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Abstract: This article reviews some recent developments on the inference of time series

data using the self-normalized approach. We aim to provide a detailed discussion about the

use of self-normalization in different contexts, and highlight distinctive feature associated

with each problem and connections among these recent developments. The topics covered

include: confidence interval construction for a parameter in a weakly dependent stationary

time series setting, change point detection in the mean, robust inference in regression

models with weakly dependent errors, inference for nonparametric time series regression,

inference for long memory time series, locally stationary time series and near-integrated

time series, change point detection and two sample inference for functional time series, as

well as the use of self-normalization for spatial data and spatial-temporal data. Some new

variations of the self-normalized approach are also introduced with additional simulation

results. We also provide a brief review of related inferential methods, such as blockwise

empirical likelihood and subsampling, which were recently developed under the fixed-b

asymptotic framework. We conclude the paper with a summary of merits and limitations

of self-normalization in the time series context and potential topics for future investigation.
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1 Self-normalization for iid data

Self-normalization has a long history in statistics that can be traced back to the work of

Student (1908). In this pathbreaking paper, Student (the pseudonym of William Sealy

Gosset) introduced the celebrated t statistic and the t-distribution, and emphasized the

need for developing small sample theory. The paper has been widely commented upon by

prominent statisticians, see Lehmann (1999) and Zabell (2008) and the references therein.

Among its many contributions to statistics, Student’s t-statistic is the first prototypical

example of self-normalization (SN, hereafter), see de la Pena, Lai and Shao (2009) for a

recent book-length treatment of this subject. Note that the latter book mainly focuses on

probabilistic aspects of self-normalization for iid (independent and identically distributed)

random variables and martingales, whereas this paper is concerned with SN-related statis-

tical methodology and theory for time series and dependent data.

We shall start by briefly reviewing the t-statistic and its generalization in statistics. For

a random sample (Xi)
n
i=1 from the normal distribution denoted as N(µ, σ2) where (µ, σ2)

is unknown, let X̄n = n−1
∑n

i=1Xi be the sample mean and S2
n = (n−1)−1

∑n
i=1(Xi−X̄n)

2

be the sample variance. To test H0 : µ = µ0 versus Ha : µ ̸= µ0, we form the t-statistic as

tn(µ0) =
X̄n − µ0

Sn/
√
n
.

Under the null hypothesis, tn(µ0) =D t(n− 1), where t(n− 1) stands for the t distribution

with n−1 degrees of freedom and “=D” stands for equality in distribution. Before Gosset’s

work, the standard normal distribution N(0, 1) was used as an approximation to the finite

sample distribution of tn(µ0) under the null, which was natural as X̄n−µ0

σ/
√
n

=D N(0, 1) under

the null hypothesis and Sn →p σ as n → ∞, where “→p” stands for convergence in

probability. In small samples, however, the variability of Sn does matter and the normal

approximation, which acts as if Sn is the constant σ, may result in a substantial error.

In the past century, Gosset’s t-statistic has been generalized to studentized statis-

tic/quantity in a general setting and studentization has become an important principle in

conducting statistical inference. Suppose we have θ = T (F ) ∈ R, where F is the marginal

cumulative distribution function (cdf) of the random sample (Xi)
n
i=1 and T is a functional.

A natural estimator of θ is θn = T (Fn), where Fn is the empirical cdf. Suppose that under

suitable regularity conditions we have
√
n(θn − θ) →D N(0, σ2

F ), where σ
2
F is the asymp-

totic variance and “→D” stands for convergence in distribution. To construct a confidence
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interval for θ, we can rely on the studentized quantity

Gn(θ) =

√
n(θn − θ)

σ̂F
,

where σ̂2
F is a consistent estimator of σ2

F . It can be a plug-in estimator, i.e., σ̂2
F = σ2

Fn
.

For example, in the mean case, σ2
F = EF (X − EF (X))2 and σ2

Fn
= EFn(X − EFn(X))2 =

n−1
∑n

j=1(Xj − X̄n)
2. Since Gn(θ) →D N(0, 1), the interval can be constructed based on

the approximate pivot Gn(θ). The traditional method described above requires deriving

a close-form expression for the asymptotic variance, and then finding a consistent vari-

ance estimate by using a direct plug-in approach. Alternatively, consistent estimation of

asymptotic variance can be based on jackknife, bootstrap or subsampling methods, so no

theoretical formula for asymptotic variance needs to be derived; see Shao and Tu (1995)

Chapter 1 for a nice summary of the merits of jackknife and bootstrap methods.

The self-normalized approach to inference for time series was first introduced in Shao

(2010a) as an extension of the idea of Kiefer, Vogelsang and Bunzel (2000) and Lobato

(2001). Simply put, it is a novel studentization technique which takes advantage of the

unidirectional ordering of time series and avoids or reduces the bandwidth choice, the

latter of which is common in existing inferential methods for time series. In Section 2, we

provide a review of the main idea in Shao (2010a), some additional remarks, variations

and simulation comparisons. Section 3 contains extensions of the SN approach to other

inference problems for univariate time series. Section 4 is devoted to the inference of

functional time series. Section 5 briefly mentions an extension of the SN approach to spatial

data and an application to assess the properties of a space-time covariance function. In

Section 6, we review some related inferential methods recently developed under the fixed-b

asymptotic framework. Section 7 concludes. Lastly, let me apologize in the beginning for

the necessarily selective coverage and for putting the emphasis on methods and extensions

that are mostly associated with my own work.

2 Self-normalization for time series

In time series analysis, dependence is the rule rather than the exception. Suppose we

have a strictly stationary time series Xt, t ∈ Z, and we are interested in constructing a

confidence interval for its mean µ = E(Xt). For the natural estimator X̄n, we know that
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under suitable moment and weak dependence conditions,

√
n(X̄n − µ) →D N(0, s2),

where s2 =
∑∞

k=−∞ γ(k) with γ(k) = cov(X0, Xk). Following the traditional approach, we

would try to find a consistent estimator for the asymptotic variance s2, which is called

long-run variance in econometrics. Since s2 = 2πf(0), where f(·) is the spectral density

function of Xt, a consistent estimator of s2 is basically a consistent estimator of f(λ)

evaluated at zero frequency up to a multiplicative constant. In spectral analysis, spectral

density estimation is a well-studied problem and a popular class of estimators is called

the lag-window estimator [see Priestley (1981)]. At zero frequency, it admits the following

form,

s2n =
n−1∑

k=1−n

K(k/ln)γ̂n(k), (1)

whereK(·) is a kernel function, ln is a bandwidth parameter, and γ̂n(k) = n−1
∑n

t=|k|+1(Xt−
X̄n)(Xt−|k| − X̄n) is sample autocovariance at lag k. This is also the same as the HAC

(heteroscedasticity-autocorrelation consistent) estimator popular in econometrics litera-

ture. The bandwidth parameter ln needs to satisfy 1/ln + ln/n → 0 as n → ∞ to ensure

the consistency of s2n. The choice of bandwidth affects the finite sample performance, so

it is natural to ask whether there is an optimal choice that can be made data driven. One

way to find the expression of ln,opt is by minimizing the mean squared error of s2n, and this

was derived in Andrews (1991) and Newey and West (1994) in the multivariate setting.

For the Bartlett kernel, i.e., K(x) = (1− |x|)1(|x| ≤ 1), which is locally linear around the

origin,

ln,opt = 1.1447(α(1)n)1/3,where α(1) = {f ′(0)/f(0)}2,

and f ′(0) denotes the first order derivative of f at zero frequency. The optimal bandwidths

for the kernels that are locally quadratic around the origin are of form Cn1/5, where C

depends on the second order derivative of f at zero and the kernel; see Equation (6.2) of

Andrews (1991). The difficulty lies in the estimation of the derivative of spectral density at

the first or second order, which is again a nonparametric estimation problem and requires

the choice of another bandwidth parameter. To avoid additional bandwidth choice, one

can obtain an estimate of α(1) or C above by assuming/approximating the data generating
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process with a parametric model. For example, if the (approximated) time series model is

AR(1), then α(1) only depends on the AR(1) parameter ρ and it can be estimated by a

direct plug-in approach, i.e.,

l̂n,opt = 1.1447(α̂(1)n)1/3, where α̂(1) =
4ρ̂2

(1− ρ̂)2(1 + ρ̂)2
, (2)

and ρ̂ =
∑n

t=2(Xt − X̄n)(Xt−1 − X̄n)/
∑n

t=2(Xt−1 − X̄n)
2 is the AR(1) parameter estimate.

Of course, the validity of this formula much depends on how close the AR(1) model is to

the true data generating process.

If the goal is to find the optimal bandwidth for the testing problem: H0 : µ = µ0 versus

Ha : µ ̸= µ0, in terms of balancing type I and type II errors, then the optimal bandwidth

that minimizes the mean squared error is not necessarily the testing-optimal bandwidth;

see Sun, Phillips and Jin (2008) for detailed discussions. In the testing context, for a given

loss function, the optimal bandwidth can be derived but it nevertheless depends on the

derivative of spectral density at zero frequency, a quantity that is more difficult to estimate

than f(0) in terms of nonparametric convergence rate. It is worth mentioning that another

approach is to approximate the data generating process with an AR(p) model, where p is

allowed to grow to ∞ as n → ∞. Then the resulting estimate of f(0) or its derivatives

is simply the spectral density of the estimated AR(p) process or its derivative at zero

frequency. It is expected that if the underlying process is AR(∞) with iid innovations,

then this sieve approach [Berk (1974)] also provides a consistent estimate. It nevertheless

requires the choice of p, which is typically selected using model selection criteria (e.g.,

BIC). For stationary nonlinear time series, it is not known whether this AR sieve approach

is still consistent as the theoretical framework in Berk (1974) excludes nonlinear processes.

To avoid choosing the bandwidth parameter, Kiefer, Vogelsang and Bunzel (2000, KVB,

hereafter) and Lobato (2001) proposed to use an inconsistent studentizer in the inference.

While KVB dealt with the inference of regression parameter in dynamic regression models

and Lobato (2001) tackled the testing problem of whether the autocovariances at first L

lags are equal to zero, the formulation of their ideas turn out to be identical in the mean

case; see Section 2 of Lobato (2001) for an illuminating discussion. In the mean case, they

used the self-normalizer

W 2
n = n−2

n∑
t=1

(St − tX̄n)
2, where St =

t∑
j=1

Xj.
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Let D[0, 1] denote the space of functions on [0, 1] which are right continuous and have

left limits, endowed with the Skorokhod topology (Billingsley, 1968). Denote by ⇒ weak

convergence in D[0, 1] or more generally in the Rd-valued function space Dd[0, 1], where

d ∈ N. Let ⌊a⌋ denote the integer part of a ∈ R. Assuming that

n−1/2

⌊nr⌋∑
t=1

(Xt − µ) ⇒ sB(r), (3)

i.e., the functional central limit theorem (FCLT) holds, then by the continuous mapping

theorem, we can derive

√
n(X̄n − µ)√

W 2
n

→D Q1 :=
B(1)√∫ 1

0
{B(u)− uB(1)}2du

. (4)

Unlike the t-statistic, in which the self-normalizer S2
n is a consistent estimator of the

variance σ2, W 2
n is not consistent for s2 but is proportional to s2. Since the nuisance

parameter s is proportional to both the denominator and the numerator in (4), it gets

canceled out and the distribution of Q1 becomes pivotal. Similar to the t distribution,

the denominator
√∫ 1

0
{B(u)− uB(1)}2du is independent of the numerator B(1) and the

distribution of Q1 can be regarded as a mixture of standard normal distribution. The

density of U1 = Q2
1 has been plotted in Lobato (2001) using Monte-carlo simulations,

and its moments and tail behavior have been analytically studied by Abadir and Paruolo

(1997). It is worth noting that the distribution of U1 has heavier tails than that of χ2
1.

Remark 2.1. There is a growing literature on the so-called fixed-b asymptotics for time

series inference initiated by Kiefer and Vogelsang (2005). The basic idea is that in deriving

the limiting distribution of the studentized quantity, where the lag-window estimator s2n is

the studentizer, we hold b = ln/n ∈ (0, 1] as a fixed constant in the asymptotics. This is

different from the conventional small-b asymptotics [Newey and West (1987)], under which

b → 0 and s2n consistently estimates s2. Under the fixed-b asymptotics, s2n is no longer

consistent but is still proportional to s2. In the limit, we have

n(X̄n − µ)2

s2n
→D D({B(r)}r∈[0,1];K(·), b)

where the limiting distribution depends on the kernel and b and its detailed form can be

found in Kiefer and Vogelsang (2005). For a given b and kernel, the limiting distribution
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is pivotal and its critical values can be found by Monte carlo simulation. In other words,

the limiting distribution captures the choice of the kernel and bandwidth, thus two users

who use different kernel functions or bandwidths end up with using different limiting

distributions as reference distributions. This turns out to be more advantageous than the

traditional approach where the distribution of χ2
1 is used for different choices of bandwidths

and kernel functions. The superiority of the fixed-b limiting distribution to the small-b

counterpart has been demonstrated in simulations and in theory; see Jansson (2004), Sun

et al. (2008) and Zhang and Shao (2013) for high order distribution theory. As pointed

out in Shao (2010a), the SN approach is a special case of the fixed-b approach for the mean

inference in that 2W 2
n = s2n when we take the Bartlett kernel and let b = 1 (i.e., ln = n);

see Kiefer and Vogelsang (2002).

