF OUR PROPOSAL PRACTICAL QUESTIONS FOR FUTURE RESEARCH

Opportunistic use of resources

contracted to SPs

Assuming that the SPs are paying for total contracted resources, would it require

specific agreements to allow that "their resources" are taken back by the InP ? Or is

it in the powers of the InP to determine resource allocation for as long as these

resources are given back to the SPs when needed.

Resource Status Monitoring

1. Do InPs currently have capacity to support the monitoring of network resource

utilisation/allocation as required by our proposal? If not, would they easily accept to

deploy a system that does so?

2. In terms of frequency of monitoring/resource adjustments, how often is

practical? Would this frequency have any impact on network load and performance

or on user quality of service?

Practical Implementation

Is it possible to implement the proposed algorithms in state of the art

communication systems i.e. to embed learning agents in real network nodes and

links? If not, what would be the limiting factor?

Figure 8-1: Practical Questions to be Considered for Future Research

8.4 Practical Application

The contributions of this thesis may be used in existing network virtualisation projects

and/or test beds so as to achieve autonomic and efficient management of substrate

network resources. They could also be used by telecommunications infrastructure

providers. There is also a growing need for efficient resource management in Cloud

computing [171] so that different applications can be dynamically allocated resources

from the pool [172]. In this regard, our dynamic resource allocation proposals can be

adapted and/or extended to fit into the needs of Cloud service providers.

In particular, as an initial step, due to our participation in some European collab-

orative projects such as Flamingo [173], we can have access to virtualisation testbeds

such as the virtual wall [174]. Our next more practical steps in this regard will be to

see how our proposals, especially the dynamic resource allocation algorithms can be

used in such testbeds.

182 8.4. Practical Application

Finally, with the help of Flamingo1, we are already attempting to validate the

proposals of our dynamic allocation schemes. This process involves discussing various

aspects of our proposal with a real operator, such as an infrastructure provider. The

idea is to determine the requirements towards having such proposals applied in real

environments. To this end, we have already formulated the questions shown Fig. 8-1,

that will be discussed with a real operator in Europe (yet to be determined). Based

on the feedback, two possible actions will be taken; (1) improve our proposals based

on their advise, (2) implement a simple prototype based on our proposals. These will

all be part of future work.

1Part of the contributions of this thesis were done with in the Flamingo EU project.

Publications and Contributions to Scientific Research

Journals

• Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, Meng Shen, Ke Xu, Kun

Yang, “A Neuro-Fuzzy Approach to Self-Management of Virtual Network Re-

sources”, Submitted to Journal of Expert Systems With Applications, (February

2014). Code: NFSA.

• Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Raouf Boutaba, “Path Generation-

based Virtual Network Embedding”, Submitted to IEEE/ACM Transactions on

Networking (March 2013). Code: PaGeViNE.

Conferences

• Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, Javier Rubio-Loyola, Ramón

Agüero, “Survivability-oriented Negotiation Algorithms for Multi-domain Vir-

tual Networks”, Submitted to 10th International Conference on Network and

Service Management (CNSM) 2014. Code: SONA

• Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, Maxim Claeys, Jeroen Famaey,

Filip De Turck, “Neural Network-based Autonomous Allocation of Resources

in Virtual Networks”, European Conference on Networks and Communications

(EuCNC), 2014. Code: NNAA

• Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, “Contributions to Efficient

Resource Management in Virtual Networks”, IFIP 8th International Conference

on Autonomous Infrastructure, Management and Security (AIMS), 2014. Code:

CERM

• Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, Maxim Claeys, Steven La-

tre, Filip De Turck, “Design and Evaluation of Learning Algorithms for Dy-

namic Resource Management in Virtual Networks”, IEEE/IFIP Networks Op-

erations and Management Symposium, (NOMS), 2014. Best Student Paper

Award. Code: DELA

Workshops

• Rashid Mijumbi, Juan Luis Gorricho and Joan Serrat, “Learning Algorithms for

Dynamic Resource Allocation in Virtualised Networks”, Management of Large

Scale Virtualized Infrastructures: Smart Data Acquisition, Analysis and Net-

work and Service Management in the Future Internet, 2014. Invited Extended

Abstract. Code: DARVN

• Rashid Mijumbi, Joan Serrat and Juan Luis Gorricho, “Multi-Agent Based Re-

source Allocation in Next Generation Virtual Networks”, Barcelona Forum on

Ph.D. Research in Communication and Information Technologies, 2012. Code:

MARA

• Rashid Mijumbi, Joan Serrat and Juan Luis Gorricho, “Autonomic Resource

Management in Virtual Networks”, Scalable and Adaptive Internet Solutions

(SAIL) Summer School Work in Progress Session, Santander, Cantabria, 2012.

Best Work in Progress Award. Code: ARMVN

Participation in Research Projects

• Connectivity as a service. Access of the Future Internet (COSAIF). Funded by

Ministerio de Economa y Competitividad (TEC2012-38574-C02-02). Period:

Jan 2013 - Dec 2015.

• Management of the Future Internet (Flamingo). Network of Excellence, Funded

by European Union contract number: 318488. Period: Nov 2012 - Oct 2016.

• End-to-end Virtual Resource Management across Heterogeneous Networks and

Services (EVANS). Funded by European Union contract number: 269323. Pe-

riod: May 2011- April 2014.

• Service Delivery and Service Level Management in Grid Infrastructures (gSLM).

Funded by European Union contract number 261547. Period: Sep 2010 Aug

2012.

• Cognitive, Cooperative Communications and autonomous SErvice Management

(C3SEM). Funded by Spanish Ministry of Science and Innovation (TEC2009-

14598-C02-02). Period: Jan 2010 - Dec 2012.

Contributions to Technical Documents

• Anna Sperotto et. al., “Network and Service Monitoring”, D5.1 Flamingo EU

Project, October-2013.

• Gabi Dreo Rodsek et. al., “Automated Configuration and Repair”, D6.1 Flamingo

EU Project, October-2013.

• Radhika Garg et. al., “Economic, Legal and Regulative Constraints”, D7.1

Flamingo EU Project, October-2013.

• Zheng Hu et. al., “Reports on Vertical Management of Virtualised Resources”,

D3.1 and D3.2 of Project EVANS, September-2012 and November-2013.

• Ning Wang et. al., “Reports on Horizontal Management of Virtualised Re-

sources”, D4.1 and D4.2 of Project EVANS, September-2012 and November-

2013.

• Joan Serrat et. al., “SLM model and use cases”, D4.2 of Project gSLM,

September-2011.

