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Abstract. The development of efficient parallel algorithms for large scale 
wildfire simulations is a challenging research problem because the factors that 
determine wildfire behavior are complex. These factors make static parallel 
algorithms inefficient, especially when large number of processors is used 
because we cannot predict accurately the propagation of the fire and its 
computational requirements at runtime. In this paper, we propose an Autonomic 
Runtime Manager (ARM) to dynamically exploit the physics properties of the 
fire simulation and use them as the basis of our self-optimization algorithm. At 
each step of the wildfire simulation, the ARM decomposes the computational 
domain into several natural regions (e.g., burning, unburned, burned) where 
each region has the same temporal and special characteristics. The number of 
burning, unburned and burned cells determines the current state of the fire 
simulation and can then be used to accurately predict the computational power 
required for each region. By regularly monitoring and analyzing the state of the 
simulation, and using that to drive the runtime optimization, we can achieve 
significant performance gains because we can efficiently balance the 
computational load on each processor. Our experimental results show that the 
performance of the fire simulation has been improved by 45% when compared 
with a static portioning algorithm. 

1   Introduction 

For over fifty years, attempts have been made to understand and predict the behavior 
of wildfires. However, the factors that determine wildfire behavior are complex and 
the computational loads associated with regions in the domain vary greatly both in 
time and space. Load balancing and efficient parallel execution of these simulations 
on large numbers of processors present significant challenges.  

Optimizing the performance of parallel applications through load balancing is well 
studied and can be classified as either static or dynamic. The static approaches [3][4] 
assign work to processors before the computation starts and can be efficient if we 
know how the computations will progress a priori. If the workload cannot be 
estimated beforehand, dynamic load balancing strategies have to be used [5][6][7][8]. 
Some global schemes [9][10] predict future performance based on past information or 
based on some prediction tools such as Network Weather Service (NWS)[11]. Other 
optimization techniques are based on application-level scheduling [12][13]. AppLeS 
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[12] assumes the application performance model is static and provided by users and 
GHS system[13] assumes the applications computation load is a constant.  

There are a few techniques that assume adaptive applications [14][15][16].  
However, the wildfire simulation is a continuously changing application and requires 
adaptive and efficient runtime optimization techniques.  In this paper, we present an 
Autonomic Runtime Manager (ARM) that continuously monitoring the computing 
requirements of the application, analyzing the current state of the application as well 
as the computing and networking resources and then making the appropriate planning 
and scheduling actions at runtime. The ARM control and management activities are 
overlapped with the application execution to minimize the overhead incurred.  

The reminder of this paper is organized as follows: Section 2 gives a brief 
overview of the ARM system and a detailed analysis of the wildfire simulation. 
Results from the experimental evaluation of the ARM system are presented in Section 
3. A conclusion and outline of future research directions are presented in Section 4. 

2   Autonomic Runtime Manager (ARM) Architecture 

The Autonomic Runtime Manager(ARM) is responsible for controlling and managing 
the execution for large-scale applications at runtime. The ARM main modules include 
(Fig. 1): 1) Online Monitoring and Analysis Module and 2) Autonomic Planning and 
Scheduling Module. The online monitoring and analysis module monitors the state of 
the application and underlying system and determines whether the online planning 
engine should be invoked. The planning and scheduling engine uses the resource 
capability models as well as performance models associated with the computations, 
and the knowledge repository to select the appropriate models and partitions for each 
region and then decompose the computational workloads into schedulable 
Computational Units (CUs). In this paper, we will use the wildfire simulation as a 
running example to explain the main operations of the ARM modules. 

2.1   An Illustrative Example - Wildfire Simulation 

In the wildfire simulation model, the entire area is represented as a 2-D cell-space 
composed of cells of dimensions length x breadth. For each cell, there are eight major 
wind directions as shown in Fig. 2. When a cell is ignited, its state will change from  
“unburned” to “burning”. During its “burning” phase, the fire will propagate to its 
eight neighbors. The direction and the value of the maximum fire spread rate within 
the burning cell can be computed using Rothermel’s fire spread model [2]. When the 
simulation time advances to the ignition times of neighbors, the neighbor cells will 
ignite.  In a similar way, the fire would propagate to the neighbors of these cells. With 
different terrain, vegetation and weather conditions, the fire propagation could form 
very different spread patterns within the entire region. 

Our wildfire simulation model is based on fireLib [1], which is a C function library 
for predicting the spread rate and intensity of free-burning wildfires. We parallelized 
the sequential fire simulation using MPI. This parallelized fire simulation divides the 
entire cell space among multiple processors such that each processor works on its own 
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Fig. 1. Autonomic Runtime Manager (ARM) architecture 
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portion and exchanges the necessary data with each other’s after each simulation time 
step.  At each time step, each processor computes and maintains the ignition maps of 
the 8 neighbors of the current ignited cell. Then the ignition map changes are 
exchanged between processors.  

