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Abstract As an important bearer network of the fifth generation (5G) mobile communication technology, the optical transport 
network (OTN) needs to have high-quality network performance and management capabilities. Proof by facts, the combination of 
artificial intelligence (AI) technology and software-defined networking (SDN) can improve significant optimization effects and 
management for optical transport networks. However, how to properly deploy AI in optical networks is still an open issue. The 
training process of AI models depends on a large amount of computing resources and training data, which undoubtedly increases 
the carrying burden and operating costs of the centralized network controller. With the continuous upgrading of functions and 
performance, small AI-based chips can be used in optical networks as on-board AI. The emergence of edge computing technology 
can effectively relieve the computation load of network controllers and provide high-quality AI-based networks optimization 
functions. In this paper, we describe an architecture called self-optimizing optical network (SOON) with cloud-edge collaboration, 
which introduces control-layer AI and on-board AI to achieve intelligent network management. In addition, this paper introduces 
several cloud-edge collaborative strategies and reviews some AI-based network optimization applications to improve the overall 
network performance. 
 
Index Terms—OTN, SDN, control-layer AI, on-board AI, cloud-edge collaboration.  
 
 

I. INTRODUCTION1 
ith the continuous popularization and promotion of 
5G technology, the emerging services in the network 

puts forward new requirements on the underlying transport 
network, such as low latency and large bandwidth 
transmission [1]. OTN combines the advantages of both 
optical domain transmission and electrical domain 
processing. It provides not only end-to-end rigid transparent 
pipe connection and strong networking capabilities, but also 
long-distance and high-capacity transmission [2]. OTN has 
become an important bearer solution for 5G technology, 
which also requires OTN to have flexible management 
capabilities and high-quality network performance [3]-[4]. 

In recent years, the rise of SDN and AI makes it almost 
inevitable to combine these two promising technologies for 
an unprecedented level of network automation [5]-[6]. The 
introduction of SDN into optical networks, i.e., 
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software-defined optical network (SDON), is used to trigger 
unified control and orchestration, allowing for separation of 
control and data planes in various degrees of centralization 
[7]-[8].  At the same time, the openness and programmability 
of SDN provide the perspectives for adopting AI-based 
optimization algorithms to improve network performance 
[9]-[10]. With the great analysis and fitting performance for 
multi-dimensional data, AI has been demonstrated to play an 
important role in the optimization of optical networks 
[11]-[12]. It has been used as an advanced tool to deal with 
complex problems in optical networks from the following 
two perspectives. In terms of optical transmission, AI is 
mostly used to tackle fiber linear/nonlinear impairments [13]. 
For example, detectors based on Parzen Windows are used to 
mitigate both deterministic fiber nonlinearities and 
stochastic nonlinear signal-amplified spontaneous emission 
(ASE) noise interactions [14]. Moreover, AI is also used to 
estimate crucial signal parameters. A simple artificial neural 
network (ANN) is used to estimate the quality of 
transmission (QoT) of unestablished lightpaths [15]. A 
convolutional neural network (CNN) and constellation 
diagrams-based method is proposed to estimate the optical 
signal-to-noise ratio (OSNR) accurately [16]. In the aspect 
of optical networks, AI algorithms are mostly used for 
network-level optimization and improving network 
reliability. Some studies use AI algorithms to allocate 
network resources to achieve single/multi-objective 
optimization [17]-[19]. Other studies analyze network traffic 
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and device performance data to predict network failures via 
AI algorithms [20]-[21]. These studies indicate that the 
AI-based optimization techniques and methods are 
becoming more and more mature in optical networks.  

However, the proper deployment of AI in SDON is still an 
open issue. A few AI-based network control and 
management schemes are designed to facilitate AI-assisted 
network automation in software-defined elastic optical 
network [22]-[23]. These schemes analyze network data to 
predict network status and implement automated 
management decisions. Futhermore, the workflow of AI 
model needs to be considered in the design of the network 
architecture based on AI, including the training, testing and 
application. There are several challenges: 
 Unified control: To introduce AI in the SDON control 

plane, it is necessary to design the workflow of the overall 
AI functions. The control plane should be able to 
implement unified control operations on the storage and 
call of the AI model. In addition, since the data required by 
the AI model may be different from the data required by 
traditional algorithms, it is necessary to redesign the 
interface to facilitate the data collections. 