Invited Talks

• “Learning Algorithms for Dynamic Resource Allocation in Virtualised Net-

works”, Workshop on Management of Large Scale Virtualized Infrastructures:

Smart Data Acquisition, Analysis and Network and Service Management in the

Future Internet, co-located with European Conference on Networks and Com-

munications (EuCNC), Bologna, Italy. June 2014. (Invited).

• “Application of Learning Techniques to Resource Management in Virtual Net-

works”, Future Internet Technologies, Tsinghua University, Beijing, PR China.

December 2013.

Research Visits

• March 22, 2014 −May 02, 2014. Information Technology Laboratory, Center for

Research and Advanced Studies of the National Polytechnic Institute of Mexico

(CINVESTAV), 87130 Ciudad Victoria, Tamaulipas, Mexico.

• October 02, 2013 − January 25, 2014. Tsinghua University, 100084, Beijing,

PR China.

• May 6, 2013 − May 18, 2013. Ghent University − iMinds, B-9050 Ghent,

Belgium.

Awards

• Best Student Paper Award: IFIP/IEEE Network Operations and Management

Symposium, (NOMS), 2014, Krakow, Poland.

• Student Travel Grant: IFIP/IEEE Network Operations and Management Sym-

posium, (NOMS), 2014, Krakow, Poland.

• Best Work in Progress Award: Scalable and Adaptive Internet Solutions (SAIL),

2012, Santander, Cantabria.

• FPI Grant (FPI2010): Ministry of Economy and Competitiveness (MINECO),

Government of Spain, 2010 - 2014, Madrid, Spain.

Other Services

• Reviewer, Journal of the Network and Systems Management, Springer.

• Reviewer, 14th IEEE/IFIP Network Operations and Management Symposium

(NOMS 2014), 5- 9 May 2014, Krakow, Poland.

• Local Organising Committee, 7th International Conference on Autonomous In-

frastructure, Management and Security (AIMS 2013), June 25-28, 2013, UPC

Barcelona, Spain.

• Reviewer, IFIP/IEEE International Symposium on Integrated Network Man-

agement, 2013.

• Reviewer, 9th IEEE International Workshop on Managing Ubiquitous Commu-

nications and Services, 2012.

Appendix A

Notation

Unless otherwise defined within the thesis, the symbols below have the following

meanings.

α Learning Rate

λ Discount Factor

π Profit

na Node Agent

la Link Agent

ǫ Probability with which random selecting actions

Gv Virtual Network Graph

Gs Substrate Network Graph

Nv Set of Virtual Nodes

Lv Set of Virtual Links

Ns Set of Substrate Nodes

Ls Set of Substrate Links

i, j Virtual Nodes

lij Virtual Link Connecting Virtual Nodes i and j

Dij Delay of Virtual Link lij

Bij Bandwidth of Virtual Link lij

189

u, v Substrate Nodes

Q(s, a) State-Action Value Function

s State

a Action

luv Substrate Link Connecting Substrate Nodes u and v

Duv Delay of Substrate Link luv

Buv Bandwidth of Substrate Link luv

Li(x, y) Location of Virtual Node i

Lu(x, y) Location of Substrate Node u

Qi Queue Size of Virtual Node i

Qu Queue Size of Substrate Node u

sp Previous State

sn Next State

ap Previous Action

rp Previous Reward

Appendix B

Acronyms and Definitions

ANN Artificial Neural Network

BW BandWidth

CPU Central Processing Unit

DRA Dynamic Resource Allocation

DRM Dynamic Resource Management

EU European Union

IaaS Infrastructure as a Service

ILP Integer Linear Programming

InP Infrastructure Provider

IP Internet Protocol

ISP Internet Service Provider

LP Linear Programming

MAS Multi Agent Systems

MCF Multi Commodity Flow

MP Mathematical Programming

NFS Neuro-Fuzzy System

NN Neural Network

NVE Network Virtualisation Environment

OLA Operational Level Agreement

PLR Packet Loss Rate

191

QoS Quality of Service

RL Reinforcement Learning

SBSP Sealed Bid Second Price

SLA Service Level Agreement

SN Substrate Network

SP Service Provider

SVNE Survivable Virtual Network Embedding

UPC Technical University of Catalonia

VN Virtual Network

VNO Virtual Network Operator

VNP Virtual Network Provider

VNE Virtual Network Embedding

VNS Virtual Network Survivability

Appendix C

Link-based Optimal One-Shot

VNE Formulation (ViNE-OPT)

This is the link based formulation of the one shot optimal virtual network embedding

problem. We define f ij
uv as the flow of a virtual link lij ∈ Lv on the link luv ∈ (Ls ∪ Lx).

Lx is the set of all meta links in the augmented substrate network.

minimise
∑

lij∈Lv

∑

luv∈(Ls∪Lx)

1

Auv

f ij
uv +

∑

nv∈Nv

∑

ns∈Ns

1

Ans

χnv

ns

subject to

Node Mapping Constraints

∑

ns∈Ns

χnv

ns
= 1 ∀nv ∈ Nv

∑

nv∈Nv

χnv

ns
≤ 1 ∀ns ∈ Ns

f ij
uv −Dijχ

i
u ≤ 0 ∀uv ∈ Lx, ∀lij ∈ Lv

f ij
uv −Dijχ

j
v ≤ 0 ∀uv ∈ Lx, ∀lij ∈ Lv

193

Capacity Constraints

∑

ij∈Lv

f ij
uv ≤ Auv ∀luv ∈ (Ls ∪ Lx)

∑

uv∈Lv

f ij
uv = Dij ∀lij ∈ Lv

Flow Conservation Constraints

Source Nodes
∑

k∈Ns

f ij
ik −

∑

k∈Ns

f ij
ki = Dij ∀lij ∈ Lv

Sink Nodes
∑

k∈Ns

f ij
jk −

∑

k∈Ns

f ij
kj = −Dij ∀lij ∈ Lv

Intermediate Nodes

∑

u∈Ns

f ij
uv −

∑

u∈Ns

f ij
uv = 0 ∀lij ∈ Lv, ∀v ∈ Ns

Domain Constraints

f ij
uv = [0, Dij] ∀lij ∈ Lv, ∀luv ∈ (Ls ∪ Lx)

χi
u = [0, 1] ∀i ∈ Nv, ∀u ∈ Ns

Bibliography

[1] Antonio Carzaniga and Alexander L. Wolf. Content-based networking: A new

communication infrastructure. In Birgitta Knig-Ries, Kia Makki, S. A. M.

Makki, Niki Pissinou, and Peter Scheuermann, editors, Infrastructure for Mobile

and Wireless Systems, volume 2538 of Lecture Notes in Computer Science, pages 59–68.

Springer, 2001.

[2] N.M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network

virtualization. Computer Networks, 54(5):862–876, April 2010.

