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Introduction 

This paper arose out of  an at tempt to  understand the following problem of 
Lazarsfeld [L] :  

Problem 1. Suppose G is a semi-simple algebraic group over C, P c G a maximal 
parabolic subgroup, Y = G / P. Let  f :  Y ~ X be a finite, surjective morphism of  degree 
> 1 to a smooth variety X; then is X ~- P"? (n = dim X = dim Y) 

Lazarsfeld (loc. cir.) answers this in the affirmative when Y = P", using the proof  by 
S. Mori  [M]  of  Hartshorne 's  conjecture. The general case seems to be open even for 
Grassmann varieties. 

In this paper, we show (see Proposit ion 2): /f  Y = G/P is as above and.f: Y ~ Y is 
a finite self map of  degree > 1, then Y ~- P". 

More  generally, we prove the following: 

Theorem. Let G be a simply connected, semi-simple algebraic group over C. Let  
P c G be a parabolic subgroup, and let Y = G / P  be the homogeneous space. Let  

f: Y -*  Y be a generically finite morphism. Then there exist parabolic subgroups 
Po, P1, . . . , Pm of  G containing P, and a permutation a o f  { 1, 2 . . . .  , m } such that: 

(i) there are isomorphisms G / Pi ~- P"' for  i > 1,for some integers nl > 0, such 
that n~,) = hi for  all i. 

(ii) there is a finite morphism hi: P"' --* P"' for each i > O. 
(iii) the natural morphism 

Y ~  G/Po x G / P ,  x . . .  x G/Pm 

is an isomorphism, under which f: Y -~ Y corresponds to the product f o x  f l  
x . . . x fro, wherefo: G/Po ~ G/Po is an isomorphism a n d f  the composite 

G/P~ti) ~- p, ,  ~, ~ p", ~ G / P  i �9 

We also show that Problem 1 has an affirmative answer if Yis a smooth  quadric 
hypersurface of  dimension > 3 (Proposit ion 8); this includes the case of  Grassman-  
nian Y = G(2, 4). We also show: 
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Proposition 6. Let  k < n, 2 <_ l <_ m be integers, such that there exists a finite 
surjective morphism between Grassmann varieties 

f:  G(k,  k + n) ~ G(I, l + m) 

Then k = l, m = n and f is an isomorphism. 

In the spirit of Lazarsfeld's problem, we pose the following: 

Problem 2. Let  f: A ~ X be a finite surjective morphism from a simple abelian variety 
A over C to a smooth variety X.  Suppose that f is not ~tale. Then is X ~-P"? 
(n = dimA = dimX).  

This is easily proved for dim A < 2. 
We wish to thank M.V. Nori, V.B. Mehta and S. Subramaniam for stimulating 

discussions. 

1. Proof of the theorem 

One of the 
M.V. Nori. 

Proposition 
braic group 
divisor B c 
Then either 

tools used in the proof is the following "Bertini theorem" due to 

1. Let  Y = G / P  be a homogeneous space for a simply connected alge- 
over C, and let 7c: Y ~  Y be a finite, surjective morphism with branch 
Y. Let  Z be an irreducible variety, f :  Z - ,  Y a non-constant morphism. 

(i) for a non-empty Zariski open subset U c G, 

Zg = (Z • Y)red 

is irreducible for  all g ~ U (here g(f ) :  Z--* Y is obtained from f by pointwise 
translation by g on Y), or 

(ii) there exists a closed subgroup P '  o f  G, containing P, such that if h: Y -~ G / P'  
is the quotient map, then the composite h of: Z ~ G / P '  is constant, and for 
some non-zero effective divisor D c G / P', h -  I ( D ) is a component orB.  

Proof  This result is implicit in [N]. We only need the special case when P is a 
maximal parabolic subgroup of a simply connected semi-simple group G, so that 
only the possibility (i) can occur. We give the proof in this case, leaving the general 
case to the reader. 

Replacing Z by its normalization, we are reduced to the case when Z is normal. 
Let 

B o = g ( f ) -  I ( B )  = f - ' ( g - ' B )  c Z 

where g - 1 B  is the translate of B by g -1 .  If p: Zg ~ Z is the natural map, then 
Zg - p - 1 (Bg) is Zariski dense in Zg, when it is non-empty (which it is for all g lying 
in some non-empty Zariski open subset of G). Since 

Z o - -  p -  l ( B g ) - - *  Z - -  B o 

is an 6tale covering space, Z o - p - I ( B  o) is normal; hence to prove that it is 
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irreducible, it suffices to prove that  it is connected. To prove connectedness, it 
suffices to prove  that the map  on fundamental  groups 

g ( f ) . :  n l ( Z  -- B o ) ~  n l (  Y -  B)  

is surjective (we omit  the base points in the notation). 
Consider  the surjective morph ism 

# : G  • Z ~  Y, I ~ ( g , z ) = g ( f ) ( z ) .  

The variety G • Z is connected, and the fibres of/~ are principal P-bundles over Z, 
and in part icular  are connected. Hence, if W =  (G x Z)  - / ~  - I (B)  then 

/~,: n l (  W ) - ~  n l (  Y -  B)  

is surjective. If  q~: W ~  G is induced by the projection, then the scheme theoretic 
fibre 

~ p - l ( g ) = { g }  x ( Z - B . ) .  

Hence it suffices to prove that  for a non-empty  Zariski open set U c G, the 
inclusion of the fibre of q~ induces a surjection 

7rl ( (p -  1 (g ) ) -*  7~1 (W) ,  Vg~U. 

By lemma (1.5) of [N] ,  there is a non-empty  Zariski open subset U c G such 
that  ~o - 1 ( U ) ~ U is a fibre bundle for the complex ("classical") topology; further, 
for all g ~ U, there is an exact sequence 

~1 (~o - l ( g ) )  ~ ~1 ( w )  ~ ~1 ( G )  --. 0 

under the following addit ional  hypothesis: there is a codimension 2 subvariety 
L c G such that  U = (G - L), and for each g 6 ( G  - L), the scheme theoretic fibre 
q~ - l (g)  is non-empty  and has a smooth  point. Since G is simply connected 

nl (q~ - X(g)) __. nl (W)  
is surjective if 

T =  {g~G]~o-  l (g)  is empty} 

has codimension > 2 in G (since ~p - 1 (g) is an open subset of  the normal  variety Z, 
it has smooth  points if it is non-empty).  