Remark 2.2. Müller (2007) showed that in the inference of the mean for a stationary Gaus-

sian time series, the consistent long run variance estimator can converge to any positive

value when there is contamination in the autocorrelations. In particular, he defined two

neighborhoods of contaminated models via the deviation of the covariance matrix of the

contaminated model from that of the benchmark model, and the contamination neighbor-

hoods include (1) local-to-unity Gaussian AR(1) process [Chan and Wei (1987), Phillips

(1987)], (2) Gaussian white noise with a relatively low frequency seasonal component, and

(3) Gaussian white noise with a Gaussian outlier at certain date. In other words, the

inference based on consistent long run variance estimator is fragile. On the other hand,

he showed that the fixed-b approach, which corresponds to inconsistent long run variance

estimation, is robust against the contamination. Since the SN approach is a special case of

the fixed-b approach in the mean case, this suggests that the SN approach is robust. Com-

pared to the traditional approach, the robustness of the SN approach comes with a price,

that is, efficiency, as reflected by the power loss in testing or longer length in confidence

interval construction (see Section 2.1). Thus we may view the SN approach as a robust

alternative to the existing inference approaches, where consistent variance estimation is

involved.

Within the fixed-b approach, there is also a tradeoff between size distortion and power

loss, as seen from the simulation results in Kiefer and Vogelsang (2005). With larger b, the

size distortion diminishes but the power loss increases for a given kernel; see Figures 11-15

in Kiefer and Vogelsang (2005). According to Figures 3-10 in Kiefer and Vogelsang (2005),

the power is essentially the same across kernels for small b, but for large b, Bartlett kernel
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corresponds to the highest power, compared to quadratic spectral kernel, Daniell kernel

and others. On the other hand, the size distortion for the Bartlett kernel is the largest

among all kernels for large b. Since the SN approach corresponds to the use of the Bartlett

kernel and setting b = 1, it can be viewed as a special member of fixed-b family that has

the largest possible b, so size distortion is the least for a given kernel and achieves the

highest local power among kernels compared in Kiefer and Vogelsang (2005) once b = 1 is

fixed.

2.1 Large sample comparisons of the intervals and tests

To further understand the difference between the traditional inference approach and the SN

approach, we offer a detailed comparison of the two intervals and corresponding tests based

on large sample approximation in this subsection and some additional simulation compari-

son in Section 2.3, which complement the results in Lobato (2001) and Shao (2010a). Note

that in the mean case, the 100α% intervals can be constructed as follows:

SN-based interval : [X̄n −
√
U1,αWn/

√
n, X̄n +

√
U1,αWn/

√
n], (5)

Traditional interval : [X̄n −
√
χ2
1,αsn/

√
n, X̄n +

√
χ2
1,αsn/

√
n], (6)

where U1,α and χ2
1,α are the 100α% upper quantile of the distribution U1 and χ2

1, respec-

tively.

For a confidence interval, we care about its interval length and coverage accuracy. In

large samples, the coverage accuracy is determined by the magnitude of the approximation

error when approximating the finite sample distribution of the studentized quantity with

its limiting distribution. For the self-normalized mean, such high order expansion of its

finite sample distribution has been derived under the framework of the Gaussian location

model. In particular, Jansson (2004) showed that

sup
x∈R

∣∣∣∣P (n(X̄n − µ)2

W 2
n

≤ x

)
− P (U1 ≤ x)

∣∣∣∣ = O(n−1 log(n)), (7)

which was further refined by Sun et al. (2008) by dropping the log(n) term (also see Zhang

and Shao (2013)). By contrast, Velasco and Robinson (2001) showed that

sup
x∈R

∣∣∣∣P (n(X̄n − µ)2

s2n
≤ x

)
− P (χ2

1 ≤ x)

∣∣∣∣ = O(n−(1−δ)), for some δ > 0, (8)
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where δ depends on the choice of kernel, the bandwidth parameter ln in s2n (see (1)) and the

smoothness of the spectral density around zero frequency. Therefore the approximation

error associated with the self-normalized quantity n(X̄n−µ)2

W 2
n

is smaller, resulting in better

coverage accuracy for the SN-based interval. Although the above-mentioned results are

only stated for Gaussian time series, we conjecture that the same phenomenon still carries

over to the non-Gaussian case, as seen from the simulation results in Lobato (2001) and

Shao (2010a). On the other hand, under some mild moment and weak dependence con-

ditions on Xt, it can be shown that 2W 2
n is an asymptotically unbiased estimator of s2,

with bias of order O(n−1) and variance of order O(1). The asymptotically nonnegligible

variance is captured in the first order limiting distribution U1. Compared to the consistent

studentizer s2n used in HAC-based testing, there is a reduction in the bias, which partially

explains more accurate size (coverage) in testing (confidence interval construction); see

Simonoff (1993) for a nice discussion of the role of the bias of variance estimator in the

inference.

To compare the interval lengths, we examine (i) the probability that SN-based interval

is shorter and (ii) ratio of expected interval lengths (say, SN versus traditional). Under

the assumptions that W 2
n →D s2

∫ 1

0
B̃(r)2dr, where B̃(r) = B(r) − rB(1) and s2n →p s

2,

we can derive that

P (
√
U1,αWn <

√
χ2
1,αsn) → P (α) := P

(
U1,α

∫ 1

0

B̃(r)2dr < χ2
1,α

)
and with some additional assumptions, the following holds

√
U1,αE(Wn)√
χ2
1,αE(sn)

→ R(α) :=

√
U1,αE

(√∫ 1

0
B̃(r)2dr

)
√
χ2
1,α

Please insert Table 1 here!

Table 1 tabulates the values of P (α) and R(α) for α = 0.5, 0.75, 0.9, 0.95, 0.99. It can

be seen that P (α) decreases and R(α) increases as α increases, P (α) is larger than 50% for

α > 0.75, and R(α) can be smaller than 1 for small enough α. For conventional confidence

levels α = 0.9, 0.95, 0.99, the SN-based interval is on average wider than the traditional

interval, indicating a loss of power in the testing context.

Please insert Figure 1 here!
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To quantify the power loss in the large sample precisely, we can also compare the

two tests in a similar manner. Note that an asymptotic level-γ (say γ = 0.05) test for

H0 : µ = µ0 versus H1 : µ ̸= µ0 can be constructed as follows:

SN-based test function : 1({
√
n(X̄n − µ0)}2/W 2

n > U1,1−γ),

Traditional test function : 1({
√
n(X̄n − µ0)}2/s2n > χ2

1,1−γ).

Under the local alternative µn = µ0+ δs/
√
n, δ ̸= 0, we can derive the limit of local power

as

P (SN-based test rejects H0|µ = µn) = P ({
√
n(X̄n − µ0)}2/W 2

n > U1,1−γ|µ = µn)

= P

(
{
√
n(X̄n − µn)}2 + n(µn − µ0)

2 + 2
√
n(X̄n − µn)(µn − µ0)

W 2
n

> U1,1−γ|µ = µn

)
→ P

(
{B(1) + δ}2∫ 1

0
{B(u)− uB(1)}2du

> U1,1−γ

)
=: PSN(γ, δ)

and

P (Traditional test rejects H0|µ = µn) = P ({
√
n(X̄n − µ0)}2/s2n > χ2

1,1−γ|µ = µn)

→ P ({B(1) + δ}2 > χ2
1,1−γ) =: PTR(γ, δ).

To calculate the limiting local powers, we approximate the standard Brownian motion

with the standardized partial sum of 1000 iid standard normal random variables and repeat

50000 times. Figure 1 shows the approximation of two probabilities PSN(γ, δ) and PTR(γ, δ)

as a function of δ for two levels γ = 5% and 10%. It can be seen that the power curves

appear symmetric with respect to δ, there is a power loss with the SN-based test, and the

power loss decreases when we increases the level from 0.05 to 0.1. If we look at the relative

percentage of power loss, i.e., PTR(γ,δ)−PSN (γ,δ)
PTR(γ,δ)

, the largest loss is about 28.5% for γ = 0.05

and it occurs around δ = ±1.9, whereas the largest loss is about 20% for γ = 0.1 and it

occurs around δ = ±1.7. This is consistent with the finding in Lobato (2001), who showed

that there is a loss of power for the SN approach in testing the zeroness of autocovariances

at the first L lags compared to the traditional approach, where consistent estimation of

asymptotic variance is involved. Also see Shao (2010a) for numerical evidence of power

loss.
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2.2 General framework

Suppose we are interested in the inference of the median of Xt, i.e., the parameter of

interest is θ = F−1(1/2), where F is the marginal cdf of Xt. Then a natural estimator is

θ̂n = F−1
n (1/2), where Fn is the empirical cdf based on time series observations {Xt}nt=1.

Under suitable weak dependence and moment conditions, we can establish that

√
n(θ̂n − θ) →D N(0, σ2),

where σ2 = {4g(θ)2}−1
∑∞

k=−∞ cov{1 − 21(X0 ≤ θ), 1 − 21(Xk ≤ θ)} with g(·) being the

density function of X1; see Bühlmann (2002). A direct consistent estimation of asymptotic

variance is possible, but is rather involved. It requires the estimation of g(θ) using a kernel

density estimate, and the estimation of
∑∞

k=−∞ cov{1 − 21(X0 ≤ θ), 1 − 21(Xk ≤ θ)}
using lag-window type estimate, both of which involve bandwidth selections. Alternative

approaches, such as blockwise empirical likelihood [Kitamura (1997)], subsampling [Poli-

tis and Romano (1994)] and the moving block bootstrap [Künsch (1989), Liu and Singh

(1992)], can be used for variance estimation or confidence interval construction, but they

also involve a choice of block size. The bandwidth parameter or block size serves as a

tuning parameter and different choices may lead to very different finite sample results.

Theoretically, it results in a tradeoff between bias and variance in estimation and balances

Type I error and Type II error in testing. The data driven bandwidth (block size) choice

has been discussed by Hall, Horowitz and Jing (1996), Lahiri (2003, chapter 7), Politis,

Romano and Wolf (1999, Chapter 9), among others, but most of the algorithms require the

choice of another tuning parameter, and no good guidance seems available in the literature.

In Shao (2010a), the self-normalized approach was formally proposed as a general

methodology to constructing confidence intervals for quantities in time series analysis

without any bandwidth parameter. It naturally extends the proposal of Lobato (2001)

from the mean case to more general setting, including the median as a special case. For

a strictly stationary univariate time series (Xt), let θ = T (Fm) ∈ Rq be the quantity

of interest, where T is a functional, Fm is the marginal cdf for Yt = (Xt, · · · , Xt+m−1)
′

for a fixed m ∈ N. Given time series observations {Xt}nt=1, a natural estimator of θ is

θ̂N = T (F̂m,N), where N = n −m + 1, F̂m,N = N−1
∑N

j=1 δYj
with δy denoting the point

mass at y ∈ Rm. The SN approach uses recursive estimates {θ̂1,t}Nt=1, where θ̂1,t = T (F̂m,t)

is based on {Y1, · · · , Yt}, in the construction of its self-normalizer. To see why recursive
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estimates are useful, we write

θ̂1,t = θ + t−1

t∑
j=1

IF (Yj;Fm) +R1,t, t = 1, · · · , N, (9)

where IF (Yj;Fm) is the influence function of T [Hampel, Ronchetti, Rousseeuw and Stahel

(1986)] and {R1,t}Nt=1 are the remainder terms. In the case of the median, θ = F−1(1/2),

m = 1 and IF (Yj;Fm) = {1 − 21(Xj ≤ θ)}/{2g(θ)}. For approximately linear statistics,

the remainder term R1,n is typically asymptotically negligible, i.e.,

√
NR1,N = op(1). (10)

For example, R1,N = 0 in the mean case, and R1,N = Oa.s.(N
−3/4(logN)3/2) in the median

case [see Wu (2005)]. Here a sequence of random variables Zn is said to be Oa.s.(1) (oa.s.(1))

if Zn is almost surely bounded (converges to zero). Furthermore, we assume

E(IF (Yt;Fm)) = 0 and N−1/2

N∑
t=1

IF (Yt;Fm) →D N(0,Σ(Fm)), (11)

where Σ(Fm) =
∑∞

k=−∞ cov(IF (Y0;Fm), IF (Yk;Fm)) is the long-run variance of the sta-

tionary process {IF (Yt;Fm)}t∈Z. Combining (10) and (11), we can then derive the asymp-

totic normality for θ̂N , i.e.,
√
N(θ̂N − θ) →D N(0,Σ(Fm)).

The validity of the SN approach requires stronger assumptions than those needed for

the asymptotic normality. In particular, the following two assumptions are stated in Shao

(2010a):

Assumption I: Assume that

E{IF (Yt;Fm)} = 0, and N−1/2

⌊rN⌋∑
t=1

IF (Yt;Fm) ⇒ ∆Bq(r), (12)

where ∆ is a q×q lower triangular matrix with nonnegative diagonal entries and Bq(·) is a q-
dimensional vector of independent Brownian motions. Further assume that ∆∆′ = Σ(Fm)

is positive definite.