[3] Jonathan S. Turner and David E. Taylor. Diversifying the internet. In GLOBE-

COM, page 6. IEEE, 2005.

[4] Christophe Diot, Brian Neil, Levine Bryan, and Kassem Doug Balensiefen. De-

ployment issues for the ip multicast service and architecture. IEEE Network,

14:78–88, 2000.

[5] J.G. Jayanthi and S.A. Rabara. Ipv6 addressing architecture in ipv4 network. In

Communication Software and Networks, 2010. ICCSN ’10. Second International Conference

on, pages 461–465, Feb 2010.

[6] Ashiq Khan, Alf Zugenmaier, Dan Jurca, and Wolfgang Kellerer. Network

virtualization: a hypervisor for the internet? IEEE Communications Magazine,

50(1):136–143, 2012.

195

[7] Thomas E. Anderson, Larry L. Peterson, Scott Shenker, and Jonathan S.

Turner. Overcoming the internet impasse through virtualization. IEEE Com-

puter, 38(4):34–41, 2005.

[8] M. Chowdhury, M.R. Rahman, and R. Boutaba. Vineyard: Virtual network

embedding algorithms with coordinated node and link mapping. Networking,

IEEE/ACM Transactions on, 20(1):206 –219, feb. 2012.

[9] Aun Haider, Richard Potter, and Akihiro Nakao. Challenges in resource allo-

cation in network virtualization. In Proceedings of 20th ITC Specialist Seminar, Hoi

An, Vietnam, 2009.

[10] L. Wenzhi, L. Shuai, X. Yang, and T. Xiongyan. Dynamically adaptive band-

width allocation in network virtualization environment. Advances in information

Sciences and Service Sciences(AISS), 4(1):10 – 18, 2012.

[11] A. Fischer, J.F. Botero, M. Till Beck, H. de Meer, and X. Hesselbach. Virtual

network embedding: A survey. Communications Surveys Tutorials, IEEE, 15(4):1888–

1906, Fourth 2013.

[12] Steven Davy, Joan Serrat, Antonio Astorga, Brendan Jennings, and Javier

Rubio-Loyola. Policy-assisted planning and deployment of virtual networks.

In CNSM, pages 1–8. IEEE, 2011.

[13] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,

Inc., New York, NY, USA, 1986.

[14] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savels-

bergh, and Pamela H. Vance. Branch-and-price: Column generation for solving

huge integer programs. Operations Research, 46(3):pp. 316–329, 1998.

[15] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.

MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[16] J E Dayhoff and J M DeLeo. Artificial neural networks: opening the black box.

Cancer, 91(8 Suppl):1615–1635, April 2001.

[17] A. Nrnberger, D. Nauck, and R. Kruse. Neuro-fuzzy control based on the

nefcon-model: recent developments, 1999.

[18] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine

learning perspective. Autonomous Robots, 8(3):345–383, July 2000.

[19] David L. Sallach. Strategic negotiation in multiagent environments by sarit

kraus. J. Artificial Societies and Social Simulation, 6(1), 2003.

[20] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking vir-

tual network embedding: Substrate support for path splitting and migration.

SIGCOMM Comput. Commun. Rev., 38(2):17–29, March 2008.

[21] Jing Lu and Jonathan Turner. Efficient Mapping of Virtual Networks onto a

Shared Substrate. Technical report, Washington University in St. Louis, 2006.

[22] Ines Houidi, Wajdi Louati, and Djamal Zeghlache. A distributed virtual network

mapping algorithm. In ICC, pages 5634–5640. IEEE, 2008.

[23] Viktor K. Prasanna Sethavidh Gertphol. Iterative integer programming for-

mulation for robust resource allocation in dynamic real-time systems. In 18th

International Symposium on Parallel and Distributed Processing, 2004.

[24] Renchao Xie, F. Richard Yu, and Hong Ji. Dynamic resource allocation for het-

erogeneous services in cognitive radio networks with imperfect channel sensing.

IEEE T. Vehicular Technology, 61(2):770–780, 2012.

[25] J.F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. De Meer.

Energy efficient virtual network embedding. Communications Letters, IEEE,

16(5):756–759, May 2012.

[26] Muntasir Raihan Rahman and Raouf Boutaba. Svne: Survivable virtual net-

work embedding algorithms for network virtualization. Network and Service Man-

agement, IEEE Transactions on, 10(2):105–118, 2013.

[27] Cynthia Barnhart, Niranjan Krishnan, and PamelaH. Vance. Multicommodity

flow problems. In Christodoulos A. Floudas and Panos M. Pardalos, editors,

Encyclopedia of Optimization, pages 2354–2362. Springer US, 2009.

[28] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:

Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[29] Jacques Desrosiers and Marco E. Lbbecke. A primer in column generation,

2005.

[30] D. Santos, A. de Sousa, F. Alvelos, and M. Pioro. Link load balancing optimiza-

tion of telecommunication networks: A column generation based heuristic ap-

proach. In Telecommunications Network Strategy and Planning Symposium (NETWORKS),

2010 14th International, pages 1–6, Sept 2010.

[31] Abdallah Jarray and Ahmed Karmouch. Column generation approach for one-

shot virtual network embedding. In GLOBECOM Workshops, pages 863–868, 2012.

[32] Wenping Pan, Dejun Mu, Hangxing Wu, and Lei Yao. Feedback control-based

qos guarantees in web application servers. In HPCC, pages 328–334. IEEE, 2008.

[33] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang. A multi-

model framework to implement self-managing control systems for qos manage-

ment. In Proceedings of the 6th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, SEAMS ’11, pages 218–227, New York, NY,

USA, 2011. ACM.

[34] Rui Han, Li Guo, M.M. Ghanem, and Yike Guo. Lightweight resource scaling

for cloud applications. In Cluster, Cloud and Grid Computing (CCGrid), 2012 12th

IEEE/ACM International Symposium on, pages 644–651, May 2012.

[35] Wei-Sheng Lai, Muh-En Chiang, Shen-Chung Lee, and Ta-Sung Lee. Game

theoretic distributed dynamic resource allocation with interference avoidance

in cognitive femtocell networks. In WCNC, pages 3364–3369. IEEE, 2013.

[36] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu. Resource provisioning for cloud

computing. In Conference of the Center for Advanced Studies on Collaborative Research,

pages 101 –111, 2009.

[37] Fareed Jokhio, Adnan Ashraf, Sebastien Lafond, Ivan Porres, and Johan Lilius.

Prediction-based dynamic resource allocation for video transcoding in cloud

computing. In Proceedings of the 2013 21st Euromicro International Conference on Paral-

lel, Distributed, and Network-Based Processing, PDP ’13, pages 254–261, Washington,

DC, USA, 2013. IEEE Computer Society.

