
Fan et al. EURASIP Journal on Wireless Communications and

Networking  (2015) 2015:21 

DOI 10.1186/s13638-015-0261-1

RESEARCH Open Access

Self-optimized heterogeneous networks for
energy efficiency
Shaoshuai Fan1, Hui Tian1* and Cigdem Sengul2

Abstract

Explosive increase in mobile data traffic driven by the demand for higher data rates and ever-increasing number of

wireless users results in a significant increase in power consumption and operating cost of communication networks.

Heterogeneous networks (HetNets) provide a variety of coverage and capacity options through the use of cells of

different sizes. In these networks, an active/sleep scheduling strategy for base stations (BSs) becomes an effective way

to match capacity to demand and also improve energy efficiency. At the same time, environmental awareness and

self-organizing features are expected to play important roles in improving the network performance. In this paper, we

propose a new active/sleep scheduling scheme based on the user activity sensing of small cell BSs. To this end,

coverage probability, network capacity, and energy consumption of the proposed scheme in K-tier heterogeneous

networks are analyzed using stochastic geometry, accounting for cell association uncertainties due to random

positioning of users and BSs, channel conditions, and interference. Based on the analysis, we propose a sensing

probability optimization (SPO) approach based on reinforcement learning to acquire the experience of optimizing the

user activity sensing probability of each small cell tier. Simulation results show that SPO adapts well to user activity

fluctuations and improves energy efficiency while maintaining network capacity and coverage probability guarantees.

Keywords: Heterogeneous networks; Self-optimization; Energy efficiency; Reinforcement learning

1 Introduction
To satisfy the explosive increase in mobile data traffic

demand, heterogeneity is expected to be a key feature of

future wireless networks [1-4]. Heterogeneous networks

(HetNets) consist of a conventional cellular network over-

laid with a diverse set of lower power small cell base

stations (BSs), such as microcells, picocells, and femto-

cells, to improve spatial frequency reuse and coverage.

This allows the network to achieve higher data rates while

retaining seamless connectivity and mobility. However,

the overall energy consumption and operating cost of

networks are also increasing considerably by the deploy-

ment of these additional small cell base stations [5,6].

As a result, green wireless communication has attracted

the attention of both researchers and network operators,

and energy efficiency has become one of the key network

management parameters [2,7]. Additionally, the future
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heterogeneous networks are also expected to operate in

self-organizing manner to reduce operational expendi-

tures (OPEX) due to the deployment of large numbers of

BSs [8].

An effective way to adapt to the traffic demand while

improving energy efficiency is performing active/sleep

scheduling by taking advantage of the fluctuations in traf-

fic demand over time and space [9]. In [10], using a sleep

mode is shown to be effective especially when the cell

size is small and under light traffic conditions for a single-

tier network. For heterogeneous networks, Soh et al. [2]

applied the tools from stochastic geometry to analyze the

impact of load-aware sleeping strategy on coverage prob-

ability, finding its performance to be at least as good as

without using a sleep mode. Active/sleep scheduling can

be controlled via either the user equipment, the small cell,

or the core network [11]. If it is network-controlled as

proposed in [12], the information about the traffic load

and user location are needed to identify hotspots to make

the active/sleep decisions. Therefore, it is attractive to

deploy distributed sleep mode strategies which do not

involve the UE equipments, extra signaling overhead, and
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user location awareness. Wildemeersch et al. [5] investi-

gated using small cells in a distributed way to offload the

traffic from the macrocell network and exploiting their

cognitive capabilities of user activity sensing to improve

the energy efficiency by active/sleep scheduling. How-

ever, their analysis in a two-tier network environment only

considered the network performance of traffic offloading

and the user detection. The quality of service (QoS) of

users such as coverage probability and throughput which

should be guaranteed as the baseline of energy saving was

ignored. Moreover, the operation status of BSs were not

considered by their proposed user detection model in the

literature, and additional energy consumption would be

caused by the active BSs due to unnecessary sensing. Also

a user’s cell association with small cell tiers will affect

the detection of the user because only macrocell users

could be detected under their proposed model. This issue

makes the scheme not applicable to the general multi-tier

heterogeneous network scenario.

In this paper, we propose an active/sleep scheduling

scheme forK-tier heterogeneous networks exploiting self-

organizing capabilities. In our scheme, to guarantee cov-

erage, macrocells are always active. However, when a small

cell does not serve any active users, it goes into a sleep

mode, during which it wakes up only to sense macro-

cell user activity. If the small cell detects an active user

within its coverage during the sensing period, it becomes

active to offload traffic from the macrocell. We analyze

the coverage probability, network capacity, and energy

consumption of the proposed scheme in a K-tier hetero-

geneous network using stochastic geometry, accounting

for cell association uncertainties due to random position-

ing of users and BSs, channel conditions, and interference.