N o w  q~- l (g)  is empty,~:~Z = B o . ~ g ( f ) (  Z ) c B. Let k: G ~ G / P  = Y be the 
quotient  map,  and let k -  I ( B ) = B',  k -  I f ( Z )  = Z '. Then 

g ( f ) ( Z )  c B . ~ g Z '  ~ B '  , 
s o  that  

T =  { g ~ G ] g Z '  ~ B ' }  

where B' c G is a divisor. Replacing Z ' ,  B'  by suitable translates (which replaces T 
by an isomorphic  subvarie ty  of G), we may  assume that  the identity element e of  G 
lies in Z '  c B'. Then T c B'. If  To is an irreducible componen t  of T which is a 
divisor in G, then 

To = To e c To Z ' c B ' , 
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and the Zariski closure of To Z '  in G is irreducible. Hence To = ToZ'  is a divisor, 
and 

Z '  c { g E G I T o O =  T o } = P ' .  

But P is a proper subset of Z '  and hence also of P ' ,  and P '  is a closed subgroup of 
G. Since P is a maximal parabolic subgroup of G, we have P '  = G, a contradiction. 
Hence codim~ T > 2 and this completes the proof. [] 

To prove the Theorem, we first prove it in the following special case: 

Proposition 2. Let P ~ G be a maximal parabolic subgroup, Y = G/P,  and f:  Y--* Y 
a non-constant morphism. Then either f is an isomorphism, or Y ~- P". 

Proof  Since Pic Y = Z, generated by the class of a very ample divisor (see [B]), it 
follows that f is finite. To show that it is an isomorphism, it suffices to prove that it 
has degree 1. By the theorem of S. Mori [M], if the tangent sheaf T r is ample, then 
Y ~ P". Using this, we show that if Y ~ P", then d e g f =  1. 

If y 6 Y = G/P, then y = gP for some 9 c G, and we may identify the tangent 
space at y, 

Ty. r = Lie G / A d ( g ) L i e P .  

Thus we have a natural map Lie G ~ H ~  Y, Tr) whose image generates T r at every 
point, and we have a surjection of locally free sheaves 

( L i e G ) |  ~ Tr . 

This gives a closed embedding of Y-schemes 

Pr(Tv) ---' Pr((Lie G) @ c Cr) = Y • P(Lie G) ,  

giving rise to the diagram 

Pr( Tr ~ , P(Lie G) 

Y 

(where ~, /3 are induced by the projections on Y x P(LieG)). The morphism 
restricts to a linear embedding on each fibre of/3. 

Lemma 3. Let  Y be a projective variety, ~ a locally free sheaf on Y, such that there is 
a surjection 

V |  

for  a finite dimensional vector space V, giving rise to a diagram 

P, (~ )  ' ,P(V) 

Y 
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Let Z ~ Y be an irreducible subvariety and r > 1 an integer. Then the followin9 are 
equivalent: 

(i) $o @ Cz has a trivial direct summand of  rank r 
(ii) there is a Zariski open set U ~ Z, such that for every irreducible curve C ~ Z 

which meets U, ~ | C c has a trivial direct summand r rank r 
(iii) the linear subspace 

n p (q -  X(y)) = n p(P(gy))  ~ P ( V )  
yEZ y~Z 

has dimension > r - 1. 

Proof. Clearly (iii) is equivalent to the existence of a surjection r V--* L, with 
dim L = r, such that for each y ~ Z, r factors through the quotient V ~ By. This is 
equivalent to the existence of a factorization 

V |  ~| L |  

i.e. 8 I z has a trivial quotient of rank r (since Z is irreducible projective, a surjection 
V | (~e z ~ L | Cz must have the form r | 1 for some r Since 8 is generated by 
global sections, this is equivalent to 8 having a trivial direct summand  of rank r. 
Thus (i) .~* (iii), and (i) ~ (ii). To prove that (ii) ~ (iii), suppose that (iii) does not hold 
i.e. the intersection of linear spaces defined in (iii) has dimension < r - 1 (if r -- 1, 
we take this to mean it is empty). Then there is a finite set of points y~ . . . .  , y m s Z  
such that 

d i m (  f l  

We can then find an irreducible curve C c Z such that C meets U and contains all 
of the y/. Then by (i) ~ (iii) applied to C, we see that ~ | C c does not have a trivial 
direct summand  of rank r, so that (ii) does not hold for Z. This completes the proof  
of the lemma. [] 

Since 
(ct, fl): P (Tr )  ~ P(Lie G) x Y 

is an embedding, we see that for any x ~ P ( L i e G ) ,  the map  fl induces an iso- 
morphism of ct- ~(x) onto its image in Y. In particular, if D c ~t- ~(x) is an 
irreducible curve, then C = fl(D) is an isomorphic curve, such that 

x~  n P(Ty, v) �9 
yEC 

Thus Ty | C c has a trivial direct summand. The tangent sheaf T~ is not ample 
(since we have assumed that Y is not isomorphic to P") and hence ~ is not finite. So 
there are curves C on Y as above. 

On  the other  hand, the top Chern class c , ( T y ) ~ H Z " (  Y, Z)-~ Z equals the 
topological Euler characteristic of Y, which is non-zero (for example this follows 
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from the fact that  Y has a cell decomposi t ion  with even dimensional  cells). Thus  Ty 
does not have any trivial direct summands.  

Let 

A = { Z ~ Y] Z is irreducible, and Ty | (5 z has a trivial direct summand} . 

Then by the discussion above, A contains some curves, while Y#A; further, by 
l emma 3, 

Z e A , , * 3 x e P ( L i e G )  such that Z ~ f l ( c~- l (x ) ) .  

Let m = max { d i m Z l Z e A  }, and let 

S = { Z e A l d i m Z  = m} 

Then I < m < n = dim Y, and each Z e S is an irreducible componen t  of/?(c~ - 1 (x)) 
for some x e P ( L i e G ) .  