[38] Jiayue He, Rui Zhang-shen, Ying Li, Cheng yen Lee, Jennifer Rexford, and

Mung Chiang. Davinci: Dynamically adaptive virtual networks for a customized

internet. In in Proc. CoNEXT, 2008.

[39] C.C. Marquezan, L.Z. Granville, G. Nunzi, and M. Brunner. Distributed au-

tonomic resource management for network virtualization. In Network Operations

and Management Symposium (NOMS), 2010 IEEE, pages 463–470, April 2010.

[40] Zhiping Cai, Fang Liu, Nong Xiao, Qiang Liu, and Zhiying Wang. Virtual

network embedding for evolving networks. In GLOBECOM, pages 1–5. IEEE,

2010.

[41] Ilhem Fajjari, Nadjib Aitsaadi, Guy Pujolle, and Hubert Zimmermann. Vnr

algorithm: A greedy approach for virtual networks reconfigurations. In GLOBE-

COM, pages 1–6. IEEE, 2011.

[42] Gang Sun, Hongfang Yu, Vishal Anand, and Lemin Li. A cost efficient frame-

work and algorithm for embedding dynamic virtual network requests. Future

Gener. Comput. Syst., 29(5):1265–1277, July 2013.

[43] M.F. Zhani, Qi Zhang, G. Simon, and R. Boutaba. Vdc planner: Dynamic

migration-aware virtual data center embedding for clouds. In Integrated Network

Management (IM 2013), 2013 IFIP/IEEE International Symposium on, pages 18–25, May

2013.

[44] Nabeel Farooq Butt, Mosharaf Chowdhury, and Raouf Boutaba. Topology-

awareness and reoptimization mechanism for virtual network embedding. In

Mark Crovella, LauraMarie Feeney, Dan Rubenstein, and S.V. Raghavan, edi-

tors, NETWORKING 2010, volume 6091 of Lecture Notes in Computer Science, pages

27–39. Springer Berlin Heidelberg, 2010.

[45] Gang Sun, Hongfang Yu, Lemin Li, Vishal Anand, Yanyang Cai, and Hao Di.

Exploring online virtual networks mapping with stochastic bandwidth demand

in multi-datacenter. Photonic Network Communications, 23(2):109–122, 2012.

[46] Sheng Zhang, Zhuzhong Qian, Bin Tang, Jie Wu, and Sanglu Lu. Opportunistic

bandwidth sharing for virtual network mapping. In Global Telecommunications

Conference (GLOBECOM 2011), 2011 IEEE, pages 1–5, Dec 2011.

[47] Junhong Nie and S. Haykin. A Q-learning-based dynamic channel assignment

technique for mobile communication systems. Vehicular Technology, IEEE Transac-

tions on, 48(5):1676–1687, 1999.

[48] Andrei Lucian Stefan, Mandalika Ramkumar, Rasmus H. Nielsen, Neeli R.

Prasad, and Ramjee Prasad. A qos aware reinforcement learning algorithm

for macro-femto interference in dynamic environments. In ICUMT, pages 1–7.

IEEE, 2011.

[49] F. Bernardo, R. Agusti, J. Perez-Romero, and O. Sallent. Distributed spectrum

management based on reinforcement learning. In Cognitive Radio Oriented Wireless

Networks and Communications, 2009. CROWNCOM ’09. 4th International Conference on,

pages 1–6, June 2009.

[50] Tao Jiang, David Grace, and Yiming Liu. Two-stage reinforcement-learning-

based cognitive radio with exploration control. IET Communications, 5(5):644–

651, 2011.

[51] Dorian Minarolli and Bernd Freisleben. Utility-driven allocation of multiple

types of resources to virtual machines in clouds. In Proceedings of the 2011 IEEE

13th Conference on Commerce and Enterprise Computing, CEC ’11, pages 137–144,

Washington, DC, USA, 2011. IEEE Computer Society.

[52] El-Sayed M. El-Alfy, Yu-Dong Yao, and Harry Heffes. Autonomous call ad-

mission control with prioritized handoff in cellular networks. In ICC, pages

1386–1390. IEEE, 2001.

[53] Yih-Shen Chen, Chung-Ju Chang, and Fang-Ching Ren. Q-learning-based mul-

tirate transmission control scheme for rrm in multimedia wcdma systems. IEEE

T. Vehicular Technology, 53(1):38–48, 2004.

[54] S. M. Perlaza, S. Lasaulce, H. Tembine, and M. Debbah. Learning to use

the spectrum in self-configuring heterogenous networks: A logit equilibrium

approach. In Proceedings of the 5th International ICST Conference on Performance Eval-

uation Methodologies and Tools, VALUETOOLS ’11, pages 565–571, ICST, Brus-

sels, Belgium, Belgium, 2011. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering).

[55] Afef Feki and Vronique Capdevielle. Autonomous resource allocation for dense

lte networks: A multi armed bandit formulation. In Kaveh Pahlavan, Shahrokh

Valaee, and Elvino Silveira Sousa, editors, PIMRC, pages 66–70. IEEE, 2011.

[56] Steven Walczak. Neural network models for a resource allocation problem. IEEE

Transactions on Systems, Man, and Cybernetics, Part B, 28(2):276–284, 1998.

[57] Stephen C. Stubberud and Kathleen A. Kramer. A game theoretic sensor re-

source allocation using fuzzy logic. Adv. Fuzzy Systems, 2013, 2013.

[58] Lorenza Giupponi, Ramn Agust, Jordi Prez-Romero, and Oriol Sallent. A novel

approach for joint radio resource management based on fuzzy neural method-

ology. IEEE T. Vehicular Technology, 57(3):1789–1805, 2008.

[59] Hongfang Yu, Vishal Anand, Chunming Qiao, and Hao Di. Migration based

protection for virtual infrastructure survivability for link failure. In Optical

Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, page

OTuR2. Optical Society of America, 2011.

[60] Ines Houidi, Wajdi Louati, Djamal Zeghlache, Panagiotis Papadimitriou, and

Laurent Mathy. Adaptive virtual network provisioning. In Proceedings of the Second

ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures, VISA

’10, pages 41–48, New York, NY, USA, 2010. ACM.

[61] A. Khan S. Herker and X. An. Survey on survivable virtual network embedding

problem and solutions. In International Conference on Networking and Services, ICNS

2013, March 2013.

[62] Z. Despotovic, J.-C. Usunier, and K. Aberer. Towards peer-to-peer double

auctioning. In System Sciences, 2004. Proceedings of the 37th Annual Hawaii International

Conference on, pages 8 pp.–, Jan 2004.