 Computing resources: In the training process, the AI 
engine needs to be fed with a large amount of data, which 
means that the AI-related components require storage 
resources to save data sets and computing resources to 
update model parameters. AI modules are usually located 
on a resource-rich device such as the centralized controller 
in SDON. This will undoubtedly increase the burden on 
the centralized controller. However, for the testing process, 
since the testing data set is much smaller than the training 
data set, the testing process does not require high storage 
or computing resources. Therefore, it is necessary to 
allocate appropriate computing resources for AI engine. 

 Hierarchical optimization: In some cases, the AI engine 
needs to support a real-time response. However, due to the 
delay in reporting network element data, it is difficult for 
the AI engine in the centralized controller to handle local 
problems on the equipment-side in real time. Since such 
many-to-one synchronization causes heavy workload to 
the centralized controller, the controller-side AI is not an 
ideal solution for equipment-side problems. Thus, it is 
necessary to combine the characteristics of AI for 
hierarchical control and optimization.  
To improve the capabilities of network control and 

management, a novel optical network architecture, i.e., 
self-optimizing optical networks (SOON) was proposed [24], 
which integrates AI and SDON. The network architecture 
integrates AI technology to improve network intelligent 
control and management capabilities. In this architecture, the 
efficient transmitting massive data benefits from an 
AI-oriented southbound extension protocol. Moreover, 
SOON can uniformly manage AI models, and quickly 
processes and trains data for different service requirements. 
In addition, in order to solve the problem of uneven 
distribution of computing resources and hierarchical 
optimization, we introduced on-board AI to SOON [25], and 

proposed several cloud-edge collaboration modes to 
improve the network control capability. The collaboration of 
control layer AI and multiple on-board AI can effectively 
improve efficiency of model training and testing, and 
rationally use computing resources to provide rapid response 
to different application requirements. This paper provides an 
integrated review of the evolution of SOON with cloud-edge 
collaboration. We begin with the evolution of SOON and 
elaborate on the key module functions that need to be 
implemented in the combination of AI and SDN. We also 
introduce the idea of introducing on-board AI and achieving 
the cloud-edge collaboration in this architecture. Then, the 
SOON testbed based on cloud-edge collaboration and 
several cloud-edge collaborative strategies are introduced 
and validated. Finally, some AI-based optimization 
applications are reviewed. 

The rest of this paper is organized as follows. Section II 
presents an overview of SOON. In section III, on-board AI is 
introduced and deployed in SOON to achieve the cloud-edge 
collaboration. In section IV, we introduce the SOON testbed 
and cloud-edge collaborative strategies. Section V reviews 
some innovative AI-based network optimization 
applications. Finally, we summarize this paper. 

 

II. SELF-OPTIMIZING OPTICAL NETWORKS 
Due to the diversification of optical network services, 

network management needs to be gradually intelligent. The 
rapid development of optical network technology has 
spawned a series of intelligent optical network architectures, 
such as automatically switched optical networks (ASON) 
and path computation elements (PCE). ASON introduced the 
control plane in optical networks for the first time to solve 
the problem of manual and complicated resource allocation 
and management capabilities of telecommunications 
management network (TMN) [24]. The control plane can 
collect and diffuse network topology information, quickly 
and effectively configure service connections, and 
reconfigure or modify service connections. In order to solve 
the problem of complex path calculation in large 
multi-domain and multi-layer optical networks, the internet 
engineering task force (IETF) proposed the PCE model in 
2006 [27]. The PCE architecture separates the path 
calculation function from the network management system 
and is carried by dedicated resources. PCE is actually a 
logical functional component, which achieves the 
optimization of inter-domain routing by sharing part of the 
inter-domain information.  
 The PCE architecture can solve the problem of 
multi-domain optical network interconnection under the 
existing heterogeneous transmission system. However, the 
path calculation and connection control process of the 
architecture are highly related to the transmission system. 
Driven by new switching equipment or methods, a solution 
is needed to support the smooth network upgrade. SDN 
provides a good idea for this. In 2009, the concept of SDN 
was proposed based on OpenFlow [28]. The idea of SDN is 
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to separate the control plane and data plane of network 
equipment. Introducing SDN into optical networks, i.e., 
SDON (as shown in Fig. 1(a)), can solve the problems of 
scalability, flexibility and smooth upgrade of optical 
networks. The programmability of network functions and 
protocols in SDON is beneficial to potentially promote the 
coordination and orchestration of network services [29]. 
SDON abstracts the lower layer resource information into 
the common application programming interface (API) 
functions of upper layer applications. The network devices 
in each domain in the data layer are managed by the local 
controller. The main components in the orchestration layer, 
the network orchestrator, collects network information from 
the optical domains and stores it in a database through the 
southbound interface based on the OpenFlow protocol. This 
information is used for functional bundles to construct 
various applications through the northbound interface. 