Let W = e (P(Ty) ) ;  then the morph i sm P ( T r ) ~  W has a flattening stratific- 
a t ion (see [Mu]) ,  so that the set { d e g Z I Z s S }  is finite. Hence from the theory of 
the Chow variety, we see that the non-empty  set of cohomology  classes 

Cl [S]  = { [Z]~H2"-2m(Y,  Z) l Z E s} 
is finite. 

L e m m a  4. The map on cohomology groups 

f , :  H2n - 2m( y, Z)  "-* H 2" - 2m( y, Z )  

maps C1 [ S ]  into itself. 

Proof If Z ~ S, then any translate g Z  ~ S, and 

[ Z ]  = [ g Z ] e H 2 " - 2 m ( y , z ) .  

F r o m  Proposi t ion  1, it follows that  for each ceC1 [ S ] ,  there exists Z e S  with [ Z ]  
=c ,  such that  f - 1  (Z)red=Z, is irreducible, and represents the inverse image 
f * ( Z )  as a cycle (i.e. the scheme theoretic inverse image f -  l ( Z )  is reduced at the 
generic point  of Z ' ) .  We claim Z '  e S. Since dim Z '  = m, it suffices to prove that  
Z '  e A. Since Z is not contained in the branch locus of f, the map  of locally free 
sheaves 

dr| i f ,  
Ty | (9 z, Tv | 6)z , 

is an i somorphism at the generic point  of Z ' .  As Z e S ,  f * T y  | (9 z, has a trivial 
direct summand;  hence there is a m a p  T~ @ (9 z, --, (9 z, which is generically surjec- 
tire, hence surjective (since T~ | Oz, is generated by global sections). Hence Z'  ~ S. 

But clearly 

f * ( c )  = f * [ Z ]  = [ f * Z ]  = [ Z ' ] e C I [ S ] .  
[] 

Since C I [ S ]  is finite, it follows that  some iterate f k  = f o f o . . .  of has the 
proper ty  that  (fk)*(C) = C for some non-zero ceC1  I S ] .  Hence, in order  to show 
that  d e g f =  1, we may  assume without  loss of generality that  f * c  = c. 
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Let h 6 H 2 (  Y, Z) be the Chern class ci of the ample generator of Pic Y = Z. 
Then H 2 ( Y , Z ) = Z ' h ,  and H z ' ( Y , Q ) = Q . h  ". Also f *h" =(deg f ) . h " ,  so that 
f * h  = (degf) 1/' '  h. Now cw h m = [Z]  •h"=d'h" ,  where d=degZ/deg  Yis a positive 
rational. Thus 

f *  (c w h") = / * ( d .  h") = (deg / )d .  h".  

On the other hand, 

f *  ( c w h") = f *  c w ( f ' h ) "  = c w (degf)  m/'. h" = (degf)"/"d . h" . 

Hence d e g f =  (deg f )  m/", where m = d i m Z  < n. Thus d e g f =  1, and this shows 
that f is an isomorphism. This completes the proof of Proposition 2. [] 

We now prove the Theorem in the general case, when Y = G/P, P is any 
parabolic subgroup, and f :  Y ~ Y is a finite self-map. Let P '  = P be a parabolic 
subgroup, and let ~ e Pic Y be the pullback to Y of a very ample invertible sheaf 
L~' on G/P' ,  under the natural map 

Y = G/P  ~ G / P '  . 

From the theory of dominant weights (see [B]), H ~  Y , f*  ~ )  gives a base-point 
free linear system on Y, such that for a unique parabolic subgroup z (P ' )  of G which 
contains P, the morphism 

Y-~  P ( H ~  Y , f *  2f))  

is identified with the natural map 

Y = G/P  --* G / z (P ' )  

composed with a projective embedding of the latter by a complete linear system. 
The map 

f * :  H~ Y, s  ~ H ~  Y , f *  Lf) 

gives rise to a diagram with surjective arrows 

Y , G / r ( P ' )  

s I 1~" 
Y , G / P '  

(this diagram defines the map f ' ;  the horizontal arrows are the natural ones). 
Let p be the set of parabolic subgroups of G containing P. Then p is a finite set 

(see [B]), which is an ordered lattice with respect to the partial order given by 
inclusion. Fix a very ample ~ f ' ~ P i c ( G / P ' )  for each P ' ~ p .  Then the above 
construction yields a map of sets z: p -~ p. 

Lemma 5. z: p --* p is an isomorphism of ordered lattices. 

Proof We must show that r is bijective (i.e. that it is injective, as p is finite), and 
preserves the partial order i.e. P '  c P"=~ r (P ' )  c T(P"). 

We first remark that for any P ' ~  p, 

Y - ,  GIT(P')  f '  , G /P '  
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is the Stein factorization of the composite 

Y ~  Y ~  G/P '  

so that r: p ~ p is independent of the choices ~ ' e  Pic (G/P ' ) .  Since the fibres of 
g--,  G / r (P ' )  are connected and G/r (P ' )  is smooth, this remark will follow if we 
prove that f '  has finite fibres. If x e G/P' ,  and Z c Y is its inverse image under the 
natural map Y = G / P ~ G / P ' ,  then 5 ~ |  z, so that, f * ~ |  s ,(z) 
= (-gz- ,(z). Hence each connected component  o f f -  I ( Z )  is mapped to a point by 
the linear system associated to f * ~ ,  i.e. by the natural morphism Y - ,  G/r(P ' ) .  
But ( f ' ) -  l (x)  consists of the finite set of images in G/r (P ' )  of connected compo- 
nents o f f -  I (Z) ,  and thus is finite. 

In particular, dim G/P'  = dim G/r(P ' ) ,  so that dim P '  = dim r (P ' ) .  If P '  c P", 
then the natural map Y ~ G/P"  factors through the natural map Y ~ G/P' .  By the 
functoriality of the Stein factorization, there is a unique map G/T(P' )  ~ G / r ( P " )  
making the following diagram commute: 

f[\ 
) G / r (P" )  

Y. | , G/P"  

Since Y- -*G/ r (P ' )  and Y- -+G/r (P ' )  are the natural maps, this means 
r ( P " )  c r (P") .  Thus r preserves the partial ordering on p. 