[63] Z. Despotovic, J.-C. Usunier, and K. Aberer. Towards peer-to-peer double

auctioning. In System Sciences, 2004. Proceedings of the 37th Annual Hawaii International

Conference on, pages 8 pp.–, Jan 2004.

[64] J. Rubio-Loyola, C. Merida-Campos, S. Willmott, A. Astorga, J. Serrat, and

A. Galis. Service coalitions for future internet services. In Communications, 2009.

ICC ’09. IEEE International Conference on, pages 1–6, June 2009.

[65] J. Rubio-Loyola, C. Merida-Campos, J. Serrat, D.F. Macedo, S. Davy, Z. Mova-

hedi, and G. Pujolle. A service-centric orchestration protocol for self-organizing

autonomic management systems. Network, IEEE, 25(6):16–23, Nov 2011.

[66] Carrie Beam and Arie Segev. Automated negotiations: A survey of the state

of the art. Wirtschaftsinformatik, 39(3):263–268, 1997.

[67] Oracle. Oracle solaris administration: Network interfaces and network virtual-

ization, 2011.

[68] Brad Hedlund. What is network virtualization? http://bradhedlund.com/2013/

05/28/what-is-network-virtualization/, March 2013. Accessed: 2014-04-26.

[69] A. Khan, A. Zugenmaier, D. Jurca, and W. Kellerer. Network virtualization:

a hypervisor for the internet? Communications Magazine, IEEE, 50(1):136–143,

January 2012.

[70] Kurt Tutschku, Thomas Zinner, Akihiro Nakao, and Phuoc Tran-Gia. Network

virtualization: Implementation steps towards the future internet. In KiVS 2009,

Kassel, 3 2009.

[71] N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba. Network virtualization:

state of the art and research challenges. Comm. Mag., 47:20–26, July 2009.

[72] Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Over-

coming the internet impasse through virtualization. Computer, 38(4):34–41, April

2005.

[73] Nick Feamster, Lixin Gao, and Jennifer Rexford. How to lease the internet in

your spare time. SIGCOMM Comput. Commun. Rev., 37(1):61–64, January 2007.

[74] Gregor Schaffrath, Christoph Werle, Panagiotis Papadimitriou, Anja Feldmann,

Roland Bless, Adam Greenhalgh, Andreas Wundsam, Mario Kind, Olaf Maen-

nel, and Laurent Mathy. Network virtualization architecture: Proposal and

initial prototype. In Proceedings of the 1st ACM Workshop on Virtualized Infrastructure

Systems and Architectures, VISA ’09, pages 63–72, New York, NY, USA, 2009.

ACM.

http://bradhedlund.com/2013/05/28/what-is-network-virtualization/
http://bradhedlund.com/2013/05/28/what-is-network-virtualization/

[75] Fady Samuel, Mosharaf Chowdhury, and Raouf Boutaba. Polyvine: policy-

based virtual network embedding across multiple domains. Journal of Internet

Services and Applications, 4(1):6, 2013.

[76] Andreas Berl, Andreas Fischer, and Hermann de Meer. Using system virtual-

ization to create virtualized networks. ECEASST, 17, 2009.

[77] Roland Bless and Christoph Werle. Control plane issues in the 4ward network

virtualization architecture. ECEASST, 17, 2009.

[78] David G. Andersen. Theoretical approaches to node assignment. Unpublished

Manuscript, December 2002.

[79] Khaled Elbassioni, Naveen Garg, Divya Gupta, Amit Kumar, Vishal Narula,

and Arindam Pal. Approximation Algorithms for the Unsplittable Flow Prob-

lem on Paths and Trees. In Deepak D’Souza, Telikepalli Kavitha, and Jaiku-

mar Radhakrishnan, editors, IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science (FSTTCS 2012), volume 18 of Leibniz In-

ternational Proceedings in Informatics (LIPIcs), pages 267–275, Dagstuhl, Germany,

2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[80] Stavros G. Kolliopoulos and Clifford Stein. Improved approximation algorithms

for unsplittable flow problems. In FOCS, pages 426–435. IEEE Computer Soci-

ety, 1997.

[81] Ines Houidi, Wajdi Louati, Walid Ben Ameur, and Djamal Zeghlache. Vir-

tual network provisioning across multiple substrate networks. Comput. Netw.,

55(4):1011–1023, mar 2011.

[82] Hao Di, Hongfang Yu, Vishal Anand, Lemin Li, Gang Sun, and Binhong Dong.

Efficient online virtual network mapping using resource evaluation. J. Netw. Syst.

Manage., 20(4):468–488, December 2012.

[83] Yufeng Xin, Ilia Baldine, Anirban Mandal, Chris Heermann, Jeff Chase, and

Aydan Yumerefendi. Embedding virtual topologies in networked clouds. In

Proceedings of the 6th International Conference on Future Internet Technologies, CFI ’11,

pages 26–29, New York, NY, USA, 2011. ACM.

[84] Gregor Schaffrath, Stefan Schmid, and Anja Feldmann. Generalized and

resource-efficient vnet embeddings with migrations. CoRR, abs/1012.4066, 2010.

[85] A. Razzaq, P. Sjodin, and M. Hidell. Minimizing bottleneck nodes of a substrate

in virtual network embedding. In Network of the Future (NOF), 2011 International

Conference on the, pages 35–40, Nov 2011.

[86] J. Nogueira, M. Melo, J. Carapinha, and S. Sargento. Virtual network mapping

into heterogeneous substrate networks. In Computers and Communications (ISCC),

2011 IEEE Symposium on, pages 438–444, June 2011.

[87] A. Razzaq and M.S. Rathore. An approach towards resource efficient virtual

network embedding. In Evolving Internet (INTERNET), 2010 Second International Con-

ference on, pages 68–73, Sept 2010.

[88] Xiujiao Gao, Hongfang Yu, Vishal Anand, Gang Sun, and Hao Di. A new algo-

rithm with coordinated node and link mapping for virtual network embedding

based on lp relaxation. In Communications and Photonics Conference and Exhibition

(ACP), 2010 Asia, pages 152–153, Dec 2010.

[89] A. Pages, J. Perello, S. Spadaro, and G. Junyent. Strategies for virtual optical

network allocation. Communications Letters, IEEE, 16(2):268–271, February 2012.

[90] Wenzhi Liu, Yang Xiang, Shaowu Ma, and Xiongyan Tang. Completing vir-

tual network embedding all in one mathematical programming. In Electronics,

Communications and Control (ICECC), 2011 International Conference on, pages 183–185,

Sept 2011.

[91] T. Ghazar and N. Samaan. Hierarchical approach for efficient virtual network

embedding based on exact subgraph matching. In Global Telecommunications Con-

ference (GLOBECOM 2011), 2011 IEEE, pages 1–6, Dec 2011.