To save as much energy as possible, user detection fol-

lows a sensing probability, which is self-optimized by

the network. The sensing probability optimization (SPO)

approach based on reinforcement learning is proposed

to acquire the experience of optimizing the user activity

sensing probability of each small cell tier, considering the

user activity fluctuations and user QoS such as coverage

and throughput.

The rest of the paper is organized as follows: In

Section 2, we describe the system model and propose

the user activity sensing-based active/sleep scheduling

scheme. In Section 3, we describe the energy effi-

ciency optimization problem and present the details of

the proposed fuzzy Q-learning-based SPO approach. In

Section 4, we present the simulation results. Finally, we

draw the conclusions.

2 User activity sensing-based active/sleep
scheduling scheme

2.1 Systemmodel and assumptions

We consider a heterogeneous network that consists of K

tiers of BSs, where the first tier of macrocell BSs is overlaid

with K−1 tiers of denser and lower power small cell BSs.

We consider that all tiers share the full spectrum and,

hence, interference exists between tiers. All small cell BSs

operate in open-access mode, such that they are accessi-

ble to all users. In order to improve energy efficiency, we

propose an active/sleep scheduling scheme which makes

use of monitoring user activity and self-organizing capa-

bilities.

We model the user and BS activity using a time-slotted

model as depicted in Figure 1. To guarantee coverage,

macrocells are always active over the slot duration T .

When a small cell does not serve any active user, it goes

into a sleep mode to save energy but still senses macrocell

user activity over a sensing time ts. Active small cells do

not sense user activity and only transmit during T − ts to

ensure that only macrocell users are detected during sens-

ing time. This is because the small cells in our model use

Figure 1 Time slot model.
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energy detection (ED) to sense user activity due to its low

complexity and low power consumption [13,14]. However,

ED still may have false positives as it may also be affected

by noise or interference originated from macrocell users

outside the small cell coverage [13]. Nevertheless, to keep

the complexity low, in our model, if the detected energy

is higher than the threshold, the small cell believes that

there is an active macrocell user within its coverage range

and becomes active during T − ts by transmitting pilot

signals. Subsequently, the user reports the presence of

the small cell to the macrocell, and the user might be

handed over to the small cell according to cell associa-

tion policies (e.g., maximum received power-based cell

association [15]).

The spatial distribution of macrocell BSs in the net-

work is usually modeled by lattices or hexagonal cells

since their deployment is considered well-planned. Nev-

ertheless, it has been shown that modeling macrocell BSs

by homogeneous Poisson point process (PPP) is tractable

and accurate [16,17]. Small cells such as femtocell access

points are also extensively modeled by PPP, mainly due to

their uncoordinated and random deployment [15]. There-

fore, for K-tier heterogeneous networks, we model the

positions of BSs in the kth tier according to a homoge-

neous PPP �k with density λk . Users are also located

according to a homogeneous PPP �u with density λu that

is independent of �k (k = 1, 2, · · · ,K). The probabil-

ity that there resides at least one active user within the

coverage of a BS in the kth tier is [18]:

puk = 1 − e−λupkπR
2
, (1)

where λupk is the user intensity associating with the kth

tier.

To reduce user detection energy, the sensing period of

BSs in the kth small cell tier follows a certain probability

psk (k = 2, 3, · · · ,K) which is self-optimized by the net-

work using the sensing probability optimization approach

described in Section 3.

2.2 Analysis of the active/sleep scheduling scheme

The probability of BS active/sleep modes is determined by

the sensing probability vector ps = (ps2, ps3, · · · , psK ) fol-

lowed by small cells at each tier. In our scheme, a small

cell becomes active if there is at least one user of the pre-

viously active small cell that needs to be served, or the

previously sleeping small cell performs user activity sens-

ing and detects a macrocell user. Note that this detection

may be a false positive. The state transition process of BS

active/sleep modes determined by the sensing probability

vector could be summarized as:

pak( ps) = pak( ps)puk + (1 − pak( ps))pskpu1pd

+ (1 − pak(ps))psk (1 − pu1) pf.
(2)