Next, if P ' , P " e p ,  the natural map G / P ~  G / P ' x  G/P"  factors into the 
natural maps G / P --~ G / P' n P" ~ G / P' x G / P". Consider the diagram 

Y , G / r ( P ' )  x G / r ( P " )  

s I ~s'• 
Y , G /P '  x G /P"  

which yields the diagram with surjective arrows 

Y , G / z ( P ' ) ~ r ( P " )  

Y ' G / P ' c ~ P "  

(this diagram defines f) .  Note that f '  x f " ,  and hence j~ is finite. Since 
r ( P ' )  n r ( P " )  E p is connected, the fibres of Y --, G / r ( P ' )  n ~ (P")  are connected. 
Thus we see that 

~(P' nP") = r(P')n~(P") 
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by the uniqueness of the Stein factorization.  Hence if 

z ( P ' )  = r ( P " )  = r ( P ' )  n z ( P " )  

then dim P '  = dim P"  = dim P '  ~ P"  since r preserves dimensions.  Since P ' ,  P" ,  
P '  c~ P "  are all connected  they are equal_ [] 

Let ~# c p be the subset of maximal  pa rabo l i c  subgroups  P ' c  G which 
contain  P. F r o m  lemma 5, z restricts to a bi ject ion on rig. Let ~/[1 c ,/g be the 
subset consis t ing of parabol ics  P '  such that  for e a c h j  > 0, if P"  = z ~- 1 (p , ) ,  then 

f " :  G / r ( P " )  - ,  G / P "  

is an isomorphism.  Clear ly  z(J /r  = ~t '  t . If P ' e r  - Jr then for s o m e j  > 0, if 
p, ,  = r j -  l ( p , ) ,  

f " :  G / z ( P " )  -~ G / P "  

has degree > 1. But r is a bi ject ion of a finite set, so that  for some n > j ,  T" (P ' )  
= P ' ;  thus the composi te  

6 / P '  = a / r " ( P ' ) - - *  G / z " - l ( p , ) ~  . . .  ~ a / z ( P ' ) ~  G / P '  

is a finite self m a p  of degree > 1. Hence, by p ropos i t ion  2, we have G / P '  ~ P"'  for 
some n'. 

Let 
Po = 0 P ' ,  x = C / e o  

P ' e . , / /  t 

and let ~ - ,~#1 = {Px . . . . .  Pro}; then r(P~) = P~ i l  for  some p e r m u t a t i o n  ~r o f  
{ 1 , . . . ,  m}, and  G/P~ ~ P"'  for some integer nl > 0, for i =  1 . . . . .  m. Since 
dim G / P '  = dim G / r ( P ' ) ,  we have nl = n~i~ for all i. Since r(J/r  = ~r we have 
z(Po) = P0 by lemma 5. Let 

fo: x = G/ / 'o  = 6 /~(Po) - - ,  G/Po = X ,  
and 

fi: G/P~(il = G/~(Pi)  ~ G/Pi,  i > O, 

be the maps  induced by f as constructed above. Then fo is an i somorph ism by the 
choice of Jff~. F o r  each i > 0, f~ can be wri t ten as a composi te  

G/P~,to ~- P " ' -  ~' ' P"' ~ G/Pi 

where ~ is a finite self map  of the projective space. 
square 

x x [ I  6/P, 
Y ~ i=1 

' X • f i  G/Pi 
i = l  

Y 

Then we have a commuta t ive  
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where the horizontal maps are closed embeddings, since (see [B]) 

P = ~ P ' .  
P' ~,,cd 

Thus to finish the proof of the theorem, we only need to show that 

~: Y = G / P - - * X  x ~ G/P i 
i = l  

is surjective (and hence an isomorphism). Replacing f by an iterate does not change 
the subset ~'1 c j///; hence to show that 7/is an isomorphism, we may replace f by 
an iterate so that, without loss of generality, we may assume that a is the identity 
permutation. Thus f :  G/PI --* G/Pi is a finite self map, which is an isomorphism for 
i = O, and a map P " ' ~  P"'  of degree > 1 for 1 < i < m. 

Fix an integer j e { 1 . . . . .  m}, If F is a fibre of the natural map 

Y P , X x  17 G/PI 
i # j  

then d i m F > 0  and F maps isomorphically to its image f under the natural 
map 

q 

Y ~ G/Pj = P"' . 

Further, p, q are G-equivariant (for the left G-action), so that the translate gF 
(which is another fibre of p) maps isomorphically under q to gF. From pro- 
position 1 applied to fj: P"~ ~ P% f i  1 (9F) is irreducible and has multiplicity 1 as 
a cycle, for all 9 in a non-empty Zariski open set in G. If F '  is an irreducible 
component  of f -  1 (F), then from the commutative diagram 

. x x F[ G/P  
Y i + j  

J j . )  

y o 
, x • I-I c / e ,  

i,l=j 

we see that F '  is also a fibre of p (since dim F '  = dim F, and the non-empty fibres of 
p are precisely the translates gF). Now q(F')=/:=' c P"~ is contained in the 
inverse image f f  l ( f ) .  Thus, replacing F by a translate 9F,. so that f j - l ( f )  is 
irreducible, we have f f  l ( f )  = F '  as a cycle. But /~ '  is a translate of F. Hence if 
s = dim F, 

EF] = E F ' ]  = f * E F ] E H Z " ' - z ~ ( P  "~, Z ) .  

Since degf j  > 1, this forces s = n~ i.e. F =  P"L Hence Y =  X x 1-I~"= t P" '  is the 
inverse image of its projection to X x 1-Ii , j P " ' ,  for a l l j~  { 1 , . . . ,  m}. Since Y ~ X 
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induced by 7 ~ is just the natural surjection G / P  ~ G /P  o, we see that ~ is a 
bijection. This completes the proof  of the theorem. 