[92] H. Esaki T. Trinh and C. Aswakul. Quality of service using careful overbooking

for optimal virtual network resource allocation. In International Conference on Elec-

trical Engineering/Electronics, Computer, Telecommunications and Information Technology

(ECTI-CON), volume 8, pages 296–299, 2011.

[93] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.N. Chuah, and C. Diot.

Characterization of failures in an IP backbone. In INFOCOM 2004, 2004.

[94] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee. Survivable wdm mesh

networks. Lightwave Technology, Journal of, 21(4):870–883, April 2003.

[95] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding net-

work failures in data centers: Measurement, analysis, and implications. SIG-

COMM Comput. Commun. Rev., 41(4):350–361, August 2011.

[96] A. Jarray and A. Karmouch. Vcg auction-based approach for efficient virtual

network embedding. In Integrated Network Management (IM 2013), 2013 IFIP/IEEE

International Symposium on, pages 609–615, May 2013.

[97] Sen Su, Zhongbao Zhang, Xiang Cheng, Yiwen Wang, Yan Luo, and Jie Wang.

Energy-aware virtual network embedding through consolidation. In Computer

Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on, pages

127–132, March 2012.

[98] S. Bradley, A. Hax, and T. Magnanti. Applied Mathematical Programming. Addison

Wesley, 1977.

[99] Olivier Chapelle, Vikas Sindhwani, and Sathiya S. Keerthi. Optimization tech-

niques for semi-supervised support vector machines. J. Mach. Learn. Res., 9:203–

233, June 2008.

[100] John W. Chinneck. Practical Optimization: a Gentle Introduction. www.sce.

carleton.ca/faculty/chinneck/po.html, 2001. Accessed: 2014-04-30.

www.sce.carleton.ca/faculty/chinneck/po.html
www.sce.carleton.ca/faculty/chinneck/po.html

[101] S. Lahaie. How to take the Dual of a Linear Program. www.cs.columbia.edu/

coms6998-3/lpprimer.pdf?, 2008. Accessed: 2014-02-17.

[102] Wikipedia: Column Generation. http://en.wikipedia.org/wiki/Column_

generation. Accessed: 2014-04-30.

[103] Michel X. Goemans and David P. Williamson. Approximation algorithms for

np-hard problems. chapter The Primal-dual Method for Approximation Algo-

rithms and Its Application to Network Design Problems, pages 144–191. PWS

Publishing Co., Boston, MA, USA, 1997.

[104] Dimitri P. Bertsekas and Dimitri P. Bertsekas. Nonlinear Programming. Athena

Scientific, 2nd edition, September 1999.

[105] L. R. Ford, Jr. and D. R. Fulkerson. A suggested computation for maximal

multi-commodity network flows. Manage. Sci., 50(12 Supplement):1778–1780,

December 2004.

[106] Jacques Desrosiers and MarcoE. Labbecke. A primer in column generation. In

Guy Desaulniers, Jacques Desrosiers, and MariusM. Solomon, editors, Column

Generation, pages 1–32. Springer US, 2005.

[107] S. Irnich and G. Desaulniers. Shortest Path Problems with Resource Constraints, chap-

ter 2, pages 33–65. GERAD 25th Anniversary Series. Springer, 2005.

[108] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[109] M Güzelsoy and T K Ralphs. Integer programming duality. In J. Cochran,

editor, Encyclopedia of Operations Research and Management Science. Wiley, 2010.

[110] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. Brite:

An approach to universal topology generation. In Proceedings of the Ninth Interna-

tional Symposium in Modeling, Analysis and Simulation of Computer and Telecommunication

www.cs.columbia.edu/coms6998-3/lpprimer.pdf?
www.cs.columbia.edu/coms6998-3/lpprimer.pdf?
http://en.wikipedia.org/wiki/Column_generation
http://en.wikipedia.org/wiki/Column_generation

Systems, MASCOTS ’01, pages 346–353, Washington, DC, USA, 2001. IEEE

Computer Society.

[111] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/about/. Accessed: 2014-02-17.

[112] Y. Zhu and M. Ammar. Algorithms for assigning substrate network resources to

virtual network components. In INFOCOM 2006. 25th IEEE International Conference

on Computer Communications. Proceedings, pages 1–12, 2006.

[113] Gerhard J. Woeginger. Combinatorial optimization - eureka, you shrink!

chapter Exact Algorithms for NP-hard Problems: A Survey, pages 185–207.

Springer-Verlag New York, Inc., New York, NY, USA, 2003.

[114] Jeff Erickson. Lecture Notes: Efficient Exponential-Time Algorithms. http:

//www.cs.uiuc.edu/~jeffe/teaching/algorithms/, 2010. Accessed: 2013-02-01.

[115] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Net-

works, 1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–

1948 vol.4, Nov 1995.

[116] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,

Norwell, MA, USA, 1997.

[117] Andrea Schaerf, Yoav Shoham, and Moshe Tennenholtz. Adaptive load bal-

ancing: A study in multi-agent learning. Journal of Artificial Intelligence Research,

2:475–500, 1995.

[118] Aram Galstyan, Shashikiran Kolar, and Kristina Lerman. Resource allocation

games with changing resource capacities. In Proceedings of the Second International

Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’03, pages

145–152, New York, NY, USA, 2003. ACM.

[119] Aram Galstyan, Karl Czajkowski, and Kristina Lerman. Resource allocation in

the grid with learning agents. J. Grid Comput., 3(1-2):91–100, 2005.

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/about/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/about/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

[120] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

[121] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Re-

inforcement Learning and Dynamic Programming Using Function Approximators. CRC

Press, Inc., Boca Raton, FL, USA, 1st edition, 2010.

[122] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on

Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers,

2010.

[123] Gergely Neu, András György, Csaba Szepesvári, and András Antos. Online

markov decision processes under bandit feedback. In NIPS, pages 1804–1812,

2010.

[124] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-

sionality (Wiley Series in Probability and Statistics). Wiley-Interscience, 2007.

[125] Monte Carlo Statistical Methods. Springer-Verlag, 1 edition, August 1999.

[126] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time dependent prob-

lems and difference methods. Pure and applied mathematics. J. Wiley, New York,

Chichester, Brisbane, 1995.

[127] Ana Marıa Galindo Serrano. Self-organized femtocells: a time difference learn-

ing approach. 2012.

[128] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforce-

ment learning: a survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[129] Michel Tokic. Adaptive e-greedy exploration in reinforcement learning based

on value differences. In Proceedings of the 33rd Annual German Conference on Advances

in Artificial Intelligence, KI’10, pages 203–210, Berlin, Heidelberg, 2010. Springer-

Verlag.