Here, pak(ps) and 1 − pak(ps) are the probabilities of

BSs’s active/sleep modes in the kth tier. pa1 = 1 because

macrocells are always active. pd and pf are the detection

probability and false alarm probability, calculated as [19]:

pd = Q

(
( η

σ 2
− γ − 1

)
√

N

2γ + 1

)

, (3)

pf = Q
(( η

σ 2
− 1

)√
N
)

, (4)

where Q (·) is the complementary distribution function

of the standard Gaussian, η is the detection threshold

used by energy detection, σ 2 is the variance of the addi-

tive white Gaussian noise, γ is the signal-to-noise-plus-

interference ratio (SINR), N =
⌊

τsfs
⌋

is the total sample

size, fs is the sample frequency. Note that, the detection

probability and false alarm probability could be adjusted

to certain target values, p∗
d and p∗

f , by setting sensing

threshold and sample frequency to appropriate values η∗

and f ∗
s , which is out of scope of this paper.

Theorem 1. The probability that a user associates with

the kth-tier small cell using the maximum received power

cell association policy is:

pk =
λkpak(ps)

K∑

i=1
pai(ps)λi(Pi/Pk)

2/α

, (5)

where Pk is the transmit power of BSs in the kth tier, and α

is the path loss exponent.

Proof. See Appendix 1.

The coverage probability is defined as the probability

that a user’s SINR from its associated BS is higher than the

target SINR value τ .

Theorem 2. The coverage probability of a user is:

Pc =
K∑

k=1

2πpak ( ps) λkP
2/α
k

∫∞
0 r exp

{

− τ rασ 2

−π
K∑

i=1
r2pai( ps)λiP

2/α
i (1 + ρ (τ ,α))

}

dr,

(6)

where ρ (τ ,α) = τ 2/α
∫∞
τ−2/α

1
1+xα/2 dx.

Proof. See Appendix 2.

If we assume orthogonal transmissions where equal

resources are allocated to each user in a round-robin

schedulingmanner, the ergodic capacityC of a typical user

in the K-tier heterogeneous network is given as:

C =
ts

T
p1C0 +

T − ts

T

K
∑

k=1

pkCk . (7)
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In Equation 7, C0 is the ergodic rate of a user associated

with the first tier during the sensing time ts when there is

no interference from the other tiers, and Ck is the ergodic

rate of a user associated with the kth tier during the time

T − ts.

Theorem 3. The ergodic rate of a user associated with

the first tier is:

C0 =
ln (1 + τ) 2πλ1

2P
2/α
1

p12λu

∫ ∞

0
r exp

⎧

⎨

⎩
− τ rασ 2

− π

K
∑

k=1

r2pak ( ps) λkP
2/α
k

− πr2λ1P
2/α
1 ρ (τ ,α)

}

dr

+
2πλ1

2P
2/α
1

p12λu

∫ ∞

0

∫ ∞

ln(1+τ)

r exp

⎧

⎨

⎩
−
(

et − 1
)

rασ 2

− π

K
∑

k=1

r2pak ( ps) λkP
2/α
k − πr2λ1P

2/α
1 ρ

(

et − 1,α
)

}

dtdr

(8)

and the ergodic rate of a user associated with the kth tier is:

Ck =
ln (1 + τ) 2π(pak(ps))

2λk
2P

2/α
k

pk
2λu

∫ ∞

0
r exp

⎧

⎨

⎩
− τ rασ 2

− π

K
∑

i=1

r2pai(ps)λiP
2/α
i (1 + ρ (τ ,α))

⎫

⎬

⎭
dr

+
2π(pak(ps))

2λk
2P

2/α
k

pk
2λu

∫ ∞

0

∫ ∞

ln(1+τ)
r exp

⎧

⎨

⎩
−
(

et − 1
)

rασ 2

− π

K
∑

i=1

r2pai(ps)λiP
2/α
i

(

1 + ρ
(

et − 1,α
))

⎫

⎬

⎭
dtdr,

(9)

Proof. See Appendix 3.

According to the active/sleep model, the main power

consumptions of BSs in the first macrocell tier consists

of the constant power Ec1 and the processing power Ep1.

Hence, the expected energy consumption of a macrocell

is:

E1 = Ec1 + Ep1. (10)

The main power consumptions of BSs in the remaining

tiers consist of the constant power Eck , the sensing power

Esk and the processing power Epk during active mode

(k = 2, 3, · · · ,K) [5,20]. We consider that the energy

consumption is proportional to time, and constant power

is consumed over the entire time slot T . The expected

energy consumption of a small cell in the kth tier (k =
2, 3, · · · ,K) is:

Ek = Eck + (1 − pak(ps)) pskEskts/T
︸ ︷︷ ︸

sensing energy for sleepmode

+ pak(ps)Epk (T − ts) /T
︸ ︷︷ ︸

procesing energy for activemode

.