Assumption II: Assume that N1/2R1,N = op(1) and

N−2

N∑
t=1

|tR1,t|2 = op(1), (13)
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where |v| denotes the Euclidean norm of a vector v ∈ Rq. Thus Assumption I strengthens

(11) from CLT to FCLT for the partial sum of influence functions, which can be satisfied by

a wide class of time series models; see Shao (2010a) for more discussions. Compared to (10),

Assumption II additionally imposes (13), which basically requires the remainder process

{R1,t}nt=1 to be uniformly negligible in a weighted L2 sense. The verification of Assumption

II for the smooth function model has been described in Shao (2010a). For sample quantiles,

under certain regularity conditions, Wu (2005) asserts that R1,n = Oa.s.(n
−3/4(log n)3/2) for

weakly dependent linear and nonlinear processes, which implies that n−2
∑n

t=1 |tR1,t|2 =

oa.s.(n
−1/2(log n)3) = op(1).

Define the self-normalization matrix

W 2
N = N−2

N∑
t=1

t2(θ̂t − θ̂N)(θ̂t − θ̂N)
′. (14)

In Shao (2010a), it was shown that under Assumptions I and II, the self-normalized quan-

tity

N(θ̂N − θ)′(W 2
N)

−1(θ̂N − θ) →D Uq, (15)

where Uq = Bq(1)
′V −1

q Bq(1) and Vq =
∫ 1

0
{Bq(r)− rBq(1)}{Bq(r)− rBq(1)}′dr.

The key idea behind the use of recursive estimates in the formation of self-normalization

matrix lies in the following identity:

k√
N
(θ̂k − θ̂N) =

1√
N

k∑
j=1

{
IF (Yj;Fm)−N−1

N∑
j=1

IF (Yj;Fm)

}
+

1√
N
{kRk −

k

N
NRN}(16)

for k = 1, · · · , N . To extend Lobato’s SN approach from the mean to other quantities,

it would be natural to define the self-normalizer as a continuous mapping of the partial

sum process of the influence functions, where the mapping used in Lobato (2001) basically

corresponds to

M : h ∈ Dq[0, 1] → M(h) =

∫ 1

0

h(r)h(r)′dr. (17)

However, the influence function may contain unknown nuisance parameters (e.g., g(θ) is

unknown in the influence function of sample median). To avoid direct consistent estimation

of the unknown parameter, the above identity suggests that we can apply the mapping M
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to the process based on recursive estimates on the left hand side of (16). This strategy

is expected to work if the second term on the right hand side of (16) is asymptotically

negligible. Under Assumption II, it turns out that our self-normalizer W 2
N →D ∆Vq∆

′ and

consequently it follows from the continuous mapping theorem that (15) holds, thus the

use of recursive estimates to form a self-normalizer is justified. It is worth noting that

verifying Assumption II is quite nontrivial in practice and it requires a tedious case-by-

case study. Recently Volgushev and Shao (2014) provided some new theory that allows

us to derive the convergence in distribution in (15) by utilizing the weak convergence of

sequential empirical process and functional delta method, see Section 3.1 of Volgushev and

Shao (2014) for details.

Remark 2.3. The applicability of the SN approach can be considerably widened to include

statistics that do not fall into the above-mentioned framework. In Shao (2010a), it was

shown that it is also applicable to certain quantities that can be written as θ = T (F∞),

where F∞ stands for the distribution of the whole process (Xt)t∈Z. A notable example in

this framework is the so-called spectral mean and its ratio version. In addition, we expect

the applicability of the SN approach to the U -statistic given that it has a similar expansion

as in (9) and is asymptotically normal with
√
n convergence rate in the non-degenerate

case.

Remark 2.4. Jackknife [Quenouille (1949), Tukey (1958)] is well known to be a method

useful for estimating/reducing the bias and estimating the variance of an estimate with-

out knowing the theoretical formula. For time series data, the traditional leave-one-out

jackknife does not work and a blockwise jackknife corresponding to “leave a block out”

was proposed by Künsch (1989) and was shown to be consistent. Our self-normalizer is

formed in a way similar to blockwise jackknife as a block of consecutive observations (i.e.,

(Yt+1, · · · , YN) for t = 1, · · · , N) is deleted and the estimate based on the remaining sam-

ple is calculated. However, in the blockwise jackknife, each time a block of fixed size is

deleted whereas in our SN approach a block of diminishing size is removed. As a result,

our self-normalizer is not a consistent estimate of asymptotic variance but is proportional

to it, and it leads to a nonstandard but pivotal limiting distribution for our self-normalized

quantity.

Remark 2.5. In the mean case, the SN approach is a special case of the fixed-b approach,

but in other settings, this relationship does not necessarily hold, as demonstrated in Rho
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and Shao (2013a). In the latter paper, the effect of prewhitening was investigated when

applied to both SN approach and the KVB approach in time series regression models with

dynamic regressors. There the SN approach was found to differ from the KVB approach

presented in Kiefer, Vogelsang and Bunzel (2000), which is a special case of the fixed-

b approach [Kiefer and Vogelsang (2005)] formulated for dynamic regression models; see

Remark 3.1 in Rho and Shao (2013a). Additionally, simulation results suggest that using a

prewhitened variance estimator helps to reduce the size distortion in the strongly dependent

case, and that the SN-based test and its prewhitened version tend to have more accurate

size than the KVB counterparts especially when temporal dependence is strong.

Remark 2.6. The self-normalized approach to time series inference can be interpreted as an

extension of the classical self-normalization in t-statistic to time series setting and it inherits

a number of features possessed by the t-test: (i) The t-test is based on a pivotal quantity

(or statistic), whereas our self-normalized quantity is asymptotically pivotal; (ii) There is

no bandwidth parameter involved in both procedures; (iii) the reference distribution is t

distribution in t-test and a function of Brownian motions in our case, so both are non-

normal; (iv) the approximation to the finite sample distribution is more accurate than the

existing counterpart. For iid normal data, t(n − 1) provides an error-free approximation

to the finite sample distribution of t-statistic under the null, which was approximated by

standard normal distribution before Gosset’s invention of t distribution. Similarly, the

approximation of the finite sample distribution of the self-normalized quantity using U1 is

more accurate than that achieved using a consistent long run variance estimator s2n as a

studentizer and χ2
1 as the limiting distribution [see (7) and (8)]. Compared to the t-test, a

distinctive feature for the SN in the time series context is that we use inconsistent variance

estimate, whereas consistent variance estimate S2
n is used in t-statistic. Consistent variance

estimation and subsequent studentization have been frequently used in statistics, but for

the purpose of inference (e.g., testing and confidence interval construction), consistent

variance estimate is not a necessity.

2.3 Some variations and simulation results

As mentioned in Shao (2010a), the self-normalizer W 2
N is not unique and the specific

form (14) was influenced by Lobato (2001), since it corresponds to Lobato’s mapping M
(see (17)) and reduces to Lobato’s self-normalizer in the mean case. In this subsection, we
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describe several variants of the self-normalizer and examine their finite sample performance

in terms of coverage rates and average interval lengths. For the convenience of notation,

we shall restrict our discussion to a scalar parameter θ = T (F ), where T is a functional

and F is the marginal cdf of a stationary univariate time series Xt. The generalization to

a vector parameter and the multivariate time series setting is straightforward.

Variant 1 (SN1): a key feature of Shao’s generalization of Lobato’s scheme is to use re-

cursive estimates {θ̂1,t}nt=1, which are based on a forward scan [McElroy and Politis (2007)].

If we use a backward scan, i.e., {(xn), (xn−1, xn), · · · , (x1, · · · , xn)}, the self-normalizer

would admit the form W 2
1n = n−2

∑n
t=1 t

2(θ̂n−t+1,n − θ̂1,n)
2, where θ̂i,j stands for the plug

in estimator of θ based on the subsample (Xi, · · · , Xj), i ≤ j. Then under Assumption I,

(10) and

n−2

n∑
t=1

(n− t+ 1)2|Rt,n|2 = op(1), (18)

where Rt,n denotes the remainder term in the expansion of θ̂t,n as in (9), it can be shown

that

n(θ̂n − θ)2

W 2
1n

→D U1.

So this also naturally extends Lobato’s method in a sense since in the mean caseW 2
1n =W 2

n .

If the distributions of (X1, · · · , Xn) and (Xn, · · · , X1) are identical, i.e., the time series is

reversible, then the distribution of (R1,n, R2,n, · · · , Rn−1,n, Rn,n) is the same as that of

(R1,n, R1,n−1, · · · , R1,2, R1,1) and (18) is equivalent to (13).

Variant 2 (SN2): we use all recursive subsample estimates, i.e., θ̂i,j, 1 ≤ i ≤ j ≤ n in

the formation of self-normalizer. Let

W 2
2n = n−3

n∑
i=1

n∑
j=i

(j − i+ 1)2(θ̂i,j − θ̂1,n)
2.

By Proposition 3.1 in Volgushev and Shao (2014), we can derive under some assumptions

that
n(θ̂n − θ)2

W 2
2n

→D
B(1)2∫ 1

0

∫ 1

x
{B(y)−B(x)− (y − x)B(1)}2dydx

=: J1

The 100αth upper critical values of the limiting distribution J1, denoted as J1,α are tabu-

lated in Table 2. The simulated critical values are obtained by approximating the standard

Brownian motion by standardized sum of 5000 standard normal random variables.
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Please insert Table 2 here!

Variant 3 (SN3): in this variant, the self-normalizer is taken to beW 2
3n = {W 2

n+W
2
1n}/2,

i.e., the average of the self-normalizers used in the original SN approach of Shao (2010a) and

SN1. This idea was suggested by Professor Michael Stein in my seminar at the University

of Chicago on May 21, 2012. Since W 2
3n =W 2

n in the mean case, this variation can also be

considered as a natural extension of Lobato’s method. It then follows that

n(θ̂n − θ)2

W 2
3n

→D U1

provided that Assumptions I and II as well as (18) hold. Another interesting point was

raised by Professor Steve Lalley after my seminar in Chicago. He pointed out that the

original self-normalizer W 2
n exhibits certain degree of asymmetry in the way the data

(X1, · · · , Xn) are used. This is in fact true since the ith data point Xi is used (n− i+ 1)

times in the recursive estimates {θ̂1,1, · · · , θ̂1,n} for i = 1, · · · , n, although different weights

are assigned to θ̂1,i − θ̂1,n in W 2
n . A more general approach would be to incorporate a

weighting scheme, say w(i/n), where w(·) is a nonnegative weight function, and form the

self-normalizer as W 2
n = n−2

∑n
t=1w(t/n)t

2(θ̂1,t − θ̂1,n)
2 (see Jansson (2004)), but it is not

clear how to choose the weighting function. Note that the variants SN2 and SN3 fulfill

the symmetry requirement, although the computation associated with SN2 is substantially

more than that for SN3, which is twice of SN1 (or SN) in computational cost.

Please insert Table 3 here!

Table 3 shows the empirical coverage rates (in percentage) and ratios of average interval

widths for confidence intervals of the marginal median based on 50000 monte carlo replica-

tions. The data generating process is a Gaussian AR(1) model with ρ = 0.2, 0.5, 0.8,−0.4.

Samples sizes n = 50 and 200. When ρ = −0.4, SN and SN1 exhibit undercoverage,

whereas the intervals corresponding to SN2 and SN3 overcover. When ρ is positive, it can

be seen that the coverages of SN2 and SN3 are closer to the nominal level than SN and SN1

in most cases, although SN3 delivers the widest interval among the four. The performance

of SN1 is mostly comparable to that for SN, which may be due to the reversibility of the

Gaussian time series. SN2 not only improves the coverage accuracy of SN for most cases,

but also corresponds to slightly shorter interval. The performance of SN2 will be further

examined in the mean case below. We would like to mention that our simulation results

are quite limited and it will be a worthwhile effort to compare these four approaches for

more data generating processes and other quantities of interest. The coverage accuracy
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associated with SN2 and SN3 are interesting and further theoretical or simulation evidence

are needed to justify the use of these variants.

As a complement to the simulation results presented in Lobato (2001) and Shao (2010a),

we provide additional simulation comparison of the following approaches in the confidence

interval construction for the mean of a Gaussian AR(1) time series. In particular, we con-

sider (i) SN approach, which is equivalent to SN1 and SN3 in the mean case; (ii) traditional

approach (denoted as “TR”), where the long run variance is consistently estimated using

the lag window estimator (1) with the Bartlett kernel and Andrews’ data driven band-

width l̂n,opt (see (2)); (iii) SN2; (iv) Infeasible approach, where normal approximation is

used with long run variance s2 assumed to be known. Note that the finite sample variance

nvar(X̄n) ̸= s2 for a finite n, so there is still an approximation error with this infeasible

approach, leading to a deviation of the empirical coverage from the nominal level.

Please insert Table 4 here!