[130] L. P. Pitaevskii and E. M. Lifshitz. Statistical Physics, Course of Theoretical Physics

5, 3rd Edition. Oxford: Pergamon Press, January 1976.

[131] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of multi-

agent reinforcement learning. Trans. Sys. Man Cyber Part C, 38(2):156–172, March

2008.

[132] Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal,

Ian Whalley, Jeffrey O. Kephart, and Steve R. White. A multi-agent systems

approach to autonomic computing. In Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’04,

pages 464–471, Washington, DC, USA, 2004. IEEE Computer Society.

[133] Network Simulator 3. http://www.nsnam.org/. Accessed: 2014-02-17.

[134] The CAIDA Anonymized Internet Traces 2012 - 20 December 2012, equinix

sanjose.dirB.20121220-140100.UTC.anon.pcap.gz. http://www.caida.org/data/

passive/passive_2012_dataset.xml. Accessed: 2014-02-17.

[135] F. L. Lewis, S.Q. Zhu, and K. Liu. Function approximation by fuzzy systems.

In American Control Conference, Proceedings of the 1995, volume 5, pages 3760–3764

vol.5, Jun 1995.

[136] Fu Qi-ming, Liu Quan, Cui Zhi-ming, and Fu Yu-chen. A reinforcement learning

algorithm based on minimum state method and average reward. Computer Science

and Information Engineering, World Congress on, 5:534–538, 2009.

[137] Jeff Heaton. Introduction to Neural Networks for Java, 2Nd Edition. Heaton Research,

Inc., 2nd edition, 2008.

[138] J.J. Hopfield. Artificial neural networks. Circuits and Devices Magazine, IEEE,

4(5):3–10, Sept 1988.

[139] A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal

function. Information Theory, IEEE Transactions on, 39(3):930–945, May 1993.

http://www.nsnam.org/
http://www.caida.org/data/passive/passive_2012_dataset.xml
http://www.caida.org/data/passive/passive_2012_dataset.xml

[140] Rémi Coulom. Reinforcement Learning Using Neural Networks, with Applications to Motor

Control. PhD thesis, Institut National Polytechnique de Grenoble, 2002.

[141] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. Cal-

ifornia Technical Publishing, San Diego, CA, USA, 1999.

[142] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[143] Jing Li, Ji-hang Cheng, Jing-yuan Shi, and Fei Huang. Brief introduction of

back propagation (bp) neural network algorithm and its improvement. In David

Jin and Sally Lin, editors, Advances in Computer Science and Information Engineering,

volume 169 of Advances in Intelligent and Soft Computing, pages 553–558. Springer

Berlin Heidelberg, 2012.

[144] Wikipedia: Backpropagation. http://en.wikipedia.org/wiki/Backpropagation.

Accessed: 2014-05-09.

[145] Raúl Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag New York,

Inc., New York, NY, USA, 1996.

[146] Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, Maxim Claeys, Filip

De Turck, and Steven Latre. Design and evaluation of learning algorithms for

dynamic resource management in virtual networks. In Proceedings of the IEEE/IFIP

Network Operations and Management Symposium (NOMS), NOMS2014. IEEE, 2014.

[147] Stephen R. Garner. Weka: The waikato environment for knowledge analysis.

In In Proc. of the New Zealand Computer Science Research Students Conference, pages

57–64, 1995.

[148] Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM,

38(3):58–68, March 1995.

[149] Junfei Qiao, Ruiyuan Fan, Honggui Han, and Xiaogang Ruan. Q-learning based

on dynamical structure neural network for robot navigation in unknown envi-

http://en.wikipedia.org/wiki/Backpropagation

ronment. In ISNN (3), volume 5553 of Lecture Notes in Computer Science, pages

188–196. Springer, 2009.

[150] Shi chao Wang, Zheng xi Song, Hao Ding, and Hao bin Shi. An improved

reinforcement q-learning method with bp neural networks in robot soccer. In

ISCID (1), pages 177–180. IEEE, 2011.

[151] Nikola K. Kasabov. Foundations of Neural Networks, Fuzzy Systems, and Knowledge

Engineering. MIT Press, Cambridge, MA, USA, 1st edition, 1996.

[152] Chia-Feng Juang and Chin-Teng Lin. An online self-constructing neural

fuzzy inference network and its applications. IEEE Transactions on Fuzzy Systems,

6(1):12–32, 1998.

[153] Chin-Teng Lin. A neural fuzzy control system with structure and parameter

learning. Fuzzy Sets and Systems, 70(23):183 – 212, 1995. Modern Fuzzy Control.

[154] Vaclav Dvorak. Neural networks and fuzzy systems : B kosko prentice-hall.

Knowl.-Based Syst., 6(3):179, 1993.

[155] Mohamad H. Hassoun. Neural fuzzy systems: A neuro-fuzzy synergism to

intelligent systems [book review]. IEEE Transactions on Neural Networks, 7(5):1316,

1996.

[156] José Vieira, Fernando Morgado Dias, and Alexandre Mota. Neuro-fuzzy sys-

tems: A survey. In 5th WSEAS NNA International Conference on Neural Networks and

Applications, Udine, Italy, 2004.

[157] Detlef Nauck and Rudolf Kruse. A neural fuzzy controller learning by fuzzy

error propagation. In In Proc. NAFIPS’92, pages 388–397, 1992.

[158] Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, Ke Xu, Meng Shen, and Kun

Yang. A neuro-fuzzy approach to self-management of virtual network resources.

Journal of Expert Systems With Applications, Feb 2014. Submitted to.

[159] Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, Maxim Claeys, Filip

De Turck, and Jeroen Famaey. Neural network-based autonomous allocation of

resources in virtual networks. In Proceedings of the European Conference on Networks

and Communications (EuCNC), EuCNC2014, June 2014.

[160] Gianluca Iannaccone, Chen-nee Chuah, Richard Mortier, Supratik Bhat-

tacharyya, and Christophe Diot. Analysis of link failures in an ip backbone.

In Proceedings of the 2Nd ACM SIGCOMM Workshop on Internet Measurment, IMW ’02,

pages 237–242, New York, NY, USA, 2002. ACM.

[161] A. Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee

Chuah, Y. Ganjali, and C. Diot. Characterization of failures in an operational

ip backbone network. Networking, IEEE/ACM Transactions on, 16(4):749–762, Aug

2008.

[162] Huhnkuk Lim and Youngho Lee. Toward reliability guarantee vc services in an

advance reservation based network resource provisioning system. In In Proc. of the

Eighth International Conference on Systems and Networks Communications, ICSNC2013,

pages 112 – 120, November 2013.