(11)

Consequently, the total energy consumption of the het-

erogeneous network is:

E =
K
∑

k=1

λkEk . (12)

3 Self-optimization of user activity sensing based
on fuzzyQ-learning

While an active/sleep scheduling scheme improves energy

efficiency, the introduction of sleep mode for the BSs may

lead to outage or lower capacity affecting quality of ser-

vice. To guarantee at least basic network performance,

while improving energy efficiency, we formulate the opti-

mization problem of our active/sleep scheduling scheme

as follows:

P : min
ps

E (13)

s.t. Pc ≥ εp (14)

C ≥ εc. (15)

where εp and εc are, respectively, the threshold coverage

probability and average capacity offered to a user. Pc and

C are as defined in Equations 6 and 7, respectively.

To solve the problem P, we propose a SPO approach

based on fuzzy Q-learning [21-23], which optimizes the

key sensing probabilities of the proposed active/sleep

scheduling scheme by interacting with the uncertain envi-

ronment and learning from the past experience. Our

approach tunes the sensing probability for each K−1 tiers

in a self-optimized manner according to the active user

density λu. Assuming that the active user density does not

fluctuate fast, we avoid real-time tuning and execute the

tuning of the sensing probability periodically. Therefore,

our approach accepts centralized operation, and the new

values for sensing probabilities are computed by a central-

ized management entity and transmitted periodically to

the BSs at each tier.

The tuning of the sensing probabilities is represented by

an action vector a = (ps2, ps3, · · · , psK ). To manage con-

tinuous state λu and action vector spaces, a fuzzy infer-

ence system is used. Firstly, the current state λu should be

fuzzified into a fuzzy set s. The degree of truth αi(λu) that

the current state belongs to fuzzy sets si is determined by

membership functions. For example, as shown in Figure 2,

triangular membership functions are used to determined
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Figure 2Membership functions.

which sets the state λu belongs to and how much degree

of truth can be obtained for each set.

Then, fuzzy inference rules are used to determine the

tuning action a. The ith fuzzy inference rule for fuzzy set

si can be described as:

IF current state is si
THEN the action is ai1 with qi1,

· · · · · ·
or the action is aij with qij,

· · · · · ·
or the action is aiJ with qiJ .

Here, aij is the discrete sensing probability tuning action

vector of the jth inference result responding to the ith rule.

qij represents the elementary quality, and the higher value

of qij, the higher the trust for the corresponding sensing

probability configuration.

The action of the ith rule is selected by an explo-

ration/exploitation policy using ε-greed method as fol-

lows:

c (i) =

⎧

⎨

⎩

random
j=1,2,...,J

(j), with prob. ε

arg max
j=1,2,...,J

qij, with prob. 1 − ε
. (16)

The inferred tuning action vector of sensing probabili-

ties for state s is given as:

a (s) =
I
∑

i=1

aic(i)αi (s). (17)

In addition, during the trial-and-error process of action

policy exploration, to avoid bad actions that result in

negative performance, a must be checked according to

the constraints of coverage probability and capacity (see

Equations 14 and 15). Although the coverage probability

and the ergodic capacity are not given in a closed-form

expression, the integrals are fairly easy to compute. If the

coverage probability and capacity derived from the out-

put sensing probabilities do not meet the constraints, the

action for current state should be reselected according to

Equation 16 excluding the faulty actions.

After applying the tuning action, the corresponding

feedback reward is obtained from the environment. We

define the reward value as the inverse of average energy

consumption during a tuning action period, where the

corresponding punishments are coverage outage and

capacity shortage:

r =
{

1/E, if Pc ≥ εp and C ≥ εc
−1, otherwise

. (18)

With the feedback reward, the quality function is

updated to maximize the expected reward. The quality

function Qπ (s, a) is defined as the expected sum of dis-

counted rewards from the initial state s0 under the optimal

action policy π as follows:

Qπ (s, a) = Eπ

[ ∞
∑

t=0

θ tr(st , at) |s0 = s, a0 = a

]

. (19)

st and at denote the state and the action of the fuzzy

inference rule at step t, and θ is the discount factor.

