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Abstract

robot with actuated base joints and congruent equilateral base and mo-
bile platform. The singularity loci are first determined. Then the global
behavior at all singularities is geometrically described by studying the
degeneracies of the direct kinematic model. This study is made easier
by the fact that one of the two direct kinematic solutions is trivial and
singular. It is shown that this parallel robot has Cardanic self motions.

Keywords: Kinematic geometry, planar parallel mechanism, singularity, self motion

1. Introduction

Often, the main drawback of choosing design conditions for which the
direct kinematic problem of a parallel robot becomes simplified is the
appearance of self motions (Husty and Zsombor-Murray, 1994; Karger,
2002; Wohlhart, 2002). While self motions are certainly the worst type
of singularity a parallel robot could cross, they should simply be avoided
like any other type of singularity. Then, why not use parallel robots with
self motions if these robots have simpler direct kinematics?

For example, in a recent paper (Bonev et al., 2006), the authors have
shown that all singularities of the popular spherical parallel robot design,
known as the Agile Eye, correspond to self motions, yet this design is
arguably the “best” spherical wrist. (In the Agile Eye, any two axes
that are fixed to one another are orthogonal.) Indeed, the singularity
loci of the Agile Eye are not surfaces but curves, which means that the
robot’s theoretical workspace is undivided and unlimited. Furthermore,
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while the Agile Eye still has eight assembly modes, like any other 3-RRR
parallel wrist (R stands for revolute and P for prismatic joint, and an
underline indicates which joint is actuated), half of them correspond to
four singular orientations and the other half are easily found in cascade.

Self motions have been investigated mainly for Stewart-Gough plat-
forms. Few planar parallel robots with self motions have been studied,
and the kinematics of the general 3-RPR planar parallel robot was only
briefly considered in two papers (Merlet, 1996; Bonev et al., 2003). We
came up with a special design for this peculiar planar parallel robot on
a fruitless search for a planar equivalent to the Agile Eye. While our
special 3-RPR planar parallel robot is certainly not the most useful one,
the study of its self motions brings insight into the complex relationship
between direct kinematics and singularities of parallel robots.

In the next section, we will briefly present the analytic expression for
the singularity loci of our special 3-RPR planar parallel robot. We will
identify a range of orientations for which the robot has a sufficiently
large singularity-free workspace. Then, in Section 3, we will describe
the several types of singular configurations by studying the degeneracies
of the direct kinematics and show that they belong to self motions.
Conclusions are given in the last section.

2. Singularity Loci

The special 3-RPR planar parallel robot is shown in Fig. 1. Its mobile
platform and base form congruent equilateral triangles. We denote with
Oi and Bi (in this paper, i = 1, 2, 3) the intersections of the base and
platform revolute joint axes, respectively, with a plane normal to these
axes. Then, let Oxy and Cx′y′ be the base and mobile reference frames,
respectively. The generalized coordinates locating the mobile platform,
i.e., the mobile frame Cx′y′, in the base frame Oxy will be denoted by
x, y, and φ. We define each active-joint variable θi as the angle between
the x-axis and a unit vector vi that defines the direction of the prismatic
joint of leg i, measured in counter-clockwise sense. Finally, the directed
distance from point Oi to point Bi along vector vi is denoted by ρi.

Skipping the derivation and referring the reader to (Bonev et al.,
2003), the velocity equation for the 3-RPR planar parallel robot is

Aq̇ =

⎡

⎢

⎣

m1 fT
1

m2 fT
2

m3 fT
3

⎤

⎥

⎦
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where

fi = Evi =

[ − sin θi

cos θi

]

= E (rOC + rCBi
− rOOi

)/ρi, (2)
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Figure 1. 3-RPR planar parallel robot with congruent equilateral base and platform.

mi = fT
i ErCBi

= fT
i ERr′CBi

, (3)

and

E =

[

0 −1
1 0

]

, R =

[

cos φ − sin φ
sin φ cos φ

]

. (4)

Furthermore, rOC = [x, y]T , rOOi
and rCBi

are the vectors along OOi

and CBi, respectively, expressed in the base frame, and r′CBi
is the vector

along CBi expressed in the mobile frame. Without loss of generality, we
define these vectors as

rOO1
= r′CB1

=

[

−1/2

−
√

3/2

]

, rOO2
= r′CB2

=

[

1/2

−
√

3/2

]

,

rOO3
= r′CB3

=

[

0
0

]

,

or, in other words, we set the sides of the base and platform to unity,
and fix the base and platform frames at points O3 and B3, respectively.