It can be seen from Table 4 that when ρ is positive, all methods lead to undercoverage,

which corresponds to the negative leading term in the edgeworth expansion of the finite

sample distribution of the studentized mean; see Zhang and Shao (2013) for more discus-

sions. SN substantially outperforms the traditional method and even slightly outperforms

the infeasible approach in terms of coverage accuracy. When ρ = −0.4, most methods

exhibit overcoverage. The traditional method delivers accurate coverage rate 90.1% at the

90% nominal level when n = 50, but its empirical coverage deviates away from the nominal

level from 90.1% to 91% as n increases from n = 50 to 200. This is not the case for SN and

other methods, for which the coverage rates generally get closer to the nominal level as

sample size increases. The performance of SN2 is comparable or can be noticeably worse

than SN (see, e.g., the result for ρ = 0.8) in terms of coverage accuracy, although the

average interval length of SN is slightly wider than the SN2 counterpart. Apparently, the

SN-based interval is wider than other counterparts for all cases. The simulation result pre-

sented here suggests that (i) the normal approximation can perform poorly in the situation

of small sample size and strong dependence even with some sensible bandwidth choice; (ii)

SN can even outperform infeasible normal approximation (with long run variance assumed

to be known) in terms of coverage accuracy for some cases at the price of longer interval

length; (iii) the advantage of SN2 over SN seen in the median case does not carry over to

the mean case.
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3 Extensions to other inference problems for univari-

ate time series

In this section, we present/discuss extensions of the SN approach to several important

inference problems in a univariate setting, including change point detection in Section 3.1,

confidence interval construction for regression parameter in regression models with fixed

regressors and weakly dependent errors in Section 3.2, inference in nonparametric time

series regression in Section 3.3, inference for long memory time series in Section 3.4, as

well as inference for the mean of a time series with time varying second order properties

in Section 3.5 and for the mean of near-integrated time series in Section 3.6.

3.1 Change point detection

Let (Xt)
n
t=1 be time series observations. We want to test the null hypothesis

H0 : E(X1) = E(X2) = · · · = E(Xn)

against the alternative hypothesis

H1 : E(X1) = · · · = E(Xk∗) ̸= E(Xk∗+1) = · · · = E(Xn),

where the location of the change point 1 ≤ k∗ ≤ n−1 is unknown. There is a huge literature

in econometrics and statistics on change point detection for time series; see Perron (2006)

and Aue and Horváth (2013) for recent reviews. A common class of test statistics is based

on the so-called CUSUM (cumulative sum) process defined as

Tn(⌊nr⌋) = n−1/2

⌊nr⌋∑
t=1

(Xt − X̄n), r ∈ [0, 1].

The celebrated Kolmogorov-Smirnov test admits the form

KSn = sup
r∈[0,1]

|Tn(⌊nr⌋)|/sn = sup
k=1,··· ,n

|Tn(k)|/sn,

where sn is the square root of the consistent long run variance estimator defined in (1).

Under the null hypothesis and assuming (3), we can show that KSn →D supr∈[0,1] |B̃(r)|.
Thus the asymptotic null distribution of KSn is pivotal. The difficulty is the choice of ln in
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the variance estimate s2n. Asymptotic theory requires ln/n+1/ln = o(1) but this does not

give any practically useful guidance on the choice of the bandwidth. A possible strategy

is to use Andrews’ bandwidth selection rule that aims for a minimal mean squared error

for s2n.

Please insert Figure 2 here!

Figure 2 shows the power of KSn at 5% level for the following alternative:

Xt =

{
ut, 1 ≤ t ≤ n/2,

η + ut, n/2 + 1 ≤ t ≤ n = 200,
(19)

where ut = 0.5ut−1 + εt, εt ∼ iid N(0, 1). Here the bandwidth ln is chosen by using

the formulae in (2). As we see from Figure 2, the power can decrease to zero as the

magnitude of change η gets very large, which is counterintuitive as we expect a test to

be more powerful when the alternative gets farther away from the null. In the literature,

this phenomenon was called nonmonotonic power [Vogelsang 1999] and its source has been

identified through theoretical analysis and simulations by Vogelsang (1999), Deng and

Perron (2008) and Juhl and Xiao (2009), among others. Heuristically, the decrease in

power accompanied with larger shift is due to the fact that the bandwidth ln is severely

biased upward under the alternative, which leads to an inflation in the estimate of the

scale s. When the scale estimate sn is too large, the KSn test statistic tends to be small,

resulting in a low rejection rate. Note that the fixed bandwidth (e.g. n1/3) is immune to

the nonmonotonic power problem but is not adaptive to the magnitude of autocorrelations

in the series and it could lead to severe size distortion; see Shao and Zhang (2010) for

simulation evidence.

Following the description of the SN idea in the previous section, a seemingly natural

extension of the SN approach to the change point testing problem is to replace sn in KSn

by Wn. In other words, let

K̃Sn = sup
r∈[0,1]

|Tn(⌊nr⌋)/Wn| = sup
k=1,··· ,n

|Tn(k)/Wn|.

Under H0 and assuming (3), K̃Sn →D supr∈[0,1] |B̃(r)|/[
∫ 1

0
B̃(r)2dr]1/2, which is still piv-

otal. However, as shown in Shao and Zhang (2010), the above naive extension fails to

attenuate the non-monotonic power problem; see Figure 1 therein.

The major problem with K̃Sn is that it does not take into account the change-point

alternative. To circumvent the problem, Shao and Zhang (2010) proposed a new self-
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normalization process, i.e., for k = 1, · · · , n− 1,

Vn(k) = n−2

[
k∑

t=1

{S1,t − (t/k)S1,k}2 +
n∑

t=k+1

{St,n − (n− t+ 1)/(n− k)Sk+1,n}2
]
,

where Si,j =
∑j

t=iXt for i ≤ j. The SN-based test statistic was defined as

K̂Sn = sup
k=1,··· ,n−1

Tn(k)
′V −1

n (k)Tn(k). (20)

Assuming (3), the limiting null distribution of K̂Sn can be derived via the continuous

mapping theorem as

L(1) := sup
r∈[0,1]

[B(r)− rB(1)]′V (r)−1[B(r)− rB(1)], where

V (r) =

∫ r

0

{B(u)− (u/r)B(r)}2du+
∫ 1

r

[B(1)−B(u)− 1− u

1− r
{B(1)−B(r)}]2du. (21)

The critical values of L(1) have been provided in Shao and Zhang (2010) via simulations.

Note that the normalization factor Vn(k) in our test depends on k, whereas those in KSn

and K̃Sn stay the same for all k. This distinction has important implications in their

power behaviors.

Through extensive simulations, the SN-based test has been shown to have superior size

compared to some recently proposed alternatives by Crainiceanu and Vogelsang (2007)

and Juhl and Xiao (2009), which have been developed to alleviate the nonmonotonic power

problem. The power of the SN-based test was seen to be monotonic although there has been

no rigorous theory that justifies the nonmonotonic power property of the SN-based test.

The extension to testing for a change point in other quantities, such as marginal quantiles

and spectral distribution function at certain frequencies, have also been developed in Shao

and Zhang (2010).

Remark 3.1. A key point we want to make in this part is that the self-normalizer used in

confidence interval construction is no longer suitable for the problem of change point testing

as it is not able to alleviate the non-monotonic power problem. The new self-normalizer,

which takes into account one change point alternative, seems to work well as it delivers

good size and respectable power. It is worth noting that our SN-based change point test
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is tailored to one abrupt change. To detect gradual change or in the presence of trends,

the above test is not expected to work without a nontrivial modification. Therefore, the

self-normalizer depends on the problem of interest and different self-normalizers may be

needed for different problems.

3.2 Time series regression with deterministic regressors

The SN approach in Lobato (2001) and Shao (2010a) was for stationary time series and

it has been extended by Zhou and Shao (2013) to the following linear regression problem

where the response variable can be nonstationary in mean. Consider the following linear

model:

Yt = x
′

t,nβ + et, t = 1, 2, . . . , n, (22)

where xt,n = (xt1,n, xt2,n, · · · , xtp,n)′, 1 ≤ t ≤ n, are p × 1 known deterministic design

vectors, β ∈ Rp is the unknown regression parameter and et is a stationary and weakly

dependent time series error process. For example, when xt,n = (1, t/n)′, then our interest

is on estimation and inference of linear trend with dependent errors, a well-studied topic

in time series analysis. In particular, it includes the stationary time series framework in

Shao (2010a) as a special case, since if we let xt,n = 1, then Yt = β + et are stationary.

Zhou and Shao (2013) adopted an M-estimation framework, i.e.,

β̂n = argminβ∈Rp

n∑
t=1

M(Yt − x′
t,nβ),

where M is a convex function. Special cases include least squares regression and quantile

regression, among others. Under certain conditions on the weak dependence of et, the

design vectors {xt,n}nt=1, and the function M(·), it can be shown that the regression pa-

rameter estimate β̂n is asymptotically normal. Let ψ(x) =M ′(x), φ(x) = E[ψ(e1+x)] and
Σ(r) = limn→∞(rn)−1

∑⌊nr⌋
j=1 xj,nx

′
j,n for r ∈ (0, 1]. Theorem 1 in Zhou and Shao (2013)

asserts that

√
n(β̂n − β) →D N(0, σ2

∞Σ−1(1)/[φ′(0)]2), (23)

where σ2
∞ =

∑∞
t=−∞ cov(ψ(e0), ψ(et)) is the long run variance associated with the station-

ary process ψ(et). In the case M(x) = |x| and xt,n = 1, β̂n corresponds to sample median
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of a stationary time series. As we discussed earlier, consistent estimation of the asymptotic

variance of β̂n in the sample median case is possible but is quite involved. Alternatively,

one can use the residual block-based bootstrap method but it seems there is no theoret-

ical/empirical study on the choice of block size in this setting. Our simulation suggests

that the inference is sensitive to the block size and the optimal block size that corresponds

to most accurate coverage is tied to the magnitude of dependence in the error process and

the design matrix.

Naturally we seek an extension of the SN approach to the regression setting by using

the idea of recursive estimation. Theorem 2 in Zhou and Shao (2013) establishes a uniform

Bahadur representation for β̂⌊rn⌋, r ∈ [ϵ, 1] (i.e., the estimate of β based on (xt,n, Yt)
⌊rn⌋
t=1 ),

where ϵ ∈ (0, 1) is the trimming proportion. Specifically, we have

sup
ϵ≤r≤1

∣∣∣φ′(0)r
√
nΣ(r)(β̂⌊rn⌋ − β)−

⌊rn⌋∑
j=1

ψ(ej)xj,n/
√
n
∣∣∣ = oP(1). (24)

Note that the uniformness is with respect to r ∈ [ϵ, 1], and for technical reasons, we were

unable to prove (24) when ϵ = 0. Based on the above result, it is quite straightforward to

derive that

n(β̂n − β)T{W 2
n(ϵ)}−1(β̂n − β) →D Γ′(1)

{∫ 1

r=ϵ

{Γ(r)− rΓ(1)}{Γ(r)− rΓ(1)}′ dr
}−1

Γ(1),

where W 2
n(ϵ) =

∑n
t=⌊ϵn⌋ t

2(β̂t − β̂n)(β̂t − β̂n)
T/n2 and Γ(·) is a zero-mean Gaussian process

with covariance cov(Γ(r1),Γ(r2)) = {Σ(max(r1, r2))}−1. Therefore the limiting distribu-

tion of the self-normalized quantity is free of the dependence in the error process, but

it is not pivotal as it depends on the design matrix in a nontrivial manner. To per-

form the inference, a simulation-based approach was proposed in Zhou and Shao (2013)

to approximate the nonpivotal limiting distribution. To capture the effect of the de-

sign matrix, we generate iid standard normal random variables Z1, Z2, · · · , Zn. Let Γ̂r =

(
∑⌊rn⌋

j=1 xj,nx
′
j,n/⌊nr⌋)−1

∑⌊rn⌋
j=1 Zjxj,n/

√
n and

Dn = Γ̂′
1

{∫ 1

r=ϵ

(Γ̂r − rΓ̂1)(Γ̂r − rΓ̂1)
′ dr
}−1

Γ̂1.

Then it can be shown that Dn →D Γ′(1)
{∫ 1

r=ϵ
{Γ(r) − rΓ(1)}{Γ(r) − rΓ(1)}′ dr

}−1

Γ(1).

We can repeat the generation of iid standard normal {Zt}nt=1 for a sufficiently large number
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of times (say B times) and denote the simulated values as {Dj,n}Bj=1. Confidence region or

tests for β can be conducted by using the discrete uniform distribution over {Dj,n}Bj=1 as

the reference distribution. Simulation results in Zhou and Shao (2013) suggest that (i) the

SN-based interval is wider than the one delivered by the residual block bootstrap, but has

better coverage accuracy; (ii) compared to other choices of ϵs, ϵ = 0.1 delivers reasonably

accurate coverage for both median regression and ordinary least squares methods and for

several combinations of error types with varying degree of dependence.