[163] Nicholas R. Jennings, Peyman Faratin, A. R. Lomuscio, Simon Parsons, Michael

Wooldridge, and Carles Sierra. Automated negotiation : prospects, methods

and challenges. Group Decision and Negotiation, 10(2):199–215, 2001.

[164] Martin Beer, Mark D’inverno, Michael Luck, Nick Jennings, Chris Preist,

and Michael Schroeder. Negotiation in multi-agent systems. Knowl. Eng. Rev.,

14(3):285–289, September 1999.

[165] Mikhail J. Atallah and Susan Fox, editors. Algorithms and Theory of Computation

Handbook. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1998.

[166] W. Vickrey. Counterspeculation, Auctions and Competitive Sealed Tenders.

Journal of Finance, pages 8–37, 1961.

[167] Yi hua Zhu, Xian-Zhong Tian, and Jun Zheng. Performance analysis of the

binary exponential backoff algorithm for ieee 802.11 based mobile ad hoc net-

works. In Communications (ICC), 2011 IEEE International Conference on, pages 1–6,

June 2011.

[168] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing

Multi-Agent Systems with JADE. Wiley, 2007.

[169] FIPA ACL Message Structure Specification. http://www.fipa.org/specs/

fipa00061/. Accessed: 2014-04-02.

[170] Robert B Abernethy. The New Weibull handbook: reliability and statistical analysis for

predicting life, safety, supportability, risk, cost and warranty claims; 5th ed. Dr. Robert B.

Abernethy, 2006.

[171] S. Patidar, D. Rane, and P. Jain. A survey paper on cloud computing. In

Advanced Computing Communication Technologies (ACCT), 2012 Second International Con-

ference on, pages 394–398, Jan 2012.

[172] Han Xingye, Li Xinming, and Liu Yinpeng. Research on resource management

for cloud computing based information system. In Computational and Information

Sciences (ICCIS), 2010 International Conference on, pages 491–494, Dec 2010.

[173] Flamingo, Network of Excellence. http://www.fp7-flamingo.eu/. Accessed: 2014-

05-20.

[174] iMinds, Virtual Wall. http://www.iminds.be/en/succeed-with-digital-research/

technical-testing. Accessed: 2014-05-20.

http://www.fipa.org/specs/fipa00061/
http://www.fipa.org/specs/fipa00061/
http://www.fp7-flamingo.eu/
http://www.iminds.be/en/succeed-with-digital-research/technical-testing
http://www.iminds.be/en/succeed-with-digital-research/technical-testing

	Introduction
	Problem Statement
	Hypothesis
	Thesis Objectives
	Thesis Technological Scope
	State of the art
	Virtual Network Embedding (VNE)
	Application of Column Generation to VNE
	Dynamic Resource Allocation (DRA)
	Application of Learning Techniques to DRA
	Virtual Network Survivability (VNS)
	Application of Autonomic Negotiation to VNS
	Summary

	Thesis Contributions
	Structure of the thesis

	Network Virtualisation
	Introduction
	Network Virtualisation Business Models
	Infrastructure Provider
	Service Provider
	End User

	Network Virtualisation Architecture
	Substrate Network
	Substrate Nodes
	Substrate Links
	Virtual Network
	Virtual Links
	Virtual Nodes

	Resource Management in NVEs
	Virtual Network Modelling
	Substrate Network Modelling
	Virtual Network Embedding
	Dynamic Resource Allocation
	Virtual Network Survivability

	Conclusion

	Column Generation-based VNE
	Introduction
	Mathematical Programming
	Formulation of Linear Programs
	Duality

	Column Generation
	Column Generation-based VNE
	Substrate Network Augmentation
	LP-P: Path based Formulation - Primal

	Proposed Path Generation Approach
	Initial Solution
	Pricing Problem

	Performance Evaluation
	Simulation Setup
	Performance Metrics
	Comparisons
	Results
	Time Complexity

	Conclusion

	Reinforcement Learning-based Dynamic Resource Allocation
	Introduction
	Reinforcement Learning
	Learning Algorithm
	Policy
	Action Selection
	Multi Agent Systems

	Problem Description: DRA in NVEs
	RL-based Dynamic Resource Allocation
	Policy
	Reward Function
	Q-Learning
	Time Complexity of the Proposed Learning Algorithm
	Cooperation between Agents
	Scalabity of Proposed Learning Algorithm

	Performance Evaluation
	Simulation Setup
	Initial Evaluations
	Performance Metrics
	Discussion of Results

	Conclusion

	Artificial Neural Network-based Dynamic Resource Allocation
	Introduction
	Artificial Neural Networks (ANN)
	Structure of a Neuron
	Neural Network Structure
	Learning in Neural Networks
	Back-propagation (BP) Algorithm

	Proposed DRA Model
	Multi-Agent System
	Artificial Neural Network
	Evaluative Feedback

	Performance Evaluation
	Simulation Environment
	Simulation Parameters
	Compared Algorithms
	Performance Metrics
	Discussion of Results

	Conclusion

	Neuro Fuzzy System-based Dynamic Resource Allocation
	Introduction
	Fuzzy Systems (FS)
	Neuro-Fuzzy System (NFS)

	Proposed NFS-based DRA Model
	Multi-agent Environment
	Learning Neuro-Fuzzy System (NFS)

	Evaluative Feedback
	Reward Function
	Membership Function Learning
	Neuro-Fuzzy System Network Structure

	Rulebase Initialisation
	Dataset Preprocessing
	Initial Rule Base Pruning
	Time Complexity of Rule Base Initialisation

	Agent Cooperation
	Coordination amoung Agents
	Knowledge Sharing amoung Agents
	Time Complexity of Neuro-Fuzzy Learning Algorithm

	Performance Evaluation
	Simulation Model
	Comparison against Alternatives
	Performance Metrics
	Discussion of Results

	Conclusion

	Virtual Network Survivability
	Introduction
	Problem Formulation
	Business Model
	Problem Description
	Work Flow
	Virtual and Substrate Network Modelling
	Design Considerations

	Proposed Negotiation System
	Negotiation Objects
	Negotiation Strategies
	Negotiation Protocol

	Performance Evaluation
	Simulation Setup
	Comparison with other approaches
	Performance Metrics
	Discussion of Results

	Conclusion

	Conclusions and Future Work
	Introduction
	Summary of Results
	Virtual Network Embedding
	Dynamic Resource Allocation
	Virtual Network Survivability

	Future Work
	Virtual Network Embedding
	Dynamic Resource Allocation
	Virtual Network Survivability
	Other Related Areas

	Practical Application

	Notation
	Acronyms and Definitions
	Link-based Optimal One-Shot VNE Formulation (ViNE-OPT)