 With the development of AI technology, more and more 
AI-based algorithms are used to optimize optical networks. 
As shown in Fig. 1(b), a new network architecture, i.e., 
SOON, was proposed for deploying AI in SDON [24]. 
Compared to SDON, SOON is a three-layer network 
architecture. The traditional network control core (NCC) and 
AI engine (AIE) are concentrated in the model layer. The 
model layer collects data from the underlying network and 
uses unified AI model management and network database to 
support the AI-based applications in the policy layer. It is 
worthy that the training of AI functions requires massive 
multi-dimensional data, which affects the design of the 

interface protocol for data transmission between the data 
layer and the model layer. SOON performs data transmission 
through the management and data interface (MDI), which 
contains two types of protocols and a unified network model. 
The network control protocols (NCP) that include traditional 
network protocols, such as the general multi-protocol label 
switching (GMPLS) protocol stack in ASON, the path 
computing element communication protocol (PCEP) in PCE, 
the OpenFlow protocol in SDON, etc. In addition, MDI 
utilizes the state aware protocols (SAP) to perceive massive 
amounts of detailed information of network elements 
(named self-optimizing network element (SNE)) about 
physical components, such as optical signal-to-noise ratio 
(OSNR) and environment temperatures, etc. The unified 
network model collects and filters data information for NCC 
and AIE, which could gather and filter all information from 
networks, and reformat these data by following some unified 
network model format. The model management module 
provides a well-trained model storage library for AIE to 
perform unified operations on models. The network database 
is a data source in the model layer, which contains traffic 
engineering database, data plane status database, etc. In this 
way, the modules in the model layer cooperate with each 
other to achieve the upper-layer AI-based optimization 
applications, including optical transmission-oriented, optical 
network-oriented, and joint optimization applications.  
 

III. SOON WITH CLOUD-EDGE COLLABORATION 
Actually, the data layer in the SOON architecture can be a 

physical optical network or other entities that can provide 
historical records and real-time network status information. 
The model layer and policy layer may be located on the deep 
integration between the traditional SDN controller cluster 
(such as ONOS and Opendaylight) and the platform that 
supports AI (such as Tensorflow and Pytorch). In this way, 
the training of AI models requires a large amount of 
computing resources, which will undoubtedly bring a 
computing burden to the central cloud controller. In addition, 

 
Fig. 1.  Comparison of two network architectures: (a) SDON; (b) SOON. 

TABLE I 
COMPARISON BETWEEN CONTROL-LAYER AI AND ON-BOARD AI 

Evaluation Control-layer AI On-board AI 

Model training support partial support 
Model testing support support 

Computing resource huge small 
Power consumption high low 

Delay for network-level 
application 

low high 

Survivability weak strong 
Price high low 
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the deployment of AI engine only on the central controller 
cannot realize the device-side optimization quickly. 
Therefore, the concepts of control-layer AI and on-board AI 
are proposed and introduced into SOON to construct an 
intelligent optical network with cloud-edge collaboration 
[30]. 