Remark 3.2. It is worth noting that the approach in KVB is similar to SN, but it does not

involve any trimming parameter. However, KVB’s approach was developed for inference

in time series regression models with (approximately stationary) dynamic regressors and

it does not seem applicable when the regressors are fixed. Also their framework takes

advantage of the analytical form of the ordinary least squares estimate and does not allow

for quantile regression. When the regressor is fixed and nonconstant, we see that the

pivotalness of the limiting distribution of the SN quantity is lost. This is due to the

fact that the process based on the standardized recursive estimates depend on the whole

trajectory of the limiting design matrix, i.e., {Σ(r), r ∈ [ϵ, 1]}, which can be mimicked by

using a simple simulation-based approach. In addition, the introduction of the trimming

parameter ϵ is necessary for theory to go through but also has an impact on the finite

sample performance. We shall leave a more detailed discussion to Section 7.

3.3 Nonparametric time series regression

This part is based on the work of Kim, Zhao and Shao (2015). Consider the inference

of the conditional mean function µ(x) = E(Yi|Xi = x), where (Xi, Yi)
n
i=1 are time series

observations from a bivariate stationary process. Let

µ̂n(x) =

{
n∑

i=1

K
(x−Xi

bn

)}−1 n∑
i=1

YiK
(x−Xi

bn

)
be the Nadaraya-Watson kernel smoothing estimate, where K(·) is a kernel function, and

bn > 0 is the bandwidth parameter. Under suitable regularity conditions, we have√
nbn

µ̂n(x)− µ(x)− b2nρ(x)

s(x)
→D N(0, 1), (25)
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where b2nρ(x) is the bias term and s2(x) is the asymptotic variance. Write ei = Yi−µ(Xi).

Then it can be derived that

ρ(x) =

[
p′X(x)µ

′(x)

pX(x)
+
µ′′(x)

2

]∫
R
u2K(u)du, s2(x) =

σ2(x)

pX(x)

∫
R
K2(u)du,

where pX(·) is the density function of Xt and σ
2(x) = E(e2i |Xi = x). To construct a point-

wise confidence interval for µ(x), the traditional approach involves consistent estimation

of s2(x) through an extra smoothing procedure and normal approximation. It boils down

to nonparametric estimation of σ2(x) and pX(x) using two bandwidths. The selection

of bandwidths are not easy and it may involve another user-chosen number, especially

for dependent data. Also normal approximation may be unsatisfactory in small samples

leading to poor coverage.

To alleviate the difficulty in the traditional inference procedure, Kim et al. (2015)

proposed to extend the SN approach to nonparametric setting. Their extension consists

of the following steps:

(1) Bias reduction using high order kernel. For a symmetric kernel that is locally

quadratic around zero, the optimal bandwidth bn that minimizes the mean squared error

is of order Cn−1/5. If we use K∗(u) = 2K(u)−K(u/
√
2)/

√
2 and bn = Cn−1/5 then we can

verify
∫
R u

2K∗(u)du = 0 so the bias is asymptotically negligible relative to the variance.

(2) To avoid a direct consistent estimation of s2(x), we again rely upon the recursive

estimates of µ(x), i.e., µ̂m(x) based on (Xt, Yt)
m
t=1, where m = ⌊ϵn⌋, · · · , n. Similar to

Section 3.2, ϵ ∈ (0, 1) is a trimming constant and there is technical difficulty in establishing

the following functional central limit theorem with ϵ = 0. Letting bm,n = bn(n/m)1/5 and

bn = Cn1/5 (chosen to be optimal order in practice), it was shown in Theorem 1 of Kim et

al. (2015) that{√
nbnpX(x)

σ(x)
t4/5[µ̂⌊nt⌋(x)− µ(x)− b2⌊nt⌋,nρ(x)]

}
ϵ≤t≤1

⇒ {Gt}ϵ≤t≤1, (26)

where {Gt}ϵ≤t≤1 is a mean zero Gaussian process with covariance function given by

CK(t, t
′) = cov(Gt, Gt′) = min(t, t′)

∫
R
K(t1/5u)K(t′1/5u)du. (27)

(3) Combining steps (1) and (2), we can use bias reduced recursive estimates to form

the self-normalizer Sn(x) = n−13/10

{∑n
m=⌊ϵn⌋m

8/5|µ̂∗
m(x) − µ̂∗

n(x)|2
}1/2

, where µ̂∗
m(x) is
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the kernel smoothing estimate using the high order kernel K∗(·) and bandwidth bm,n. Then

it follows by a straightforward argument that

ξn(x) :=
µ̂∗
n(x)− µ(x)

Sn(x)
→D

G∗
1√∫ 1

ϵ
|G∗

t − t4/5G∗
1|2dt

= ξ, (28)

where {G∗
t}1t=ϵ is a mean zero Gaussian process with covariance function CK∗ . Conse-

quently, an asymptotic 100α% confidence interval for µ(x) is µ̂∗
n(x)± qαSn(x), where qα is

the 100α% quantile of |ξ|. Thus for a given kernel function and ϵ, the limiting distribution

of the self-normalized quantity ξn(x), i.e., ξ is pivotal, and its critical values have been

provided via simulations in Kim et al. (2015) for ϵ = 0.1 and standard Gaussian kernel.

Simulations in Kim et al. (2015) showed that the SN approach is vastly superior to the

traditional counterpart, where the extra smoothing is applied to consistently estimate the

unknown nuisance parameter in asymptotic variance, in terms of coverage accuracy.

Remark 3.3. Compared to the SN approach in Shao (2010a), the main difference in its

extension to nonparametric inference problems is twofold: (i) The partial sum process

based on recursive estimates in Shao (2010a) has a standard Brownian motion (with sta-

tionary and independent increments) limit up to a scaling constant, whereas the limit for

the process based on our standardized nonparametric recursive estimates is a Gaussian

process with nonstationary and dependent increments; (ii) In Shao (2010a), the SN-based

inference method does not require any bandwidth parameter, whereas in nonparametric

setting, we need to estimate conditional mean function using the bandwidth parameter

bn, which seems necessary. What the SN approach does is to avoid consistent variance

estimation, which can be difficult because of the involvement of extra bandwidths. The

use of recursive estimates of the nonparametric mean function as the self-normalizer again

deliver a pivotal limit, although the limit is no longer a function of Brownian motion.

Again, a trimming parameter ϵ needs to be introduced and its optimal choice is desired

but seems difficult.

3.4 Long memory time series

The extension of the SN method to long memory time series is not without complications.

To illustrate the idea, we first consider the inference of the mean µ of a strictly stationary

long range dependent (LRD, hereafter) process {Xt}t∈Z. For a LRD process with finite

26



second moments,

γ(k) = cov(X0, Xk) = k−κL(k), k ≥ 1,

where κ ∈ (0, 1) and L(·) is a slowly varying function at infinity. Therefore the long run

variance
∑∞

k=−∞ γ(k) = ∞ and correspondingly, the spectral density function blows up

at zero frequency. An equivalent way of characterizing the long memory phenomenon is

in terms of the local behavior of the integrable spectral density function {f(λ), |λ| ≤ π}
around the origin. Typically,

f(λ) ∼ Cd|λ|−2d, as λ→ 0,

where d = 1/2 − κ/2 ∈ (0, 1/2), Cd > 0 and the symbol ”∼” means that the ratio of

the terms on the two sides converges to one. In the literature, a widely used class of

processes that allows for long-range dependence is the so-called linear processes. Write

Xt = µ+
∑∞

k=0 akεt−k, where εk are iid random variables with zero mean and finite second

moment. For linear processes, it can be shown that

n1/2−d(X̄n − µ) →D σN(0, 1)

for some σ > 0. In other words, the convergence rate of sample mean is slower than n1/2 due

to the long range dependence. To perform the inference based on normal approximation, we

need to estimate d and σ consistently. HAC estimator of σ with long memory correction (or

the so-called MAC, memory and autocorrelation consistent estimator) has been proposed

by Robinson (2005) and further studied in Abadir, Distaso and Giraitis (2009). Let d̂ and

σ̂ be the estimator of d and σ respectively. Under the assumption that d̂−d = op(1/ log(n))

and some other mild conditions, Abadir et al. (2009) provided second order expansions

for both HAC and MAC estimators and showed that n1/2−d̂(X̄n − µ)/σ̂ →D N(0, 1) for

the MAC estimator σ̂. For the HAC estimator, the asymptotic normality holds only when

the long memory index d is below some threshold. It is worth noting that the asymptotic

framework adopted in Abadir et al. (2009) is small-b asymptotics.

The extension of the self-normalized approach to the long memory case hinges on the

following functional CLT

n−1/2−d

⌊nr⌋∑
j=1

(Xj − µ) →D σB(r; d),
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where B(r; d) is the fractional Brownian motion. For a linear process, it holds provided

that ak ∼ kd−1L1(k), where L1(·) is a slowly varying function at infinity [Davidson and de

Jong (2000)]. Also see Wu and Shao (2006) and the references therein. By the continuous

mapping theorem,

Hn(µ) :=
n(X̄n − µ)2

n−2
∑n

t=1(St − tX̄n)2
→D

B(1; d)2∫ 1

0
{B(r; d)− rB(1; d)}2dr

≡ Hd,

therefore the limiting distribution Hd depends on d and is not pivotal. To perform the

inference, one way is to estimate d by d̂ using log periodogram regression [Geweke and

Porter-Hudak (1983)] or local Whittle estimation [Künsch (1987)], and use the simulated

critical values corresponding to the distribution ofHd̂. Alternatively, one can use a subsam-

pling approach to approximate the distribution of Hd; see Fan (2010) and Jach, McElroy

and Politis (2012). Note that Fan (2010) also considered another class of long memory pro-

cesses, namely, transformation of Gaussian processes, for which studentized sample mean

may not be asymptotically normal [Taqqu (1975, 1979), Dobrushin and Major (1979)].

As mentioned in Shao (2010a), the SN method is a special case of the fixed-b ap-

proach [Kiefer and Vogelsang (2005)] in the mean case. McElroy and Politis (2012, 2014)

have extended the fixed-b approach to the long memory setting for the inference of mean,

spectral density and spectral distribution function. Their results show that the limiting

distributions of the studentized sample mean as well as spectral density and distribution

estimates depend on the kernel, the magnitude of memory, and the taper under the fixed-b

asymptotics.

The SN approach has also been extended to inference for the parameter vector in sta-

tionary long memory time series models with dependent errors. A prominent example

of such models is the so-called FARIMA-GARCH (Fractional AutoRegressive Integrated

Moving Average - Generalized Autoregressive Conditional Heteroscedastic) model. In Shao

(2012), the inference of the parameter in the FARIMA part was studied while the GARCH

error was treated nonparametrically. The popular Whittle likelihood estimator (i.e., fre-

quency domain maximum likelihood estimator) is asymptotically normal but the asymp-

totical variance admits a complicated form. In particular, it depends on the fourth order

cumulant spectrum of the unobserved error process and no consistent estimation has been

addressed in the long memory context. The difficulty can be circumvented by adopting

the SN approach, where no consistent estimation of asymptotic variance is required. As

demonstrated in Shao (2012), the SN-based method is able to produce reasonable coverage
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at a large sample size for both short and long time series models with various types of

errors in comparison with the residual block bootstrap method. An interesting feature of

this work in the long memory context is that no bandwidth parameter is involved in the

SN-based inference and the limiting distribution of the SN quantity is still Uq. This is dif-

ferent from inference for the mean of a LRD process, where the limiting distribution of the

SN quantity is non-pivotal and the approximation requires the use of bandwidth-dependent

plug-in or resampling approaches.

3.5 Locally stationary time series

In Rho and Shao (2013b), we studied the estimation and SN-based inference of locally

stationary time series regression models with fixed regressors and locally stationary errors.

To illustrate the difference from the use of the SN method for stationary time series, we

shall consider the following simple locally stationary time series model,

Xt,n = µ+ et,n, t = 1, · · · , n,

where the mean µ is constant, et,n = G(t/n,Ft) is a mean zero locally stationary series.

Here Ft = (· · · , ϵt−1, ϵt), where ϵt are iid random variables, G : [0, 1]×R∞ → R is a mea-

surable function such that G(r,Ft) is a properly defined random variable for all r ∈ [0, 1].

This framework was first introduced by Zhou and Wu (2009) to allow both nonlinearity

and local stationarity, and it covers a wide range of locally stationary processes.

A natural estimator of µ is the sample mean X̄n, which is also the ordinary least squares

estimator. Under certain regularity conditions, we have that

√
n(X̄n − µ) →D N(0, σ2)

where σ2 =
∫ 1

0
σ2(r)dr, with σ2(r) =

∑∞
k=−∞ cov(G(r,F0), G(r,Fk)) being the (local) long

run variance of G(r,Ft). To adopt the SN method, the key is to derive a functional central

limit theorem for the partial sum process. Under suitable conditions, it can be shown that

n−1/2

⌊nr⌋∑
t=1

(Xt − µ) ⇒ B(r, σ(·)) :=
∫ r

0

σ(u)dB(u).

Let St,n =
∑t

j=1Xj,n. Then the SN quantity takes the form

Hn(µ) :=
{
√
n(X̄n − µ)}2

n−2
∑n

t=1(St,n − tX̄n)2
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and its limiting distribution is

H(σ(·)) := B(1, σ(·))2∫ 1

0
(B(r, σ(·))− rB(1, σ(·)))2dr

, (29)

which depends on the unknown infinitely dimensional nuisance parameter {σ(u), u ∈ [0, 1]},
and is thus not pivotal.