In our current implementation, a coordinator processor gathers the ignition map 
changes from each worker processor and then broadcasts them to all processors. Since 
there are only a few cells whose ignition times are changed at each time step, we 
believe the communication overhead with the coordinator is low. Thus the estimated 
execution time at time t for processor Pi can be defined as follows: 

 
( ) ( , ) ( , )i comp i comm iT t T P t T P t= +  

 

 
(1) 

where ),( tPT icomp and ),( tPT icomm are the computation and communication time at step t 

for processor Pi, respectively.  
The application computational workload (ACW) of the simulation is defined as:  

 
( ) ( ) ( )B B U UACW t N t T N t T= +  

 

 
(2) 

where NB(t) and NU(t) are the number of burning and unburned cells at time t; TB and 
TU  are the estimated computation times of each burning and unburned cell. TB > TU 
because burning cells are more computation intensive than unburned cells, which 
contribute significantly to the imbalance conditions at runtime. Let αi be the fraction 
of the workload assigned to processor Pi, it will be given a workload of )(tACWi ×α . 

Therefore, the expected computation time for processor Pi can be defined as follows: 

( , ) ( ( ) ( ) ) ( , ) ( , )comp i i B B U U B i B U i UT P t N t T N t T N P t T N P t Tα= + = +  

 

 
(3) 

where NB(Pi, t) and NU(Pi, t) are the number of burning cells and unburned cells 
assigned to processor Pi at time step t.  
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The communication cost Tcomm(Pi,t) includes the time required for data gathering, 
synchronization and broadcasting, which can be defined as follows:  

 
( , ) ( , ) ( , ) ( )comm i gather i sync i bcastT P t T P t T P t T t= + +  

 

 
(4) 

Data gathering operation can be started once the computation is finished. The data 
gathering time of processor Pi at time step t is given by:  

 
( , ) ( , )gather i Byte c iT P t mT N P t=  

 

 
(5) 

where m is the message size in bytes sent by one cell, ( , )C iN P t is the number of cells 

assigned to processor Pi whose ignition time are changed during the time step t, and 
TByte is the data transmission time per byte. It is important to notice that broadcast 
operation can only start after the coordinator processor receives the data from all 
processors. Consequently, the data broadcasting time can be defined as: 

1

0
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Then, the estimated execution time of the wildfire simulation on processor i can be 
computed as:  

1
( )t

i

N

total it
T T t

=
=∑  

 

 
(7) 

where Nt is the number of time steps performed by the wildfire simulation. 

2.2   Online Monitoring and Analysis 

The online monitoring module collects the information about the wildfire simulation 
state, such as the number and the location of burning cells and unburned cells, and the 
computation time for the last time step. At the same time, it monitors the states of the 
underlying resources, such as the CPU load, available memory, network load etc. The 
runtime state information is stored in a database. The online analysis module analyzes 
the load imbalance of the wildfire simulation and then determines whether or not the 
current allocation of workload needs to be changed.  

Figure 3 shows the breakdown of the execution time and type of activities 
performed by four processors. Processor P0 has the longest computation time because 
it is handling a large number of burning cells. Consequently, all the other three 
processors have to wait until processor P0 finishes its computation and then the data 
broadcasting can be started. To balance the workload, the online analysis module 
should quickly detect large imbalance and invoke the repartitioning operation. To 
quantify the imbalance, we introduce a metric, Imbalance Ratio (IR) that can be 
computed as: 
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(8) 

We use a predefined threshold IRthreshold to measure how severe the imbalance is. If 
( ) thresholdIR t IR> , the imbalance is considered severe and repartitioning is required. 

Then the automatic planning and scheduling module will be invoked to carry the 
appropriate actions to reparation the simulation workload. 
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Fig. 3. The breakdown of the processor execution time at time step t 

The selection of the threshold IRthreshold can significantly impact the effectiveness of 
the self-optimization approach. If the threshold chosen is too low, too many load 
repartitioning will be triggered and the high overhead produced outweigh the 
expected performance gains. On the other hand, when the threshold is high, the 
imbalance conditions cannot be detected quickly. In the experimental results 
subsection, we show how we can experimentally choose this threshold value.  

2.3   Autonomic Planning and Scheduling 

The autonomic planning and scheduling module partitions the whole fire simulation 
domain into several natural regions (burning, unburned) based on its current state and 
then assigns them to processors by taking into consideration the states of the 
processors involved in the fire simulation execution. To reduce the rescheduling 
overhead, we use a dedicated processor to run the ARM self-optimizing algorithm and 
overlap that with the worker processors that compute their assigned workloads. Once 
the new partition assignments are finalized, a message is sent to all the worker 
processors to read the new assignments once they are done with the current 
computations. Consequently, the ARM self-optimization activities are completely 
overlapped with the application computation and the overhead is very minimum less 
than 4% as will be discussed later. 

3   Experimental Results 

The experiments were performed on two problem sizes for the fire simulation. One is 
a 256*256 cell space with 65536 cells. The other is a 512*512 cell domain with 
262144 cells. To introduce a heterogeneous fire patterns, the fire is started in the 
southwest region of the domain and then propagates northeast along the wind 
direction. To make the evaluation accurate, we maintain total number of burning cells 
during the simulation is about 17% of the total cells for both problem sizes. 