The Q-learning algorithm updates the quality function

iteratively:

Qt+1(st , at) = Qt(st , at) + Qt , (20)

where Qt depends on the reward value, the quality func-

tion and the value function. The quality function of the

activated rules is calculated as:

Qt (st , at (st)) =
∑

i

qic(i)αi (st). (21)

And the value function of the new state after performing

the applied action is calculated as:

Vt(st+1) =
∑

i

max
j

qijαi (st+1). (22)

Using these three parameters obtained from Equations 18,

21, and 22, Qt is calculated as:

Qt = ξ(r + θVt(st+1) − Qt(st , at)). (23)

ξ is the learning rate for Q-learning.

Finally, the elementary quality qij, which determines the

fuzzy inference rules, should be updated by:

qij =
{

Qαi (st+1) , if j = c(i)

0, otherwise
. (24)

4 Simulation results
In this section, we evaluate first the performance of the

active/sleep scheduling scheme and then the benefits of

reinforcement learning-based self-optimization approach.

The simulation parameters are listed in Table 1 and are

selected based on [2,5,9,24].
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Table 1 Simulation parameters

Parameters Value

Tiers of networks K 3

Network density λ1 , λ2 , λ3 (m
−2) 10−6 , 5 × 10−5 , 10−4

Transmit power P1 , P2 , P3 (dBm) 43, 30, 20

Variance of noise σ 2 (dBm) −104 (10 MHz bandwidth)

Constant power E1c , E
2
c , E

3
c (W) 75, 20, 4

Sensing power E2s , E
3
s (W) 5, 4

Processing power E1p , E
2
p , E

3
p (W) 150, 50, 8

Target SINR τ (dB) 1

Sensing time ts 20%T

Target detection probability p∗
d 0.9

Target false alarm probability p∗
f

0.1

Path loss exponent α 4

Threshold of user capacity ξc (nat/s/Hz) 0.05

Threshold of coverage probability ξp 0.5

4.1 Performance of user activity sensing-based

active/sleep scheduling scheme

We first evaluate the coverage probability of a typical

user in the network when active/sleep scheduling is used.

Figure 3 shows that with decreasing sensing probabilities,

the coverage probability also decreases. This is expected

as the BSs will be more likely to be in the sleep state, and

hence, they will be less likely to cover active users. In addi-

tion, if there are more users in the network (i.e., the active

user density is higher), it will be easier for BS to detect

the active users, and consequently more BSs will be active.

Therefore, the coverage probability will be improved with

the increasing density of active users.

Figures 4 and 5 show the capacity of a typical user and

the network capacity per unit area, which is calculated by

summing all user capacities. As the sensing probabilities

Figure 3 Coverage probability.

Figure 4 User capacity.

increase, more BSs will be active. On the downside, the

network capacity is affected due to higher interference.

Also, more users will be offloaded to small cells, where the

users are not able to transmit during the sensing time of

the small cells. On the positive side, the spectrum utiliza-

tion will increase and more active BSs will lead to fewer

users per cell, and hence, higher resource allocation per

user. So, to guarantee the user capacity, the sensing prob-

abilities should not be configured too low to ensure that

there are enough BSs in the network to detect user activ-

ity and go into active mode to provide enough capacity for

users. In addition, if there are more users in the network,

the network capacity will improve as more users trigger

the activation of more BSs. However, if there are more

users in the network competing for the network capac-

ity, the capacity of a typical user which is almost inversely

proportional to the number of users in the network will

obviously reduce.

Figure 5 Network capacity.
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Finally, Figure 6 shows the energy consumption perfor-

mance. As expected, with increasing sensing probabilities,

energy consumption also increases. Energy consumption

will also increase with more users, which will make more

BSs active under the same sensing probabilities. Conse-

quently, to minimize the energy consumption, we should

configure the sensing probabilities as low as possible to

make more BSs sleep while maintaining coverage and

capacity guarantees. In the next section, we evaluate how

the self-optimization approach tunes the sensing proba-

bilities respecting the trade-off for energy efficiency and

quality of service.

4.2 Performance of self-optimization approach

Based on the analysis in the previous section, it is nec-

essary to configure the sensing probabilities to adapt to

the fluctuations in active user density and to maintain

both energy efficiency and quality of service. An exam-

ple of how the density of active user density fluctuates

within a day is shown in Figure 7. To understand and com-

pare the performance of our SPO approach under such

fluctuations, we compare it against the following schemes:

• Scheme 1: SPO. The sensing probabilities of K-tier

heterogeneous networks are self-optimized

periodically adapting to the user activity fluctuations

using reinforcement learning.
• Scheme 2: always sensing. All BSs in all small cell tiers

always sense user activity during the sensing time.