To approximate the distribution of H(σ(·)), one can use the dependent wild bootstrap

[Shao (2010b)]. In particular, let êt,n = Xt,n−X̄n be the residuals and the bootstrap sample

X∗
t,n = X̄n + êt,nWt,n, where {Wt,n}nt=1 is a realization of mean zero l-dependent stationary

time series. Here l = l(n) is a bandwidth parameter which plays a similar role as the block

size in the block-based bootstrap. In practice, a convenient way to generate (Wt,n)
n
t=1 is to

simulate a multivariate Gaussian vector with mean zero and cov(Wt,n,Wt′,n) = a{(t−t′)/l}
for some kernel function a(·) (say, the Bartlett kernel). Under some regularity conditions,

it can be shown that

n−1/2

⌊nr⌋∑
t=1

(X∗
t,n − X̄n) ⇒ B(r, σ(·)) in probability.

Let S∗
t,n =

∑t
j=1X

∗
j,n and X̄∗

n = n−1S∗
n,n. Using the continuous mapping theorem, we then

have

H∗
n :=

{
√
n(X̄∗

n − X̄n)}2

n−2
∑n

t=1(S
∗
t,n − tX̄∗

n)
2
→D H(σ(·)) in probability,

and the inference can be conducted based on the bootstrap approximation. In Rho and

Shao (2013b), the consistency of the dependent wild bootstrap was rigorously justified

under a more general regression setting.

A special case of the locally stationary process is

et,n = v(t/n)Zt, (30)

where Zt = G(Ft) is a stationary sequence with mean zero and v(·) is a deterministic

function on [0, 1] that captures the time varying unconditional heteroscedasticity. It was

called modulated stationary process in Zhao (2011) and Zhao and Li (2013). In this case,

σ2(u) = v2(u)V 2
Z , where V

2
Z =

∑∞
k=−∞ cov(Z0,Zk) is the long run variance of the stationary

process Zt. Consequently, B(r, σ(·)) = VZ
∫ r

0
v(u)dB(u) and

H(σ(·)) =
{
∫ 1

0
v(u)dB(u)}2∫ 1

0
{
∫ r

0
v(u)dB(u)− r

∫ 1

0
v(u)dB(u)}2dr

,
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where VZ is canceled out. Thus the temporal dependence in the error does not affect

the limiting distribution of the SN quantity and the only source of non-pivotalness in the

limiting distribution lies in the heteroscedasticity, which can be captured by using the

traditional wild bootstrap [Wu (1986), Liu (1988)]. The consistency of wild bootstrap

has been proved in Rho and Shao (2015) in a more general regression setting and for

both modulated stationary process and heteroscedastic linear process [Cavaliere (2005),

Cavaliere and Taylor (2007)].

Remark 3.4. As we see from the discussions in Section 3.4 and Section 3.5, the long

memory and time varying second order properties of a time series can make the limiting

distribution of the self-normalized mean nonpivotal, depending on the magnitude of long

memory or the whole long run variance function. The inference is thus made feasible by

consistently approximating the nonpivotal limiting distributions using either subsampling

or bandwidth-dependent bootstrap (e.g., the dependent wild bootstrap). When the locally

stationary error process admits a modulated form (30), the limiting distribution of the SN

quantity only depends on the heteroscedasticity but not on temporal dependence, so the

bandwidth-free wild bootstrap suffices for a consistent approximation.

3.6 Near-integrated time series

In econometrics, time series of strong autocorrelation is often modeled as an autoregressive

process with unit root or near unit root. Such nonstationary processes play an important

role in the modeling and inference of econometric time series as most economic time se-

ries exhibit certain degree of unit root nonstationarity, as evident from the shape of their

spectral densities [Granger (1966)]. As seen from the simulation results in Shao (2010a)

and Kiefer and Vogelsang (2005), the coverage accuracy of the SN-based interval and the

size accuracy of the fixed-b based HAC test deteriorate as the positive autocorrelation

gets stronger; see Zhang and Shao (2013) for some theoretical explanations based on edge-

worth expansion of the distribution function of the studentized mean. Thus the fixed-b

approach, which was developed under weak dependence assumptions, may still lead to

severely oversize tests when the autocorrelation is as strong as that of a near-integrated

process.

For a location model with strongly dependent errors expressed as a Gaussian AR(1)

model with near unit root, Müller (2014) proposed a class of tests for the mean that are
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robust to strong autocorrelation and maximize a weighted average power criterion. Further

extensions to regressions and models estimated by generalized method of moments are also

mentioned in his paper. In Sun (2014, 2015), an alternative testing approach was developed

to deal with strong autocorrelation by extending the fixed-b asymptotic paradigm. The

idea is to model the highly autocorrelated time series as a AR(1) process with near unit

root, i.e., the AR(1) coefficient ρn = 1 − cn/n. By fixing the local-to-unity parameter

cn = c, he derived the limit of the standardized partial sum process as a functional of the

Ornstein-Uhlenbeck process. Under this so-called near-unity fixed-smoothing (i.e., fixed-

b, where b = ln/n is treated as the smoothing parameter) asymptotics, he derived the

limits of the F -test statistic and t-test statistic, which depend on both c and b. Since in

practice b is known, and c can be estimated (see Sun (2015)), the critical values of the

pivotal limiting distribution for a given pair of (b, c) can be approximated by simulation.

It is worth mentioning that the near-unity fixed-smoothing asymptotics provides a smooth

transition from the usual stationary fixed-smoothing asymptotics to the unit root fixed-

smoothing asymptotics, and seems a natural extension of the fixed-b asymptotics to the

near unit root setting.

It is natural to ask whether the SN approach is still applicable to inference for near unit

root process. The answer is unfortunately negative, at least in the setting of Müller (2014)

and Sun (2015). However, as shown in Rho and Shao (2013a), the SN approach may still

work after applying prewhitening to filter out strong autocorrelation. In practice, the choice

of prewhitening filter is nontrivial and its effectiveness requires additional assumptions

on the data generating process. To conclude, I would like to quote Müller (2014) and

Vogelsang (2014) by saying that “Robust inference when autocorrelation is strong is not

easy, and each method requires a set of assumptions in order for it to work well. In practice,

the researchers in the practical field have to judge which set of regularity conditions makes

the most sense for a specific problem”.

4 Functional time series

So far the discussion on the SN approach and its extensions has been limited to the uni-

variate (or multivariate) time series setting. This section concerns inference for functional

time series, or temporally dependent functional data. In Zhang, Shao, Hayhoe and Wueb-

bles (2011), the SN approach has been extended to test for a change point in the mean
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function. The basic idea is to first apply functional principal component analysis (FPCA,

hereafter) to project the data onto a space spanned by the first few principal components,

and then apply the SN approach to the multivariate time series associated with principal

component scores. In Zhang and Shao (2014a), the two sample inference problem was

addressed using the SN approach, which is reviewed in Section 4.2.

4.1 Testing for a change point in the mean function

Given a set of temporally dependent functional observations {Xi(u)}Ni=1, we are interested

in testing whether the mean function remains constant over time, i.e.,

H0,1 : E[X1(u)] = E[X2(u)] = · · · = E[XN(u)], u ∈ I, (31)

where I = [0, 1] for simplicity. Under the null, we can write Xi(u) = µ1(u) + Yi(u) with

E[Yi(u)] = 0, i = 1, 2, . . . , N . Under the alternative Ha,1, we assume there is a change

point in the mean function, i.e.,

Xi(u) =

µ1(u) + Yi(u) 1 ≤ i ≤ k∗;

µ2(u) + Yi(u) k∗ < i ≤ N,
(32)

where k∗ = ⌊Nλ⌋ is an unknown change point for some λ ∈ (0, 1), {Yi(u)} is a zero-mean

functional sequence, and µ1(·) ̸= µ2(·).
To describe our methodology, we first introduce some useful notation commonly adopted

in the literature of functional data. We consider the Hilbert space H of square integrable

functions defined on I = [0, 1]. For any f, g ∈ H, we define the inner product between

f and g as < f, g >=
∫
I f(u)g(u)du and denote || · || as the corresponding norm, i.e.,

||f || =< f, f >1/2. Let Lp be the space of real valued random variables with finite Lp norm,

i.e., (E|X|p)1/p <∞. We further define Lp
H the space of H valued random variables X such

that vp(X) := (E||X||p)1/p < ∞. For X(·) ∈ L2
H, let c(u, v) = cov{X(u), X(v)}, u, v ∈ I

denote the covariance function. Then Mercer’s Lemma implies that c(u, v) admits the

spectral decomposition,

c(u, v) =
∞∑
j=1

λjϕj(u)ϕj(v), (33)

where λj and ϕj are the eigenvalue and eigenfunction respectively. The eigenvalues are

ordered so that λ1 ≥ λ2 ≥ · · · ≥ 0. By the Karhunen-Loève expansion [Bosq (2000, p. 26)],
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we can write Xi(u) = E[Xi(u)]+
∑∞

j=1 ηi,jϕj(u), where {ηi,j} are the principal components

(scores) defined by ηi,j =
∫
I{Xi(u)−E[Xi(u)]}ϕj(u)du. A natural sample estimator of the

covariance function c(u, v) is

ĉ(u, v) =
1

N

N∑
i=1

{Xi(u)− X̄N(u)}{Xi(v)− X̄N(v)}, (34)

where X̄N(u) =
1
N

∑N
i=1Xi(u) is the sample mean function. The eigenfunctions and cor-

responding eigenvalues of ĉ(u, v) are defined by∫
I
ĉ(u, v)ϕ̂j(v)dv = λ̂jϕ̂j(u), j = 1, 2, · · · . (35)

Then the empirical scores are given by

η̂i,j =

∫
I
{Xi(u)− X̄N(u)}ϕ̂j(u)du, i = 1, 2, . . . N ; j = 1, 2, . . . , K,

where K is the number of principal components we consider and is assumed to be fixed. In

practice, K can be chosen by K = inf{J :
∑J

i=1 λ̂i/
∑m

i=1 λ̂i > α}, where m is the number

of basis functions in smoothing and α is a pre-specified number, say 85%.

Under the null, the score vector ηi = (ηi,1, ηi,2, . . . , ηi,K)
′, i = 1, 2, . . . , N has a constant

mean, whereas the mean changes under the alternative. Let η̂i = (η̂i,1, . . . , η̂i,K)
′ and

SN,η̂(t1, t2) =
∑t2

i=t1
η̂i, for 1 ≤ t1 ≤ t2 ≤ N. We can then define the CUSUM process as

TN,η̂(k,K) :=
1√
N

{
SN,η̂(1, k)−

k

N
SN,η̂(1, N)

}
, k = 1, 2, . . . , N. (36)

The idea of testing for a change point in the mean function using the principal component

scores was first proposed in Berkes, Gabrys, Horváth and Kokoszka (2009), who dealt with

independent functional data. In Hörmann and Kokoszka (2010), a consistent long run

variance estimator for the principal component scores was introduced to allow for weak

dependence in functional time series. Zhang et al. (2011) extended the SN-based test

developed in Shao and Zhang (2010) to functional setting by defining the self-normalized
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process as

VN,η̂(k,K) :=
1

N2

[ k∑
t=1

{
SN,η̂(1, t)−

t

k
SN,η̂(1, k)

}{
SN,η̂(1, t)−

t

k
SN,η̂(1, k)

}′

+
N∑

t=k+1

{
SN,η̂(t, N)− N − t+ 1

N − k
SN,η̂(k + 1, N)

}
{
SN,η̂(t, N)− N − t+ 1

N − k
SN,η̂(k + 1, N)

}′ ]
, k = 1, · · · , N − 1,

(37)

and the SN-based test statistic as

GN,η̂(K) = sup
k=1,2,...,N−1

{TN,η̂(k,K)′V −1
N,η̂(k,K)TN,η̂(k,K)}

= C(N−1/2SN,η̂(1, ⌊Nr⌋), r ∈ [0, 1]),
(38)

where C is the implicitly defined continuous mapping that corresponds to GN,η̂(K). Under

suitable assumptions, it can be shown that under the null hypothesis,

GN,η̂(K) →D L(K) := sup
r∈[0,1]

{BK(r)− rBK(1)}′V −1
K (r){BK(r)− rBK(1)}, (39)

where VK(r) is the counterpart of V (r) (see (21)) with B(r) replaced by BK(r). The proof

uses several important results presented in Hörmann and Kokoszka (2010) for a stationary

weakly dependent functional sequence. In particular, let SN,η(t1, t2) =
∑t2

i=t1
ηi. Under

certain moment and weak dependence assumptions on (Xt(·))t∈Z, Hörmann and Kokoszka

(2010) showed that

sup
r∈[0,1]

1√
N

|SN,η(1, ⌊Nr⌋)− SN,η̂(1, ⌊Nr⌋)| = op(1),

which suggests that the estimation effect incurred by replacing η with η̂ is asymptotically

negligible and it does not enter into the first order limiting distribution of the SN-based

test statistic, as seen from (39).