2. Maps between Grassmann varieties 

Let G(k,  N) denote the Grassmann variety of k-dimensional quotients of an N- 
dimensional vector space over C. 

Proposition 6. Let k <= n, 2 <_ I <_ m be integers, such that there exists a finite 
surjection morphism between Grassmann varieties 

f:  G ( k , k  + n ) - - }G( l , l  + m ) .  

Then k = l, m = n and f is an isomorphism. 

Proof  Let Z ~ G(I, l + m) be an irreducible subvariety such that TG(t,/+ m)| (-gz 
has a trivial direct summand of rank r. Then an analogous statement holds for any 
translate of Z by GLL+m(C) (regarding G(/, l +  m) as a homogeneous  space for 
GL~ + m(C)). Replacing Z by a translate, we may assume that Z is not  contained in 
the branch locus o f f  Then i f Z '  is any irreducible component  o f f -  i (Z)red, we see 
that f *  Tr m) | [Oz, has a trivial direct summand of rank r. Further,  the natural  
map (induced by df) 

TG(I,',k + n)| Oz' ~ f *  TG(t, t + m)| g0z' 

is an injection of locally free sheaves which is an isomorphism at the generic point  
of Z '  Hence, TGIk, k + ,,) | (z '  has a map to 6'ze, r which is generically surjective; since 
Tstk, k +,,t is generated by global sections, TG~k,k" + , ) |  g0 z, has a trivial direct 
summand of rank r. As a consequence, if G ( / , l +  m) has a subvariety Z of 
dimension d such that T6(l, l + m) | (;)z' has a trivial direct summand  of rank r, then 
G(k, k + n) also has such a subvariety of dimension d. We will use this to prove 
that k = l,m = n. 

Let s, t be integers with 1 _< s _< l, 1 _< t _< m. We have an embedding 

X = G ( l - s , l + m - s - t ) - * G ( l , l + m ) =  Y 

which we may describe as follows: on X we have the universal quotient 

~xe t+ , , - s - ,__ ,  3 

where ~ is locally free of rank l - s. This yields a quotient which is the composite 

By the universal property of G(l,  I + m) this corresponds to the above morphism 
X - .  Y. Let Z~. t denote the image. The universal exact sequence on G(/, l + m) 
restricted to Z~., is the direct sum of the universal exact sequence on G ( / -  s, 
l + m - s - t) with the split sequence 

0 ~ ( ~ | -~ r ~'~ + t ~ ~O Cz.S --}0 

Thus, TGtl. l + ,,) | CZ,, has a trivial direct summand of rank st. This is also true of 
any translate of  Z,.t under GLt + re(C). 
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L e m m a  7. Let Z be an irreducible subvariety of G(/, l + m). Suppose that 
TGa,t+,. ) | Cz has a trivial direct summand of rank r. Then there exists integers s, t 
with 1 < s < l, 1 < t <_ m and st >= r, such that some G L t + m ( C  ) translate of Zs, t 
contains Z. 

Proof Let V = C ~ § m, so that  G(I,  l + m) paramet r izes / -d imens iona l  quotients of 
V. If x ~ G ( l ,  l + m), then there is a cor responding / -d imens iona l  quotient  

v ~  v/wx 

where Wx is of dimension m. Then the tangent  space to G(I,  1 + m) at x is 

T~ = H o m (  Wx, V/Wx) .  

There is a surjection ~o x: E n d ( V )  ~ Tx corresponding to a surjection of locally free 
sheaves 

Cc(t, t + m) |  End (V)  ~ To(t, I + m) 

which gives rise to a morph i sm 

P( Tc(t, t + m)) ~ P ( E n d  ( V ) ) ,  

whose restriction to P(Tx)  is induced by ~p~. Identifying E n d ( V )  with its dual  
space, we may  identify the projective space P(End (V))  with the space of lines in 
End ( V); then the subspace P( T~ ) is the space of lines in H o m  ( V/Wx, Wx). Here we 
identify H o m (  V/Wx, Wx) with 

{ A eEnd(  V) l imA = W~ = ke rA}  . 

N o w  if Z c G(I ,  l + m) is a subvariety,  then by l emma 3, 

Tell, t + m) | Cz has a trivial direct summand  of rank r 

" r  H ~  > r ' ~ z  

where the intersection is taken in End (V). But if 

vl=NWx, V2=EWx, 
x ~ Z  x ~ Z  

t h e n 0 c  V 1 =  V 2 C  V, and  

n Hom(V/W~,  Wx)= { A e E n d ( V ) l i m A  ~ V~ c V 2 = k e r A }  
x E Z  

= H o m ( V / V  2, V~). 

If t = dim 111, s = dim V / V  2, then 

Z ' =  { x ~ G ( l , l  +m)lVa c W~ = V2} 

is a t ranslate  of Zs,, which clearly contains Z; also 

n H o m ( V / W ~ , W ~ ) =  n H ~  W ~ ) = H ~  V1) 
x ~ Z '  x ~ Z  
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which has dimension st, Since the middle term has dimension > r, we get st > r. [] 

As a corollary, we observe that if Z ~ G(I,  l + m) is such that Tcit, I + ml | 6~z 
has a trivial direct summand,  then 

d i m Z  < dimZ1,  1 = d i m G ( / -  1 , 1 + m - 2 ) = ( l -  1 ) ( m -  1).  