Type 2 singularities occur when A is singular. Geometrically, this
means that the lines normal to the directions of the prismatic joints and
passing through points Bi are concurrent or parallel. Simplifying the
determinant of A and zeroing yields:

det(A) =

√
3(cos φ − 1)

2ρ1ρ2ρ3

(

(x − xc)
2 + (y − yc) − r2

)

= 0, (5)

where

xc = − 1√
3

sin φ, yc = − 1√
3
(1 − cos φ), r =

√

2(1 − cos φ)

3
.
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Figure 2. Singularity loci and singularity-free workspace for φ ∈ [120◦, 240◦].

Therefore, Type 2 singularity loci for this mechanism are (a) the whole
xy-plane, when φ = 0 (the directions of all prismatic joints are parallel),
and (b) a circle of radius r, centered at (xc, yc), which passes through
O3, when φ �= 0. Note, however, that Eq. (1) is of indeterminate form
(0/0) at a Type 1 singularity. Indeed, at a Type 1 singularity, a motor
can freely rotate without affecting the pose of the platform. Such a pose
would be Type 2 singular only for specific combinations of the active-
joint variables that correspond to singular legs.

We will conclude this section by proposing a range of orientations for
which the singularity-free workspace is sufficiently large. Apparently,
this range needs to exclude φ = 0, and if symmetry is to be observed,
the best choice would be a range centered at φ = 180◦. Figure 2 shows
our parallel robot with a series of Type 2 singularity circles corresponding
to φ = 120◦ + k10◦ (k = 0, 1, 2, ..., 12). The dots correspond to Type 1
singularities. The singularity-free workspace for the orientation range
φ ∈ [120◦, 240◦] is the one that excludes the circle-swept region in Fig. 2.

Based on this purely algebraic analysis, it is certainly not obvious, but
one can verify by using Eq. (5) that for any Type 2 singular configuration
for which φ �= 0, lines OiBi intersect at a common point lying on the
circumcircle of the base (see the gray-colored configuration in Fig. 2).
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Figure 3. Geometric interpretation of the direct kinematic model.

3. Degeneracies of the Direct Kinematics

In order to study the global behavior of the parallel robot at all singu-
larities, we will analyze its direct kinematic model. Indeed, this approach
is the most intuitive one and gives a clear geometric interpretation of
all singular configurations. It is usually very difficult or even impossible
to follow this approach, but in our case the direct kinematic model is
particularly simple. Indeed, whatever the active-joint variables, there is
always the trivial solution when the base and platform coincide.

Merlet (1996) showed that the direct kinematic problem of 3-RPR
planar parallel robots is equivalent to intersecting an ellipse with a line,
but did not study any special cases. Let us dismount the revolute joint
at B3. For given active-joint variables, points B1 and B2 are constrained
to move along two lines (Fig. 3), L1 and L2, respectively, and the mobile

al., 1998). As a result, B3 describes a curve, E, that is an ellipse, two
parallel lines, a line, or a doubly traced line segment. Obviously, this
curve contains point O3 (i.e., O). Considering leg 3, B3 should also lie
on a line passing through O3, denoted by L3. Thus, the direct kinematic
problem is equivalent to finding the intersections between L3 and E .

Let us now derive the elliptic curve E . We can write the following
closure equation for point C ≡ B3:

rOC = rOO1
+ ρ1v1 − rCB1

= rOO2
+ ρ2v2 − rCB2

. (6)

This yields the following system of two equations:

−1 + ρ1 cos θ1 + cos φ − ρ2 cos θ2 = 0, (7)

ρ1 sin θ1 + sin φ − ρ2 sin θ2 = 0. (8)
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°
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Figure 4. Cardanic self motion when the legs are concurrent and make equal angles.

Solving Eqs. (7) and (8) for ρ1 and ρ2, and substituting the results in
Eq. (6), we obtain the following parametric equation in φ:

x =

(

cos θ1 sin θ2

sin(θ1 − θ2)
+

1

2

)

(cos φ − 1) −
(

cos θ1 cos θ2

sin(θ1 − θ2)
+

√
3

2

)

sin φ, (9)

y =

(

sin θ1 sin θ2

sin(θ1 − θ2)
+

√
3

2

)

(cos φ − 1) −
(

sin θ1 cos θ2

sin(θ1 − θ2)
− 1

2

)

sin φ. (10)

The above parametric equation is not defined when sin(θ1 − θ2) = 0,
a case that will be studied later. If sin(θ1 − θ2) �= 0, i.e., if L1 and L2

are not parallel, then the elliptic curve degenerates if, and only if, its
curvature is zero for any φ. The curvature, κ, of E can be derived as