Simulation results suggest that the SN-based test has less size distortion and stable

size with respect to the choice of K, in comparison with the standard method developed

in Hörmann and Kokoszka (2010). On the other hand, there is a power loss associated

with the SN-based test, but the loss is fairly moderate. Similar to the univariate case, the

nonmonotonic power problem was observed for Hörmann and Kokoszka’s method when

the bandwidth is chosen using Andrews’ rule, but not for the SN-based test.
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4.2 Two sample inference

Given two sequences of temporally dependent functional observations, {Xi(u)}N1
i=1 and

{Yi(u)}N2
i=1 defined on a common region I, we are interested in comparing their second

order properties. Suppose that the functional time series are second order stationary and

that E[Xi(u)] = E[Yi(u)] = 0. Define CX = E[< Xi, · > Xi] and CY = E[< Yi, · > Yi] as the

covariance operators of the two sequences respectively. For the convenience of presentation,

we shall use the same notation for the covariance operator and the associated covariance

function. Denote by {ϕj
X}∞j=1 and {λjX}∞j=1 the eigenfunctions and eigenvalues of CX .

Analogous quantities are {ϕj
Y }∞j=1 and {λjY }∞j=1 for the second sample.

In Zhang and Shao (2014a), we considered testing the hypothesis that the two co-

variance operators or their associated eigenvalues and eigenfunctions are the same. The

same testing problems have been considered in Benko, Härdle and Kneip (2009) but for

two independent functional sequences with iid observations, where the authors used an iid

bootstrap method which seems not applicable to the dependent case. To illustrate the idea,

we focus on the test for the equality of the first few eigenvalues. By the Karhunen-Loève

expansion (Bosq, 2000, p.26), we have

Xi(u) =
+∞∑
j=1

√
λjXβXi,jϕ

j
X(u), Yi(u) =

+∞∑
j=1

√
λjY βYi,jϕ

j
Y (u),

where
√
λjXβXi,j =

∫
I Xi(u)ϕ

j
X(u)du and

√
λjY βYi,j =

∫
I Yi(u)ϕ

j
Y (u)du are the principal

components (scores), which satisfy that E[βXi,jβXi,j′ ] = δjj′ and E[βYi,jβYi,j′ ] = δjj′ . For a

prespecified positive integer K, we denote the vector of the first K eigenvalues by λ1:KX =

(λ1X , . . . , λ
K
X)

′ and λ1:KY = (λ1Y , . . . , λ
K
Y )

′. We aim to test the null hypothesis H2,0 : λ1:KX =

λ1:KY versus the alternative H2,a : λ
1:K
X ̸= λ1:KY .

Let N = N1 + N2. Recall that the recursive estimates of the eigenvalues λ̂jX,m and

λ̂jY,m′ can be calculated based on the subsamples {Xi(u)}mi=1 and {Yi(u)}m
′

i=1. Let θ̂jk =

λ̂jX,⌊kN1/N⌋ − λ̂jY,⌊kN2/N⌋ and θ̂k = (θ̂1k, . . . , θ̂
K
k )′ with ⌊Nϵ⌋ ≤ k ≤ N for some ϵ ∈ (0, 1],

which is held fixed in the asymptotics. We consider the trimmed SN-based test statistic

GSN,N(K) = N3θ̂′N


N∑

k=⌊Nϵ⌋

k2(θ̂k − θ̂N)(θ̂k − θ̂N)
′


−1

θ̂N . (40)

For some technical reason, the trimming in the self-normalizer is required if the functional

space in which the data lie is infinite dimensional. It can be seen from the proof in
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Zhang and Shao (2014a) that the trimming is not necessary (i.e., ϵ can be set as 0) when

functional data lie on a finite dimensional space. Under suitable technical conditions on

the processes Xi(u) and Yi(u), the limiting null distribution of GSN,N(K) can be shown to

be BK(1)
′JK(ϵ)

−1BK(1), where JK(ϵ) =
∫ 1

ϵ
(BK(r)−rBK(1))(BK(r)−rBK(1))

′dr. Further

the consistency of the test is also shown in Zhang and Shao (2014a).

A distinctive feature of this work is that it allows the dependence between two samples

when the sample size N1 = N2 (or approximately so). It is natural to ask if the SN method

can be extended to the unbalanced two sample case. Unfortunately, as indicated by the

following example for the two sample inference for the mean of a bivariate time series, the

extension works only when the two samples are independent.

Example 4.1. Consider two stationary time series {Xi}N1
i=1 and {Yi}N2

i=1. Let Zk = X̄⌊kN1/N⌋−
Ȳ⌊kN2/N⌋, X̄k =

∑k
i=1Xi/k, Ȳk =

∑k
i=1 Yi/k and N = N1 +N2. The SN-based statistic for

testing the equality of the means are given by

SNN1,N2 =
NZ2

N

1
N2

∑N
k=1 k

2(Zk − ZN)2
.

Assume the invariant principle holds for the bivariate process {(Xi, Yi)}i∈Z, i.e.,

1√
N0

⌊N0r⌋∑
i=1

(
Xi − µX

Yi − µY

)
⇒

(
a 0

−c −b

)(
B(1)(r)

B(2)(r)

)
, N0 → +∞,

where B(1)(r) and B(2)(r) are two independent standard Brownian motions, and a, b ̸= 0

and c are unknown. Suppose N1/N → γ1 and N2/N → γ2, where 0 < γ1, γ2 < 1. By the

continuous mapping theorem (from D2[0, 1] to D1[0, 1]), we have that under the null

kZ⌊k⌋/
√
N =

k

⌊kN1/N⌋

 1√
N

⌊kN1/N⌋∑
j=1

Xj

− k

⌊kN2/N⌋

 1√
N

⌊kN2/N⌋∑
j=1

Yj


⇒ Vγ1,γ2(r; a, b, c) :=

a

γ1
B(1)(γ1r) +

c

γ2
B(1)(γ2r) +

b

γ2
B(2)(γ2r),

with k = Nr for r ∈ (0, 1]. It therefore follows that

SNN1,N2 →D

V 2
γ1,γ2

(1; a, b, c)∫ 1

0
(Vγ1,γ2(r; a, b, c)− rVγ1,γ2(1; a, b, c))

2dr
,
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where in general Vγ1,γ2(r; a, b, c) is not a Brownian motion and the limiting distribution

depends on the unknown dependence structure. Notice that when γ1 = γ2 (or c = 0),

Vγ1,γ2(r; a, b, c) =
a+c
γ1
B(1)(γ1r) +

b
γ1
B(2)(γ1r) =D

√
(a+c)2+b2

γ1
B(1)(r)

(
or Vγ1,γ2(r; a, b, c) =D√

a2

γ1
+ b2

γ2
B(1)(r)

)
and the limiting distribution is pivotal.

This example suggests that the limiting null distribution of the SN-based test statistic

is not pivotal when sample sizes of the two sequences are not asymptotically equal unless

the two sequences are independent. Thus the SN-based extension to the two sample case

succeeds only when the two samples are independent or the sample sizes are asymptotically

equal.

Since both covariance operator and its eigenfunctions are infinitely dimensional, to

apply the SN method, we first project them onto the finite dimensional space spanned

by certain basis functions. Typically, the basis functions are chosen to be the first few

estimated eigenfunctions, but in the comparison of two eigenfunctions, the choice of basis

functions should be made properly to ensure the asymptotic covariance matrix of the

projection vector to be non-degenerate. See Remark 2.3 in Zhang and Shao (2014a).

Remark 4.1. For both change point testing and two sample inference, the number of prin-

cipal components (i.e., K) or the basis functions projected onto is assumed to be fixed as

N → ∞ in our asymptotic framework. In practice, since K is usually chosen to make the

first K principal components explain a certain percentage of variation, the magnitude of

K critically depends on the prespecified threshold and the decay rate of the eigenvalues. It

may be more meaningful to use the asymptotic results derived under the framework that

K → ∞ but K/N → 0 as N → ∞. This motivates us to ask whether the SN approach

can be applied to the inference of a finite dimension parameter, where the dimension is

not fixed but slowly growing with respect to sample size; see Fremdt, Horváth, Kokoszka

and Steinebach (2014) for some related work. We shall leave this for future investigation.

5 Spatial data and spatio-temporal data

The extension of the SN approach to spatial setting was done in Zhang, Li and Shao (2014).

Unlike a time series, spatial data does not have a natural one-directional ordering, which

is essential in forming recursive estimates. For spatial lattice data with possibly irregular

shaped sampling region, Zhang et al. (2014) defined a nested collection of subregions
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which have the same shape as the whole region, applied recursive estimation and formed

a self-normalizer. Under the increasing domain asymptotics, the limiting distribution of

the self-normalized quantity was shown to depend on the irregular shape of the sampling

region. A simulation based approach was adopted to obtain critical values. For nonlattice

data, artificially ordering the spatial data into a time series in some way is shown to provide

an effective means of generalizing the SN approach. However, the limiting distribution of

the SN quantity is unknown, although a naive bootstrap method is seen to provide a decent

approximation.

The SN approach has also been used to test for symmetry and separability of a space-

time covariance function in Shao and Li (2009), as an alternative of the method developed

in Li, Genton and Sherman (2007). In the latter paper, a test was developed based

on the asymptotic joint normality of sample space-time covariances at a finite number

of space-time lags. The asymptotic covariance matrix of sample space-time covariances

was consistently estimated by using the subsampling method [Calstein (1986), Politis and

Romano (1994)]. In Shao and Li (2009), recursive estimates of space-time covariances were

used to form an inconsistent estimator of asymptotic covariance matrix and the resulting

limiting null distribution of the self-normalized statistic is Uq, where q is the effective

number of constraints on the space-time covariance function under the null hypothesis.

Simulation results show that the SN-based test has superior size but loses some moderate

power compared to the subsampling-based test in Li et al. (2007). It is worth noting that

the setting in both Li et al. (2007) and Shao and Li (2009) assumes that the observations

are taken from a fixed number of spatial locations at regularly spaced times {1, · · · , n}.
Thus the space-time data can be viewed as a multivariate time series with the dimension

of time series fixed and the length of time series going to infinity. This framework allows

irregular nonlattice spatial configuration. For spatio-temporal data with regularly spaced

lattice structure in space, the calculation of space-time covariances at certain space-time

lags involves an average not only over time but also over space. For such data with a

moderate amount of averaging in space, it may be beneficial to allow the number of points

in both space and time going to infinity when deriving the asymptotic distribution of

sample space-time covariances and self-normalized test statistic.
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6 Related methods and extensions

As mentioned in Section 2, the existing inference approaches for time series data all involve

a bandwidth parameter to accommodate the dependence when the unknown dependence is

treated nonparametrically. The bandwidth is a smoothing parameter as it typically leads

to a bias/variance tradeoff in variance estimation and a tradeoff between Type I error and

Type II error in testing. In the early literature, the focus was on the consistency of these

inference approaches (say, in terms of variance estimation) and a necessary condition to

ensure the consistency is that the bandwidth goes to infinity but at a slower rate than

sample size. In practice, different bandwidth parameters correspond to different finite

sample distribution of test statistics (or studentized quantity), but the traditional first

order asymptotic theory does not reflect different choices of bandwidth as the same refer-

ence distribution was used in the inference. To account for the influence of the bandwidth

on the inference, Kiefer and Vogelsang (2005) advocated the fixed-b asymptotics in the

heteroscedasticity-autocorrelation robust testing context. The idea was to hold the ratio

of bandwidth parameter ln and sample size n, i.e., b = ln/n ∈ (0, 1], as a fixed constant in

the asymptotics. Under the fixed-b asymptotics, the resulting limiting distribution of the

studentized statistics (or quantity) is nonstandard, but is pivotal for a given b.

The fixed-b idea has been generalized to subsampling and block bootstrap based infer-

ence by Shao and Politis (2013). The idea was to derive the limiting null distribution of the

p-value under the fixed-b asymptotics, which is no longer U(0, 1) (i.e., uniform distribution

on [0, 1]), as is the case under the small-b asymptotics. It depends upon b and is pivotal in

the scalar parameter case, but is non-pivotal in the case of a vector parameter or infinitely

dimensional parameter. A calibration of the traditional subsampling or block-bootstrap

based confidence set is then performed by either using simulated critical values correspond-

ing to the b-dependent pivotal distribution when the parameter is a scalar or estimating the

sampling distribution of the p-value using a second-level subsampling when the dimension

of the parameter is more than 1. Simulation results indicate that the fixed-b approach is

more accurate than the traditional small-b approach in terms of coverage accuracy, and

the calibrated confidence sets tend to have smaller coverage errors than the uncalibrated

counterparts.

In Zhang and Shao (2014b), the fixed-b idea was extended to blockwise empirical like-

lihood (BEL, hereafter), which was first proposed by Kitamura (1997) as an extension
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of Owen’s (1988, 1990) empirical likelihood method to time series data. An important

property of the EL is that minus twice of the log-EL ratio statistic evaluated at the true

parameter converges to χ2 limiting distribution (i.e., Wilks’s theorem holds), which is the

basis of EL ratio confidence region. Kitamura (1997) showed that Wilks’s theorem still

holds provided that the block size ln goes to infinity but at a slower rate of sample size n.