Hence if 

f : G ( k , k + n ) ~ G ( l , l + m ) ,  k < n ,  2 < _ l < m ,  

is a finite morphism, f (Z1, 1 ) has an irreducible component  Z ~ G(k, k + n) of  
dimension (l - 1 )(m - 1 ), such that TGIk, k + ,I | CZ has a trivial direct summand.  
Applying lemma 7 to G ( k ,  k + n), we see that 

(k  - 1 ) ( n  - l )  > ( t -  1 ) ( , n  - 1 ) ,  (1) 

Since f is finite, we have kn = lm. Hence this implies 

l + m > k + n .  (2) 

If equality holds, then since kn = lm, we must have k = l, m = n and hence from the 
Theorem, f is an isomorphism. Hence it suffices to prove that strict inequality in (2) 
leads to a contradiction. Now 

l + m > k + n  (3) 

~ ( l + m )  2 > ( k + n )  2 

~ ( m - l )  2 > ( n - k ) 2 ;  u s i n g l m = k n  

m -  I > n -  k . (4) 

From (3) and (4), 

m > n > = k > l >  2 .  (5) 

Let to be the positive integer such that tol > k, while (t o - 1 )l < k; then t o > 2, 
as k > I. Let s be any integer satisfying 

( k - t  o - l ) m +  1 ( k - t o +  1 ) m - I  
_< s -< (6) 

k k 

Since m > k, there a r e a t  least two integers s satisfying (6). Then (to - 1 ) l  < (k  - 1 ) 
implies that 

k - t  o - 1 > ( I -  l ) t o - l >  2 ( l -  1 ) - 1 = I - 2 > 0 ;  

also, ( k -  t o - 1)__< (k - 1), so that 

k s < ( k -  1 ) m - 1  < k m .  

Hence for any s satisfying (6), 

1 < s - < ( m -  1 ) .  (7) 

Consider the subvariety Z I , , , _  s c G( l ,  l + m), for s satisfying (6). The sub- 
variety is isomorphic to G ( l  - 1, l - 1 + s), so it has dimension (l - l)s; also 
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T~lt,1+m) | (gz . . . . .  has  a t r iv ia l  d i rec t  s u m m a n d  of  r a n k  m -  s. H e n c e  there  
exis ts  an  i r r e d u d b l e  c o m p o n e n t  Z o f -  l ( Z l , m _ s )  ~ G(k ,  k + n) such tha t  
d i m Z  = (l  - 1)s, a n d  To(k, k + , / |  (gz has  a t r iv ia l  d i rec t  s u m m a n d  of r ank  m - s. 
By l e m m a  7 a p p l i e d  to  G(k,  k + n), there  exis t  in tegers  r, t wi th  1 < t < k - 1, 
1 _< r <_ n -  1 such tha t  Z c Z t , , - r  c G(k,  k + n). N o w  Zt, . _ r  has  d i m e n s i o n  
( k -  t)r a n d  TG(k, k + ~)| (9 z ..... has  a t r ivia l  d i rec t  s u m m a n d  of  r a n k  t ( n -  r). 
Thus ,  t, r sat isfy the  sys tem of inequal i t ies :  

r ( k -  t) >- s ( l -  1) (8) 

t(n - r) >= m - s . (9) 

N o w  k - t > 1, so t ha t  (8) impl ies  t h a t  

s ( t -  i) 
r >_ - -  (10) 

- k - t  ' 
while  (9) impl ies  t h a t  

r <  

C o m b i n i n g  (10) a n d  (11), we o b t a i n  

t n - - m + s  
(11) 

( k -  t ) ( t n -  m + s) >__ ( 1 -  1)ts . 

S u b s t i t u t i n g  n = lm/k,  we get  

- -  m + s  > = ( l -  1)ts 

= ~ ( k - t )  T - m  > ( t l - k ) s  

~ ( ( k  - t )m - ks ) ( t l  - k)  >= O . (12) 

If  t > t o, then  tl - k > 0, so tha t  (12) y ie lds  (k - t )m > ks. F r o m  (6), we get  

( k -  t)m >= ( k -  t o -  1 ) m +  1 

~ ( t o - t +  1)m__> 1 

~ ( t o + l - t ) > 0  

c o n t r a d i c t i n g  l > t o. 
If  t < t o, then  tl - k < 0, a n d  so (12) y ie lds  (k - t )m <= ks. F r o m  (6), we get 

( k - t ) m < ( k - t o  + 1 ) m - 1  

~ ( t - t o +  1 ) m >  1 

( t +  1 - t o ) > 0  

c o n t r a d i c t i n g  t < to. 
H e n c e  we mus t  have  t = t o. N o w  if tol - k > 0, then  (12) a g a i n  gives 

(k - to)m >__ ks . (13) 
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But the interval 

( ( k - - l ~ t ~ 1 7 6  l 

contains an integer s (which then satisfies (6)), since 

( k - t o +  1 ) m -  1 - ( k - t o ) r e > k ,  

and this contradicts (13). 
Hence, we are forced to choose t = t o, where to l = k. In this case, the in- 

equalities (8) and (9) become (using l m =  kn = toln, so that m = ton) 

r ( to l  - to) >= s(l  - 1) 

to(n - r) > ton - s 

which yield the pair of inequalities 

(rt  o - s ) ( l  - 1)->__0 

0 > r t  o - s .  

Since I > 2, this forces rto = s, so that t o divides s; also to > 2. But there are atleast 
two consecutive integers s satisfying (6); so we may choose s satisfying (6) but with 
to ~/s. Hence, in all cases, for some value of s satisfying (6), it is impossible to find 
any r, t with 1 _< t _< k - 1, 1 _< r_< n - 1 such that (8) and (9) hold. This proves 
Proposi t ion 8. [] 

3. Remarks on Lazarsfeld's problem 

In this section we show: 

Proposition 8. Le t  Y be a smooth  quadric hypersurface,  dim Y = n > 3, and 
f :  Y ~ X  be a f in i te  surjective morphism ~?f degree > 1 to a smooth  variety  X;  then X 
is isomorphic to pn. 

P r o o f  We begin by reviewing the results of Mori [M].  He proves (Theorem 6 of 
[ M ] )  that if X is a smooth,  projective variety of dimension n such that the inverse of 
the canonical sheaf K x i is ample, then for each P s X, there is a non-constant  
morphism u: p l  _~ X with d e g u * ( K  x t) =< n + 1, such that P s u ( P 1 ) .  

Now fix P e X, and let �9 ~ P 1 be a fixed point. Assume that K ;c ~ is ample, and 
let 

d = rain { deg u* ( K ~ 1 )l u: (P 1, .  ) __, ( X, P); u is non-constant  } . 