Hence, the sensing probability of BSs in every small

cell tier is 1.
• Scheme 3: always active. All BSs are always active,

and they do not perform user activity sensing.
• Scheme 4: only macrocell. All users are served by

macrocells (i.e., there are no active small cells in the

network).

Figure 6 Energy consumption.

Figure 7 User density fluctuations.

• Scheme 5: random sensing. Each small cell senses

user activity with a certain probability (e.g., 0.3 in our

evaluation).
• Scheme 6: random sleep. Each small cell goes into the

active/sleep mode with a certain probability (e.g., 0.3

in our evaluation) and does not do the user activity

sensing.

Figure 8 shows the comparison of the coverage probabil-

ity of all the schemes.We see that the coverage probability

cannot be guaranteed if all the small cells are turned

off (only macrocell case). The coverage probabilities of

schemes that use user activity sensing fluctuate with the

active user density. This is expected as the user density

affects the probability of BSs being in active or sleep state.

The coverage probability of random sensing scheme can-

not be guaranteed when the active user density is low.

Figure 8 Coverage probability comparisons.
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This is because the sensing probabilities are not properly

configured and there are not enough active BSs to guar-

antee the coverage. On the other hand, SPO is able to

adapt to the user density fluctuations shown in Figure 7

andmaintains the coverage probability around the thresh-

old value (i.e., the target coverage performance) when the

active user density is low. SPO fluctuates slightly around

the threshold due to periodic optimization, and not real-

time adaption. Nevertheless, SPO strikes the right balance

by turning appropriate numbers of BSs active, manag-

ing to improve energy efficiency while guaranteeing target

coverage.

Figure 9 shows the comparisons in terms of user capac-

ity. The user capacity performance of all schemes fluctuate

with the active user density mainly because of the fluctu-

ations of the number of users per cell. Users will obtain

high capacity when the user density is low under any of

the schemes. The random sensing scheme cannot guar-

antee user capacity, when the active user density is high

because there are not enough active BSs to provide the

necessary capacity. On the other hand, SPO scheme turns

as many as possible BSs to sleep and still guarantees the

target user capacity. In addition, we can conclude from

Figures 8 and 9 that SPO emulates the desired behavior by

emphasizing the coverage probability when the active user

density is low and the user capacity when the active user

density is high.

Finally, we compare all schemes in terms of energy con-

sumption in Figure 10. Compared to the always sensing,

always active, and random sleep schemes, the energy con-

sumption of SPO is greatly reduced by 14.37%, 83.78%,

and 22.33%, respectively. The energy consumption of

SPO is similar to the energy consumption of random

sensing, but SPO guarantees better QoS. On the other

hand, the random sensing and random sleep schemes

Figure 9 User capacity comparisons.

Figure 10 Energy consumption comparisons.

cannot guarantee QoS, and also, their energy consump-

tion may increase further if the probabilities of sensing

and being active are not properly configured. In addi-

tion, only-macrocell scheme is the worst scheme because

although the energy consumption is low, the spectrum

utilization is also significantly low, and therefore, its cov-

erage and capacity performance is much worse than the

other schemes. In summary, SPO provides an efficient way

to decide the active/sleep states of BSs with minimized

energy consumption and guaranteed QoS of users as it

tracks user activity and makes use of self-organization. In

this way, the heterogeneous networks operate more flexi-

bly and do not turn on BSs blindly, especially when there

is no traffic demand, which consequently improves the

energy efficiency.

5 Conclusions
This paper proposed an active/sleep scheduling scheme

for K-tier heterogeneous networks, which senses and

adapts to user activity. Coverage probability, network

capacity, as well as energy consumption of the proposed

active/sleep scheduling were analyzed using stochastic

geometry, accounting for cell association uncertainties

due to random positioning of users and BSs, propaga-

tion channel, and network interference. A reinforcement

learning-based SPO approach was proposed to optimize

the user activity sensing probability of each small cell tier,

considering user activity fluctuations and user QoS. Sim-

ulation results showed that SPO achieves low energy con-

sumption with guaranteed network capacity and coverage

probability. Possible future work includes the exploita-

tion of more environmental awareness capabilities. And

it would be of interest to extend the proposed scheme to

the case, where small cells perform opportunistic usage of
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the frequency spectrums, for higher frequency spectrum

usage and energy efficiency.