In the literature, there seems little guidance provided on the choice of the block size and

the performance of BEL can be sensitive to the choice of block size. To capture the impact

of block size on the finite sample distribution of log-EL ratio statistic, Zhang and Shao

(2014b) adopted the moment condition model [Qin and Lawless (1994), Smith (2011)] and

showed that the limiting distribution of BEL ratio evaluated at the true parameter is non-

standard but pivotal under the fixed-b asymptotics and the critical values can be obtained

via simulations. In the simulation studies, it was shown that the confidence region based on

the fixed-b approach has more accurate coverage than the traditional χ2-based counterpart.

The same phenomenon was observed when generalizing the fixed-b approach to generalized

blockwise empirical likelihood [Newey and Smith (2004)], which include exponential tilting

and continuously updating generalized method of moments as special cases.

Nordman, Bunzel and Lahiri (2013) proposed a non-standard bandwidth-free empiri-

cal likelihood for the inference of time series, called expansive blockwise EL (EBEL). The

EBEL uses recursive blocks, as the SN method does, so it may be viewed as an inter-

esting marriage of self-normalization and empirical likelihood, but it was developed only

for the smooth functional model, which is narrower than the framework adopted in Shao

(2010a). The large sample distribution of log-EBEL ratio statistic is non-standard but piv-

otal. Through extensive simulations, Nordman et al. (2013) showed that EBEL generally

exhibits comparable (or in some cases even better) coverage accuracy than the BEL with

χ2 approximation and suitable block size.

In addition to the extensions mentioned above, Kim and Zhao (2013) have developed

SN-based unified inference for both sparse and dense longitudinal data. While their first

method is based on a self-normalized central limit theorem which can adapt to both sparse

and dense case, their second method uses recursive estimates, which can be regarded as

an extension of Shao (2010a) to nonparametric context. Recently, the SN approach has

been extended by Huang, Volgushev and Shao (2015) to inference for censored time series,

where the limiting distribution of the SN quantity is obtained by using the new theory

developed in Volgushev and Shao (2014), and a comparison with the blockwise empirical
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likelihood approach of El Ghouch, Van Keilegom, and McKeague (2011) again confirms

the coverage accuracy of the SN approach.

7 Conclusions

In this paper, we review some recent developments for the inference of time series data

using the self-normalized approach. To summarize, we highlight a number of appealing

features of self-normalization and mention several topics for future research. Among its

desirable properties, we mention

(i) Implementational convenience. A key feature of SN in the time series context is

to use recursive estimates, which can be readily computed without the need to design

new algorithms. This is similar to blockwise jackknife or subsampling, where the first

level estimate based on a subset of observations is computed, and no theoretical formula

for asymptotic variance needs to be derived for practical implementation. If the limiting

distribution of the SN quantity is pivotal, then we can either use the tabulated critical value

or simulate the critical values. Otherwise, we may have to use resampling/subsampling

methods or simulation-based approach to approximate the critical values.

(ii) Broad applicability. As demonstrated in this paper, SN is widely applicable to a

number of important inference problems in time series analysis, ranging from univariate

to functional time series, from stationary to locally stationary framework, and from short

memory to long memory series. It can be viewed as a novel way of studentization or

prepivoting [Beran (1987)], and it may be combined with other existing approaches (e.g.,

block bootstrap) to deliver more accurate inference [see Shao (2010a)].

Furthermore, the SN approach can facilitate the inference in quantile regression, in

which the asymptotic variance for the quantile regression estimator often involves a nui-

sance parameter called the sparsity function [Koenker 2005, page 77], namely, the reciprocal

of a (conditional) density evaluated at the true (conditional) quantile. Its consistent esti-

mation typically involves smoothing and bandwidth selection. The SN approach offers a

viable alternative [Zhou and Shao (2013)] and is worth further investigation in quantile-

based inference. Consistent estimation of long run variance also comes up in other time

series inference problems, such as unit root testing (e.g., Phillips (1987), Koenker and Xiao

(2004)), and it would be interesting to explore the possibility for the SN-based alternatives.

(iii) Good theoretical properties. First order limiting distributions have been derived
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for the SN quantities in most problems we mentioned except for the case of irregularly

spaced spatial data [Zhang et al. (2014)]. In the derivation, the weak convergence of

the sequential empirical process associated with recursive estimates play a crucial role;

see Volgushev and Shao (2014). As we see from Section 3.2-Section 3.5, the limiting

distribution of the SN quantity may not be pivotal, and thus require another level of

approximation using resampling/subsampling or simulation-based approaches. The high

order distribution theory has been derived in Jansson (2004), Sun et al. (2008) and Zhang

and Shao (2013) for the self-normalized mean in the framework of Gaussian location model.

The high order expansion of the finite sample distribution of studentized mean in Zhang

and Shao (2013) provides theoretical insights on the magnitude and sign of size distortion,

and the discussion and theory in Sun et al. (2008) greatly help to clarify the distinction

between the fixed-b and small-b approximations. Of course, it would be interesting to

develop higher order theory for the SN-based inference in non-Gaussian setting and for

other problems. In the mean inference context, the testing-optimal bandwidth developed

in Sun et al. (2008) tried to optimize a weighted average of type I and type II errors, and

it would be interesting but may be very challenging to extend this idea and derive and

implement the testing-optimal bandwidth for other problems.

(iv) Encouraging finite sample performance. In our finite sample simulations, we have

demonstrated the size/coverage accuracy of the SN approach in comparison with the ap-

proaches that involve consistent variance estimation. The moderate power loss or wider

interval associated with the SN approach has also been recognized in finite samples for

most problems, which is consistent with the existing theory. As we commented in Re-

mark 2.2, the SN approach may be viewed as a robust alternative to the existing ones with

some mild sacrifice of efficiency.

That being said, we also want to point out some limitations of the SN approach and

some areas for which SN has not been successfully extended to and more work is needed.

In particular, we mention

(i) SN is not applicable to the inference of infinitely dimensional parameter, such as the

marginal distribution function of a stationary time series Xt, but subsampling and block-

based bootstrap do. Furthermore, when the dimension of a finite-dimensional parameter

grows slowly with respect to sample size, there is no theory that supports or justifies the

use of the SN approach. Therefore, it is better to view SN as a complement but not a

replacement of the existing methods, since its applicability is different from the existing
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ones.

(ii) The unidirectional ordering of a time series is implicitly used in forming recursive

estimates, which is a key ingredient of the SN approach. It would be interesting to consider

extensions to dependent data of other types, where no natural ordering exists; see Zhang

et al. (2014) for an attempt to irregularly spaced spatial data. In Ibragimov and Müller

(2010), a t-statistic based approach was proposed to deal with dependent data, which does

not require a natural ordering. In addition, when the dependence in the time series is too

strong (say, near-integrated time series), inference of certain parameter becomes difficult

because the information aggregated over time does not accumulate quickly due to strong

dependence. It would be desirable to extend the SN method to this setting in a principled

way similar to Müller (2014).

(iii) When sample size n is large, the calculation of recursive estimates gets expensive.

It would be interesting to develop a computationally scalable version of the SN method in

the big data context. See Chen and Qu (2015) for a variant of SN that is less expensive

to compute. Ideally, we hope this new version maintains the size/coverage accuracy of the

SN approach while being computationally feasible for big data.

(iv) In some extensions, we have to introduce a trimming parameter ϵ ∈ (0, 1) mostly

for technical reasons. In other words, we only use recursive estimates starting from θ̂1,⌊ϵn⌋

in our self-normalizer. The choice of trimming parameter certainly affects the finite sample

results, but its impact on the inference is captured by the first order limiting distribution

and its approximation. This is in the same spirit of the fixed-b approach, where the impact

of b is reflected in the first order limiting distribution. Setting ϵ = 0.1 has been seen to

perform quite well for various data generating processes and for the problems studied in

Zhou and Shao (2013), Kim et al. (2015), and Huang et al. (2015). It would be interesting

to (1) find a generally applicable rule to select ϵ in the SN approach or b in the fixed-b

approach; (2) compare the trimmed SN approach with fixed-b approach in the same general

setting and find out the difference between the two and whether one dominates the other.

(v) Except for the extension to functional time series, the dimension of the time series

is assumed to be finite and fixed in most applications of SN techniques. It is natural to

ask whether SN can be extended to inference for high dimensional time series, which has

attracted a lot of attention lately [see e.g., Fan, Lv and Qi (2011), Lam and Yao (2012)].

This would be an interesting avenue for future research.
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Table 1: The limits of the probability and ratio associated with interval lengths

α 0.5 0.75 0.9 0.95 0.99

P (α) 0.95 0.514 0.386 0.337 0.223

R(α) 0.963 1.1 1.235 1.297 1.445

Table 2: Upper quantiles of the distribution of J1 simulated on the basis of 200000 monte

carlo replications.

α 0.8 0.9 0.95 0.975 0.99 0.995

J1,α 24.88 44.46 68.41 96.19 139.73 176.87
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Figure 1: Approximate local powers for SN-based and traditional tests as a function of

δ under the local alternative µn = µ0 + δs/
√
n. Equivalently, PSN(γ, δ) (solid line) and

PTR(γ, δ) (dashed line) as a function of δ at γ = 0.05 and 0.1.
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Table 3: Empirical coverage rates (in percentage) and ratios of average interval lengths

for variants of SN method. The intervals are for marginal median of time series and the

number of replication is 50000. Time series of length n is generated from Gaussian AR(1)

model with AR(1) coefficient ρ. The variations SNj, j = 1, 2, 3 of the self-normalized

approach (denoted by SN) are introduced in Section 2.3.

n 1-α ρ SN SN1 SN2 SN3
len(SN)

len(SN3)

len(SN1)

len(SN3)

len(SN2)

len(SN3)

50 90% 0.2 86.7 86.9 89.9 90.4 .963 .967 .905

0.5 85.7 85.5 87.6 88.8 .968 .971 .895

0.8 80.1 80.1 79.4 83.1 .969 .971 .850

−0.4 87.3 87.4 91.7 91.8 .955 .957 .914

95% 0.2 91.9 92.0 94.4 94.9 .963 .967 .880

0.5 91.2 91.0 92.9 93.8 .968 .971 .870

0.8 86.8 86.7 86.2 89.4 .969 .971 .827

−0.4 92.2 92.2 96.0 95.9 .955 .957 .890

200 90% 0.2 88.2 88.5 90.1 90.5 .978 .980 .909

0.5 88.2 88.4 89.5 90.0 .984 .982 .908

0.8 86.9 86.8 87.3 88.3 .986 .985 .897

−0.4 88.4 88.6 90.9 91.5 .970 .972 .904

95% 0.2 93.5 93.6 94.8 95.2 .978 .980 .884

0.5 93.5 93.6 94.8 95.2 .978 .980 .884

0.8 92.3 92.4 92.7 93.7 .986 .985 .873

−0.4 93.2 93.5 95.3 95.6 .970 .972 .879
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Table 4: Empirical coverage rates (in percentage) and ratio of average interval lengths

for several inference methods. The intervals are for marginal mean of time series and

the number of replications is 50000. Time series of length n is generated from Gaussian

AR(1) model with AR(1) coefficient ρ. The symbols SN, TR, INF and SN2 stand for the

self-normalized approach, the traditional approach where long run variance is consistently

estimated, the infeasible approach where true long run variance is used in normal approx-

imation, and a variation of the self-normalized approach where all recursive subsample

estimates are used in the self-normalizer, respectively.

n 1− α ρ SN TR INF SN2
len(SN)

len(TR)

len(SN)

len(INF)

len(SN)

len(SN2)

50 90% 0.2 89.2 84.9 88.6 89.3 1.35 1.21 1.08

0.5 87.1 79.0 86.7 86.8 1.44 1.18 1.10

0.8 81.1 66.9 80.2 78.5 1.56 1.10 1.16

-0.4 91.9 90.1 89.7 92.8 1.23 1.28 1.06

95% 0.2 94.4 90.9 93.8 94.5 1.43 1.29 1.11

0.5 92.9 85.9 92.1 92.6 1.53 1.26 1.12

0.8 88.0 74.5 86.1 85.8 1.66 1.17 1.18

-0.4 96.3 94.8 94.8 96.9 1.31 1.36 1.08

200 90% 0.2 89.8 87.2 89.7 89.7 1.30 1.22 1.09

0.5 89.3 84.7 89.1 89.1 1.35 1.21 1.09

0.8 87.5 79.6 87.0 86.6 1.43 1.19 1.11

-0.4 90.5 91.0 90.1 90.7 1.18 1.24 1.08

95% 0.2 94.8 92.9 94.6 94.8 1.38 1.30 1.11

0.5 94.5 91.0 94.1 94.3 1.44 1.29 1.12

0.8 93.1 86.5 92.4 92.5 1.52 1.26 1.13

-0.4 95.3 95.4 94.9 95.5 1.26 1.31 1.10
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Figure 2: Empirical rejection rates of the KSn statistic as a function of the magnitude of

change η under the model (19) when the bandwidth ln is chosen using Andrews’ plug in

rule (2).
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