Then d =< n + 1, and any u: P1 ~ X achieving this minimal degree is birational to 
its image. Let V be a connected component  of H o m  d ((P 1 .  ), (X, P)), the scheme of 
morphisms u: p1 _~ X of degree d. Then G = A u t ( P  ~, *) acts on V. Let l~ be an 
irreducible component  of  the normalizat ion of V. Then the G action on I? is proper  
and free, with a geometric quotient  7: 17~ W, where W is a normal  projective 
variety and ~ is a principal G-bundle. 

Assume further that for all u ~ V, 

H I ( P I ,  u * T x |  - 1 ) ) = 0 .  
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Then from the Riemann-Roch theorem, 

d i m H ~  x,u*Tx | ( 9e1 ( -  1)) = d , 

and Mori's arguments show that V is smooth of dimension d; hence W is smooth 
(and projective) of dimension d - 2. Further, if u * T  x is ample for all uE V, then 

d = n +  1, W ~ P " - I ,  a n d X ~ P " .  

We now specialize to the situation when there is a finite surjective morphism 
f :  Y--, X, where Y is a smooth quadric of dimension n > 3. Let B c X be the 
branch locus, and R ~ Y be the ramification locus so that 

f * K x  | K r  1 ~ ~ r ( -  R) and B = f ( R )  

(since Y is simply connected and every automorphism of Y has fixed points by the 
Lefschetz fixed point formula, R and B are effective and non-zero). As Pic Y = Z, 
( ;r (R)  is ample, and K~7 1 is ample since Yis a quadric, K x  l is ample, and Mori's 
results apply. 

Let U = f ( Y - R ) ,  so that X -  U c B .  Let P e U ,  and let Q e Y - R  with 
f ( Q )  = P. Then if u: (P 1, .  ) __+ ( X, P)  is a curve such that d = deg u* K x 1, and C is 
the normalization of any irreducible component of f - l ( u ( P 1 ) )  which passes 
through Q, then we have a diagram 

C ".+ Y 

p l  - 2 ~  X 

There is a map of locally free sheaves 

v* Tr --+ h*u* r x 

which is an isomorphism at the generic point of C, as C r R. Now 

u*rx~(ge,(ml)| ~ (gp,(m.)  , 

with ml < . . .  < m,; since Tr is generated by global sections, we see that h ' u *  T x is 
generated at the generic point of C by its global sections, so that mi > 0 for all i. 
Further, 

v* Tr ~ (9~c" G g 

where g is an ample locally free sheaf, and r >__ 0. Hence, mi > 0 for all i > r. Also, 
the inclusion of sheaves Te , - -+u*T x shows that m , > 2 .  In any case, 
H X ( P l ,  u*Tx|  - 1 ) ) =  0, so that V is smooth of dimension d and W is 
smooth of dimension d - 2. 

Lemma 9. I f  Y is a smooth quadric o f  dimension n >= 3, and v: C --+ Y a non-constant 
morphism from an irreducible projective curve C, then either v* T r is ample, or v(C) is a 

line contained in Y and in this case, 

v*(T~) ~ ec |  g ,  
where g is ample. 
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Proof We note that Y is the space of isotropic lines in a quadratic space. As in 
section 1, we have a natural  morphism 

Py(Tr)  - .  P(Lie  G ) ,  

where G is the corresponding or thogonal  group. We may then identify Lie G with 
the space of skew-symmetric matrices, and for any p e Y the tangent space 
Tp.y = Horn(p,  p• From this it follows easily that, for any p, qe  Y the linear 
subspaces P( Tp, r) and P( Tq, r) of  P(Lie G) intersect if and only if the lines p and q 
are orthogonal.  Thus, from lemma 3, if v(C) c Y is an irreducible curve such that 
v*(Tr)  has a trivial direct summand,  then v(C) lies in the projective space of an 
isotropic subspace of P" + 1, i.e. for some t > 0, 

v ( c ) =  

subspace P ~  Y, For  a linear 
columns 

0 

o--> vp, -> Tyl 

II ,!, 

p ~ c  y ~ p . + l  

we have the diagram with exact rows and 

0 

e' ~ N ~ 0  

0 ~ Tp, ~ Tp,+,Ip, ~ Cp,(1) e " + 1 - '  ~ 0 

+ + 

(9p,(2) = OF,(2) ~ 0 

0 0 

The middle row is split exact since H I ( P  ', T p , ( -  1)) = 0, hence so is the top row. 
Tensoring the last column with C p , ( -  1) we see that 

N ~ s O (-gp,(l) e ( n - 2 0  

Hence, 

ry l . ,  _--- o~.,(2) e e 

where d ~ is ample. Thus v*(Tr)  has a trivial direct summand  if and only if 
v*(g2~,,(2)) has one. So it suffices to show that this is possible only if v(C) is a line in 
P' .  Taking duals, if 

v*(Tp,(- I)) ~ v*(Cp,(1)) |  

then ~ is generated by global sections and has trivial determinant and is thus 
trivial. But this clearly implies that v(C) is a line, in which case we may take t = 1, 
and this yields the second conclusion. E2 

If C c Y is a line then r = 1 and degv* Tr = n. Hence, in any case, m 1 > 0, 
m i > 1 for i > 1, and m, > 2, so that  d > n, and d - 2 = dim W > 0. Thus there are 
infinitely many distinct rational curves through P with minimal degree d. 

We now consider two cases. 
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Case 1. For some P ~ U, { u e V lu*Tx is not  ample} consists of atmostfinitely many 
G orbits. 

In this case, d = n + 1, and W is smooth and projective of dimension n - 1. If 
u s  V such that  u*Tx is ample, then 

u*Tx ~- Cp,(1) ~ n - 1  @ (9p,(2) . 

Hence u is an immersion. On the other hand, if u * T  x is not  ample, then we have a 
diagram 

C ~ ,  Y 

E l . U )  X 

where v is the embedding of a line in Y through Q s ( f  - 1 ( p )  _ R). Then C --* X is 
unramified at v -  ~(Q), and so u is unramified at h(v-  ~(Q)). This is valid for each 
irreducible componen t  C of f - ~ ( u ( P ~ ) )  through Q, and so u is unramified at 
, ~ p a .  