We begin with an examination of the effects of the imbalance ratio threshold on 
application performance. We ran the fire simulation with a problem size of 65536 on 
16 processors and varied the IRthreshold values to determine the best value that 
minimizes the execution time. The results of this experiment are shown in Fig. 4. We 
observed that the best execution time, 713 seconds, was achieved when  the  IRthreshold 
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Fig. 4. The sensitivity of the fire simulation 
to the IRthreshold value 
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Fig. 5. Imbalance ratios for 2000 time steps of 
the fire simulation, problem size = 65536, 
number of processors = 16, IRthreshold = 50% 

is equal to 30%.  Figure 5 shows how the imbalance ratio increases as the simulation 
progresses using static partitioning algorithm and compares that with our self-
optimization algorithm. For example, at time step 2000, the imbalance ratio in the 
static parallel algorithm is about 450% while it is around 25% in our approach. Using 
our approach, the imbalance ratio is kept bound within a small range. 

Figure 6 shows the computation time for each processor at time steps 1, 300 and 
600 with and without the ARM self-optimization. For example, at time step 1, the 
computation load is well balanced among most processors for both static partitioning 
and self-optimization. However, as shown in Fig. 6(a), at time step 300, processor P0 
and P1 experience longer computation times while other processors keep the same 
computation time as before. This is caused by having many burning cells assigned to 
these two processors P0 and P1.  At time step 600, more and more cells on processor 
P0 and P1 are burning and the maximum computation time of 0.24 seconds is 
observed for P1. However, if we apply the ARM self-optimization algorithm, all 
processors finish their computations around the same time for all the simulation time 
steps (see Fig. 6 (b)).  For example, the maximum execution time of 0.1 seconds is 
observed for processor P2 at time step 600, which is 58% reduction in execution time 
when compared to the 0.24 seconds observed for the static portioning algorithm.  

Tables 1 and 2 summarize the comparison of the execution time of the fire 
simulation with and without our self-optimization algorithm. Our experimental results 
show that the self-optimization approach improves the performance by up to 45% for 
a problem size of 262144 cells on 16 processors. We expect to get even better 
performance as the problem size increases because it will need more simulation time 
and will have more burning cells than smaller problem sizes. 

In our implementation, one processor is dedicated to the autonomic planning and 
scheduling operations while all the worker processors are running the simulation 
loads assigned to them. Consequently, our self-optimization algorithm will not have 
high overhead impact on the fire simulation performance. The only overhead incurred 
is the time that ARM sensors collect the runtime information and the time that worker 
processors read new assigned simulation loads. To quantify the overhead on the 
whole system, we conducted experiments to measure the overhead. Based on our 
 



 Self-optimization of Large Scale Wildfire Simulations 621 

 

 

0

0.05

0.1

0.15

0.2

0.25

P0 P1 P2 P3 P4 P5 P6 P7
Processor Number

C
om

pu
ta

tio
n 

T
im

e(
se

c) T ime Step 1
Time Step 300
Time Step 600

(a) 

0

0.05

0.1

0.15

0.2

0.25

P0 P1 P2 P3 P4 P5 P6 P7
Processor Number

C
om

pu
ta

tio
n 

T
im

e(
se

c) T ime Step 1
Time Setp 300
Time Step 600

 (b) 

Fig. 6. Computation times of different time steps on 8 processors. Each group of adjacent bars 
shows the computation time of time step 1, 300 and 600, respectively. (a) Without self-
optimization (b) With self-optimization 

Table 1. Performance comparison for the fire simulation with and without self-optimization for 
different number of processors, problem size = 65536, and IRthreshold = 30% 

Number of 
Processors 

Execution Time without 
static partitioning (sec) 

Execution Time with Self-
Optimization (sec) 

Performance 
Improvement 

8 2232.11 1265.94 43.29% 
16 1238.87 713.17 42.43% 

Table 2. Performance comparison for the fire simulation with and without self-optimization for 
different number of processors, problem Size = 262144, and IRthreshold = 30% 

Number of 
Processors 

Execution Time without 
Self-Optimization (sec) 

Execution Time with 
Self-Optimization (sec) 

Performance 
Improvement 

16 17276.02 9486.3 45.09% 
32 9370.96 5558.55 40.68% 

experiments, we observed that the overhead cost is less than 4% of the total execution 
time for both problem sizes of the fire simulation.  

4   Conclusions and Future Work 

In this paper, we described an Autonomic Runtime Manager that can self-optimize the 
parallel execution of large-scale applications at runtime by continuously monitoring 
and analyzing the state of the computations and the underlying resources, and 
efficiently exploit the physics of the problem being optimized. In our approach, the 
physics of the problem and its current state are the main criterion used to in our self-
optimization algorithm. The activities of the ARM modules are overlapped with the 
algorithm being self-optimized to reduce the overhead. We show that the overhead of 
our self-optimization algorithm is less than 4%. We have also evaluated the ARM 
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performance on a large wildfire simulation for different problem sizes and different 
number of processors. The experimental results show that using the ARM self-
optimization, the performance of the wildfire simulation can be improved by up to 
45% when compared to the static parallel partitioning algorithm.  
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