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
=

sin(θ1 − θ2 + π/3)

D3
, (11)

where D is a relatively large expression in θ1, θ2, and φ.
Therefore, when L1 and L2 make a 60◦ angle, κ = 0, and E degenerates

to a line. In other words, if, and only if, the point of intersection between
L1 and L2, denoted by P12, lies on the curcumcircle of the base, denoted
by C, E degenerates to a line (Fig. 4). In fact, it degenerates to a doubly
traced line segment of length 4/

√
3 (Tischler et al., 1998). This line

segment is centered at P12 and passes through O. When P12 ≡ O, the
doubly traced line segment is parallel to O1O2.

As we said before, the direct kinematic problem is equivalent to find-
ing the two intersection points between L3 and E , of which one is always
O. We will not present an actual algorithm for determining the other
intersection point (x, y) and the corresponding platform orientation φ,
but only investigate the singular configurations corresponding to all par-
ticular cases in which there is a single or infinitely many solutions.
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Case 1a: sin(θ1 − θ2) = 0 and cos θ1 cos θ2 �= 0
In this case, L1 and L2 are parallel and E degenerates to two lines parallel
to L1 and L2, one of which passes through O.

✗ If L3 is parallel to L1 and L2, the platform vertices can slide along
L1, L2 and L3, with φ = 0, even though all actuators are blocked.

✗ If L3 is not parallel to L1 and L2, the platform can assume a
nonsingular configuration, as well as the trivial solution q = 0,
for which the corresponding configuration is only Type 1 singular
(i.e., the platform is not shaky; in fact, it is jammed).

Case 1b: cos θ1 = 0 and cos θ2 = 0
In this case, L1 and L2 are parallel to the y-axis and E degenerates to a
single line parallel to L1 and L2, and passing through O.

✗ If L3 is parallel to L1 and L2, the platform vertices can slide along
L1, L2 and L3, with φ = 0, even though all actuators are blocked.

✗ If L3 is not parallel to L1 and L2, the platform can assume only
the trivial solution q = 0, and the configuration is Type 1 and
Type 2 singular (the platform can rotate infinitesimally).

Case 2: sin(θ1 − θ2 + π/3) = 0
In this case, L1 and L2 make a 60◦ angle and their intersection point,
P12, lies on C (Fig. 4). The curve E degenerates to a doubly traced line
segment passing through P12 and O (if P12 ≡ O, E is parallel to O1O2).

✗ If L3 is collinear with E , then point B3 can slide along E while the
platform changes orientation simultaneously (Fig. 4), even though
all actuators are blocked (as in Reuleaux straight-line mechanism).

✗ If L3 is not collinear with E , then the platform can assume two
possible poses. The first one is the trivial solution q = 0, while the
second one is q = [180◦, 0, 0]T . For both poses, the corresponding
configurations are only Type 1 singular (the platform is jammed).

Case 3: sin(θ1 − θ2 + π/3) sin(θ1 − θ2) �= 0
In this case, L1 and L2 intersect at a point that does not lie on C, and
E is an ellipse (Fig. 3).

✗ If L3 is tangent to E at O, then the platform can assume only the
pose q = 0, and the corresponding configuration is both Type 1
and Type 2 singular (there is no self motion). Indeed, it can be
shown that at this configuration, the normals to L1, L2 and L3

passing through B1, B2 and B3, respectively, are concurrent.

✗ If L3 is not tangent to the ellipse, then the mobile platform can
assume the pose q = 0, for which the corresponding configuration
is only Type 1 singular, and another nonsingular pose (Fig. 3).
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4. Conclusions

This paper described the kinematic geometry of a 3-RPR planar par-
allel robot with congruent equilateral base and mobile platform. It was
shown that the only singular configurations, for which the base and mo-
bile platform do not coincide, belong to self motions. They occur when
the legs intersect at the circumcircle of the base or are parallel. Once
again, It was demonstrated that careful analysis of the degeneracies of
the direct kinematic model provides a convenient geometrical tool for
better understanding the global behavior of singularities.

Parallel robots with identical base and mobile platform allow self mo-
tions but have interesting characteristics and simpler geometric models.
The authors believe that these robots deserve further attention as they
are likely to find use in practice or lead to better understanding some
theoretical issues. This design simplification approach will next be ap-
plied to 3-RRR planar parallel robots. These robots are undoubtedly
the cheapest alternative for planar motion, from the hardware point of
view, but are still too complex to design optimally.
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