Hence, if we fix a non-zero tangent vector t6T,,p1 then the assignment 
u ~ d u ( t )  gives a morphism 

. :  v - - ,  (r ,x - {0}) A" - {0} 

which yields a commutat ive diagram 

V " , A" -- {0} 

W ,~ ~ p n - 1  

As in Mori 's  paper [M] ,  we see that if ue  V such that u * T  x is ample, then t/ is 
smooth  along the G orbit  ofu in V, and so ~ is 6tale at ? ( u ) s  W. By assumption, this 
means that 6 is 6tale outside a finite set. Since n > 3 this means that  6 is 6tale, and 
hence an isomorphism. On the other hand, if u s  V such that u* T x is not  ample, 
then 

H l ( p l , u *  T x | ( t i p , (  - -  2)) # 0 . 

The Zariski tangent space to the fibre of  r /a t .u  is 

H ~  u * T x |  2)) 

which has dimension > 1; hence q is not  smooth  at u. But 6~ is a principal G- 
bundle so that  t/is a principal Gl-bundle,  where G1 is the subgroup of G fixing the 
tangent vector t. Hence r/is smooth,  and so u*T  x is ample for all u s  V. As in [M] ,  
this implies that X -~ P". 

Case 2. For each P s  U, {us  V[u*Tx is not ample} consists of infinitely many G 
orbits. 
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Since there are only a finite number  of lines in Y joining distinct points of  
f - ~ ( P ) ,  we see that  there exists u~ V such that u*T x is not  ample, and in the 
diagram 

C 
t , ,  y 

p1 ~ , X  

C is a line such that C ~ f - I ( P ) =  {Q}. Since f is unramified at Q, fov  is 
birational, and h is an isomorphism. Thus 

n + 1 > degh*u*K x 1 = d e g v * K  f 1 + degv.(gr(R) 

= n + degv*(gr(R ) > n + 1 . 

Hence we must have d = n + 1, and (gy(R) = (gr(1). In particular, R is a hyper- 
plane section of Y, and is reduced and irreducible; so f is simply ramified 
(has ramification index two) at the generic point  of R. Thus dim V = n + 1, and 
dim W = n - 1. 

As in case 1, we see that, by fixing a non-zero tangent vector t e T.,p,,  we obtain 
a diagram 

v " , A ~  

W ~ , p , -  1 

where for u~ V such that u*Tx is ample, 6 is 6tale at 7(u). 
The cone of lines in Y through Q is parametrized by a smooth quadric 

hypersurface Z c P(T~,y) ~_ P ( T * y  ). Since for any line C c Y, d e g f * K x  1 | Cc 
= n + 1, we see that  f]c is birational for any line C meeting f - I ( U ) .  Thus we 
obtain a morphism ~: Z ~ W such that the composite 

6 o ( :  Z--* P " -x  = P(T*,x  ) 

is the natural embedding. Clearly the non-6tale locus of  fi is contained in ~(Z). 
Hence ~ is a finite morphism between smooth varieties, and its non-6tale locus is a 
divisor, which must  equal ~(Z)  if 6 is not an isomorphism. As in case 1, if 6 is an 
isomorphism, then u* Tx is ample for all u ~ V, contradicting the hypothesis of case 
2. Hence for every line C ~ Y through Q,f* T x | (9 c is not ample on C. 

We claim that U = X - B i.e. f -  1 (B) = R. If not, we can find P e  U with Q, Q '  
in f -  l (P) ,  where QC:R, and Q'~R, such that P is a smooth point  of B, and f is 
simply ramified at Q'.  We can find a line C ~ Y through Q such that C~ = f ( C )  is 
smooth  at P and transverse to B at P. Then we can find another  line C '  ~ Y 
through Q '  which maps birationaUy to C 1, since every irreducible component  of 
f - t ( C t )  must be a line. However  simple ramification at Q '  implies that 
df(TQ, r) ~ Te.B. Since C~ is transverse to B at P, this is a contradiction. 
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Now R is a hyperplane section of the smooth  quadric Y of dimension > 3; 
hence n~ ( Y - R) = 0 (this is clear if R is singular as Y - R g A"; if R is smooth,  
this follows from the facts (i) n l ( Y -  R )  is abelian, and (ii) H i ( Y -  R , Z )  = 0). 
Thus Y - R is the universal covering space of X - B. In  particular there is a finite 
group H of au tomorphisms of Y, which acts freely on Y -  R, such that X = Y / H  

(the au tomorphisms  in H of  Y -  R extend to Y as Y is the normalizat ion of X in 
C (Y)). Since f is simply ramified at the generic point of R, the inertia group of the 
corresponding discrete valuation on C ( Y )  has order two. The involution a 
generating this inertia group extends to the ambient projective space P" + 1, fixes 
the hyperplane spanned by R and has no other fixed points on Y. Thus a has one 
other isolated fixed point in p , + l _  y and the quotient map  Y - ~  Y / ( a )  is 
induced by the projection from this fixed point. Thus we have a factorization 

y , P "  

f ~  
X 

From the result of Lazarsfeld mentioned in the introduction (see [L]), we must  
have X ~ P", so that  Tx is ample on every curve in X, contradicting the hypothesis 
of  case 2. []  
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Note added in proof 

1. Problem 2 has been answered affirmatively by O. Debarre. 
2. The following observation by P. Polo and M.S. Raghunathan can be used to strengthen the 

Theorem. I f  G is any simple connected, semi-simple algebraic 9roup over C such that 
G/P _~ 17 G/P~, where P, Pi's are parabolic subgroups; then G = 17 G i and there are parabolic groups 
Qi c Gi such that P~ = P71 (Qi), where Pi: G ~ Gi is the projection. 

3. The Theorem has the following corollary: Let G be a semi-simple, simply connected algebraic 
9roup over an algebraically closed field k with chark=p>0,  and let X be a projective 
homogeneous variety for G. Suppose X lifts to a smooth and proper scheme ~( ~ Spec W(k) over the 
Witt vectors of k, such that the absolute Frobenius morphism of X lifts to a morphism oJz (coverin9 
the Frobenius on W(k)). Then X~-HP "i, 