Appendices
Appendix 1

Proof of Theorem 1

The received power of a typical user from the nearest BS

in the kth tier is Prk = PkR
−α
k , where Pk is the transmit

power of BSs in the kth tier, α is the path loss exponent,

and Rk is the distance to the nearest BS in the kth tier.

Under the maximum received power-based cell associa-

tion scheme where a user is associated with a BS if the

received power from the BS is higher than any others, a

typical user is associated with the kth tier when Prk > Pri
for all i ∈ {1, 2, · · · ,K}, i �= k. Therefore,

pk = ERk

[

P

[

Prk (Rk) > max
i�=k

Pri (Ri)

]]

= ERk

⎡

⎣

K
∏

i=1,i�=k

P [Prk (Rk) > Pri (Ri)]

⎤

⎦

= ERk

⎡

⎣

K
∏

i=1,i�=k

P
[

Ri > (Pi/Pk)
1/αRk

]

⎤

⎦

=
∫ ∞

0

K
∏

i=1,i�=k

P
[

Ri > (Pi/Pk)
1/αr

]

fRk (r) dr,

(25)

where

P
[

Ri > (Pi/Pk)
1/αr

]

= P
[

No BS closer than (Pi/Pk)
1/αr in the ith tier

]

= e−pai(ps)λiπ(Pi/Pk)
2/αr2 ,

(26)

and the probability density function (PDF) of Rk is

fRk (r) =
d (1 − P [Rk > r])

dr
= 2pak ( ps) λkπre

−pak(ps)λkπr
2
.

(27)

Plugging (26) and (27) into (25), we obtain

pk = 2πpak (ps) λk

∫ ∞

0
r exp

{

−π

K
∑

i=1

pai (ps) λi(Pi/Pk)
2/αr2

}

dr

=
λkpak( ps)

K∑

i=1
pai(ps)λi(Pi/Pk)

2/α

.

(28)

Appendix 2

Proof of Theorem 2

Considering that only a macrocell user can transmit data

andwill have no interference from the other small cell tiers

during the time ts, the SINR of a macrocell user during the

time ts is higher than the SINR during the time T − ts. So,

the coverage probability of a typical user depends on SINR

during the time T − ts.

The SINR of a typical user at a distance r from its serving

BS in the kth tier during the time T − ts is defined as

SINRk(r) =
Pkhkr

−α

∑K
i=1

∑

j∈�i
Pihijr

−α
ij + σ 2

, (29)

where hk and hij are the channel power gain due to small-

scale fading form the serving BS and the jth BS in the ith

tier, respectively, we assume that hk ∼ exp (1) and hij ∼
exp (1), and rij is the distance from the jth BS in the ith tier

excluding the serving BS.

For a target SINR τ , the coverage probability of a typical

user is

Pc =
K
∑

k=1

pkEr [P [SINRk (r) > τ ]]

=
K
∑

k=1

pk

∫ ∞

0
P [SINRk (r) > τ ] fsRk (r) dr.

(30)

The PDF of the distance from a user served in the kth

tier to the serving BS is

fsRk (r) =
d

(

1 − P

[

Rk > r, Prk (Rk) > max
i�=k

Pri (Ri)

])

pkdr

=
d

(

1 −
∫∞
r

K∏

i=1,i�=k

[

Ri > (Pi/Pk)
1/αx

]

fRk (x) dx

)

pkdr

(a)=
d

(

1 − 2πpak (ps) λk
∫∞
r x exp

{

−π
K∑

i=1
pai (ps) λi(Pi/Pk)

2/αx2

}

dx

)

pkdr

=
2πpak (ps) λkr

pk
exp

{

−π

K
∑

i=1

pai (ps) λi(Pi/Pk)
2/αr2

}

,

(31)

where (a) follows from (26) and (27). The user SINR in

(29) is rewritten as SINRk(r) = hk
P−1
k

rαQ
, where Q =

∑K
i=1 Ii + σ 2. Therefore,

P [SINRk (r) > τ ]

= P

[

hk > rαP−1
k τQ

]

=
∫ ∞

0
exp

{

−rαP−1
k

τq
}

fQ (q) dq

= EQ

[

exp
{

−rαP−1
k τq

}]

= exp

{

−
τσ 2

r−αPk

} K
∏

i=1

LIi

(

rαP−1
k τ

)

,

(32)
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where the Laplace transform of Ii is

LIi

(

rαP−1
k τ

)

= EIi

[

exp
{

−rαP−1
k τ Ii

}]