The control-layer AI is the aforementioned AI engine 
deployed in the SDN-based central controller, which can 
achieve network-level optimization. On-board AI is 
deployed on network devices in the data layer. Therefore, 
on-board AI can provide a faster response for device-side 
optimization and data processing than control-layer AI. 
On-board AI exists in the form of an embedded AI board that 
can be inserted into an expandable slot of an optical network 
device (as shown in Fig. 2(a)). Table I compares the different 
performances of the control-layer AI and the on-board AI. 
According to the product of embedded AI boards of multiple 
vendors (e.g., Xilinx, Cambricon Technologies, Horizon 
Robotics, etc.), on-board AI has the characteristics of low 
cost and low power consumption, which also limits its 
computing power and training functions. Thus, deploying 
on-board inside the network devices will not bring a large 
power consumption and computing burden to networks. In 
this way, multiple AI boards can be deployed in a network 
transmission device to achieve scalable and flexible data 
processing capabilities. Meanwhile, such on-board AI can 
also be distributed to deploy on multiple network devices in 
the data layer, which means that it has stronger survivability 
than the control-layer AI. Due to the characteristics of 
centralized control, the functions of network devices in the 
data layer have been simplified, which means that the device 
side lacks the ability to support AI engines. Therefore, while 
deploying AI on network devices, edge computing needs to 
be introduced to enhance the data processing and storage 
capabilities for on-board AI. On-board AI can access all data 
of local devices, including network performance and device 
status. With these data, on-board AI can not only quickly 
solve device-level optimization problems, but also process 
original data and collaborate with the control-layer AI to 
assist the network-level optimization. 

Fig. 2(a) shows the collaboration between functional 
modules after deploying on-board AI in SOON. It is worth 
noting that the training and testing of AI models depends on 
on-board AI performance and service requirements. Table I 
shows the computing capabilities and functions of the 

current embedded AI board are limited. Only few embedded 
AI products support the training of complex AI models, and 
most products only support the testing of models or the 
training of simple model. Therefore, the training process of 
complex AI models still needs to be completed at the 
control-layer AI. For on-board AI supporting model training, 
different strategies of distributed model training need to be 
adopted according to the delay requirements of services on 
the device side and the state of available computing 
resources in edge computing nodes. 

Fig. 2(b) shows the collaborative workflow of the control 
layer AI and the on-board AI. In the data plane, the on-board 
AI collects network device status data for analysis and 
optimization to solve local optimization problems. The 
control layer AI in the policy layer can learn through the 
massive data reported by the network to solve the 
network-level optimization problem. In addition, the 
on-board AI can also interact with the control layer AI to 
solve the network layer optimization problem.  

 

IV. CLOUD-EDGE COLLABORATION STRATEGY 
Faced with different performances of on-board AI, service 

requirements, and computing resource status in network, 
different cloud-edge collaboration strategies can be used to 
train and apply AI models. In this section, several 
implementation strategies based on cloud-edge collaboration 
for AI applications are discussed and verified. We will start 
with the SOON testbed based on cloud-edge collaboration 
and introduce the cross-layer optimization with a single edge 
node. Then the distributed model training and inference 
strategy based on the collaboration of central cloud and 
multiple edge computing nodes will be discussed. 

A. SOON testbed with cloud-edge collaboration 
As shown in Fig. 3, the SOON platform is constructed by 

the ONOS controller and Tensorflow. Tensorflow is 
integrated in the ONOS controller to provide AI algorithm 
and service development support. In addition, a unique 
graphical user interface (GUI) is developed to perform 
unified operations on the AI model library and service 
requirements, and display application optimization effects. 
The platform can call the corresponding model in the AI 
algorithm library according to the needs of the AI-based 

 
Fig. 2.  SOON with cloud-edge collaboration: (a)function modules; (b)collaborative workflow. 
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applications, and use the data collected in the network for 
offline feature extraction and model training. The model 
manager calls the trained model for online testing and 
application according to requirements. The control layer AI 
is supported by a high-performance computer with two 
powerful GTX1080Ti GPUs in this experiment. The SDN 
controller cluster shown in the figure cooperates with the 
GPUs to control the network intelligently. All kinds of 
training data come from the real large-scale backbone optical 
networks in multiple regions. On-board AI is implemented 
using multiple AI embedded boards, which are connected to 
each other through wireless communication. 

B. Cross-layer Optimization based on Optimal Model 
SOON with cloud-edge collaboration can achieve 

cross-layer optimization. The central cloud controller can 
train the AI model according to the data in the database and 
store the AI model. On-board AI can directly perform data 
processing and AI model application locally according to 
optimization requirements. In the model training process, the 
choice of hyperparameters has a greater impact on the 

performance of the AI algorithm, such as the number of 
neurons in neural networks and learning rate. The rapid 
implementation of multi-model training/testing and the 
selection of the best model can improve the efficiency and 
effect of network cross-layer optimization. 