= E�i

⎡

⎣exp

⎧

⎨

⎩
−rαPi P

−1
k τ

∑

j∈�i

hijr
−α
ij

⎫

⎬

⎭

⎤

⎦

= exp

{

−2πpai (ps) λi

∫ ∞

zi

(

1 − Lhi

(

rαPjP
−1
k τx−α

))

xdx

}

= exp

⎧

⎪
⎨

⎪
⎩

−2πpai ( ps) λi

∫ ∞

zi

x

1 +
(

rαPiP
−1
k τ

)−1
xα

xdx

⎫

⎪
⎬

⎪
⎭

= exp
{

−πpai ( ps) λi(Pi/Pk)
2/αρ (τ ,α) r2

}

,

(33)

where zi = (Pi/Pk)
1/αx is the shortest distance to the BS

in the ith tier, and ρ (τ ,α) = τ 2/α
∫∞
τ−2/α

1
1+xα/2 dx.

Plugging (31), (32), and (33) into (30), we obtain

Pc =
K
∑

k=1

2πpak( ps)λk

∫ ∞

0
r exp

{

− τ rασ 2/Pk

− π

K
∑

i=1

r2pai( ps)λi(Pi/Pk)
2/α (1 + ρ (τ ,α))

}

dr

=
K
∑

k=1

2πpak( ps)λkP
2/α
k

∫ ∞

0
r exp

{

− τ rασ 2

− π

K
∑

i=1

r2pai(ps)λiP
2/α
i (1 + ρ (τ ,α))

}

dr.

(34)

Appendix 3

Proof of Theorem 3

The rate of the typical user is

ck (r) =
{

ln (1 + SINRk (r)) , if SINRk (r) > τ

0, otherwise
.

(35)

And the ergodic rate of the typical user associated with the

kth tier during the time T − ts is

Ck =
1

Nk
Er

[

ESINRk
[ck(r)]

]

=
1

Nk

∫ ∞

0
ESINRk

[ck(r)] fsRk (r) dr,

(36)

where the average number Nk of users per cell in the

kth tier is calculated as Nk = pkλu/pak(ps)λk . And

the throughput of the user is inversely proportional to

the number of users in the cell due to the round-robin

scheduling manner.

Since E [X] =
∫∞
0 P [X > x] dx for X > 0, we obtain

ESINRk
[ck (r)]

=
∫ ∞

0
P [ck (r) > t] dt

=
∫ ln(1+τ)

0
P [SINRk (r) > τ ] dt

+
∫ ∞

ln(1+τ)

P [ln (1 + SINRk (r)) > t] dt

= ln (1 + τ)P [SINRk (r) > τ ]

+
∫ ∞

ln(1+τ)

P

[

hk > rαP−1
k τQ

(

et − 1
)
]

dt

= ln (1 + τ)P [SINRk (r) > τ ]

+
∫ ∞

ln(1+τ)

exp

{

−
(

et − 1
)

σ 2

r−αPk

}
K
∏

i=1

LIi

(

rαP−1
k

(

et − 1
)
)

dt.

(37)

Plugging (31), (32), (33), and (37) into (36), we obtain the

ergodic throughput of a user associated with the kth tier

during the time T − ts in (9).

During the sensing time ts, the user associated with the

first tier will have no interference from the other tiers.

Therefore, the user SINR is SINR0(r) = hk
P−1
k

rαQ0
, where

Q0 = I1 + σ 2.

The ergodic throughput of the first tier user during the

time ts is

C0 =
1

N1
Er

[

ESINR0 [c0(r)]
]

=
1

N1

∫ ∞

0
ESINR0 [c0(r)] fsR1 (r) dr.

(38)

The ergodic rate at distance r is

ESINR0 [c0 (r)]

= ln (1 + τ)P [SINR0 (r) > τ ]

+
∫ ∞

ln(1+τ)

P

[

h1 > rαP−1
1 τQ0

(

et − 1
)
]

dt

= ln (1 + τ)P [SINR0 (r) > τ ]

+
∫ ∞

ln(1+τ)

exp

{

−
(

et − 1
)

σ 2

r−αP1

}

LI1

(

rαP−1
1

(

et − 1
)
)

dt,

(39)

where

P [SINR0 (r) > τ ]

= P

[

h1 > rαP−1
1 τQ0

]

= exp

{

−
τσ 2

r−αP1

}

LI1

(

rαP−1
1 τ

)

.

(40)
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Plugging (31), (33), (39), and (40) into (38), we obtain the

ergodic throughput of a user associated with the first tier

during the time ts in (8).
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