A general cross-layer optimization strategy was proposed 
to solve this problem [30]. As shown in Fig. 4(a), cloud AI in 
the central controller is responsible for training the model on 
the training data set. After each period or specific iteration, 
the model needs to be saved in the database. Then, on-board 
AI downloads the model and executes the test on the test data 
set. The downloaded models need to be compressed, 
compiled and run to adapt the on-board AI. With the same 
hyperparameters to complete multi-stage training, according 
to the type of application, choose the best model to deploy on 
the central controller or optical equipment.  

During the verification of the strategy, two DP-8020 
boards developed by Xilinx were used as on-board AI. Fig. 
4(b) shows the training effect of 100 models with various 
combinations of two hyperparameters, the input neuron 
number and learning rate. This strategy can quickly select 

 
Fig. 3.  SOON testbed with cloud-edge collaboration. 

 
Fig. 4.  Cross-layer optimization: (a)collaborative training and testing of models; (b) the selection of best model; (c)the performance sheet of control-layer AI and 
on-board AI. 
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the best model. Fig. 4(c) shows the actual performance 
collected from the experiment. The power of DP-8020 is 
much smaller than GTX 1080Ti. In addition, we also 
reported the time consumption of the control-layer AI and 
the on-board AI when processing an epoch data. The average 
time consumption of a training epoch in the controller is 
about 784.98ms, and the average time consumption of 
testing on the on-board AI is about 1016.60ms. Since two 
boards are used at the same time in this experiment, the test 
time consumption is reduced to 508.30ms. The test time 
consumption is lower than the training consumption in 
cross-layer collaboration mode, which means that testing 
with on-board AI will not block the training of the 
control-layer AI. This strategy saves the additional 98.12ms 
test time consumption than the case where AI models are 
only trained and tested using the control-layer AI.  

C. Distributed Training of AI Models based on Data 
Parallelism 
Some AI embedded boards support the training of simple 

AI models, which makes it possible to perform distributed 
training of AI models in SOON. Due to the limitations of the 
computing and data caching capabilities of on-board AI, the 
collaboration of edge nodes and cloud node is required to 
implement the model training process. The collaboration can 
shorten training time and reduce the computing resource 
requirements on a single node. In the research of AI model 
distributed training, synchronous training has been validated 
by splitting and distributing the training data on multiple 
edge nodes [31]-[32]. As shown in Fig. 5(a), during each 
iteration, all edge nodes independently train the model and 
send model parameters to the cloud. The model will be 
returned to the edge node after the AI in cloud controllers 
summarizes and update parameters. Once the accuracy of 
model is reached, the training process is stopped. In this 
process, there is still the problem of how to achieve the 
dynamic allocation and deployment of training data for 
multiple training tasks. Specifically, the scheme of data 
partition and training deployment will affect the use of 

computing and transmission resources in the network. Given 
a batch of training tasks, the cloud controller needs to find 
the best data partition and deployment to perform as many 
training tasks as possible. 

A data parallelism deployment algorithm (DPDA) is 
proposed to solve the training tasks deployment problem. 
DPDA first searches candidate offload edge nodes for each 
training task and calculates the resource occupancy factor of 
each candidate offload node. Secondly, DPDA performs 
routing and spectrum allocation (RSA) for the shortest path 
between task source node and candidate nodes with low 
resource occupancy to transmit training data. If there are not 
enough resources to support the training task, the request is 
terminated. Finally, divide and deploy training data 
according to the proportion of available computing resources 
in edge nodes. The DPDA algorithm uses ILP to model the 
deployment problem. In the process of partitioning data and 
selecting transmission path, the algorithm designs resource 
constraints and time consumption based on the training task 
(including the size of the training data, the maximum 
tolerable task delay requirement, etc.) and the available 
computing and frequency slot resources in the network. The 
time consumption factors include the time consumption for 
offloading data edge nodes, the calculation, and the data 
transmission to the cloud controller. The objective is to 
jointly minimize the resources cost and the average time to 
complete a training task. The complexity of DPDA depends 
on network size, FS number per link and the offloading 
request of tasks. 

In the verification of the algorithm, a benchmark algorithm 
is designed for comparison, which selects the closest edge 
node to the source node for each request to offload training 
data. Fig. 5(b) shows the performance results of DPDA. The 
comparison with the benchmark algorithm illustrates that 
DPDA can deploy more training tasks under limited network 
resources. As the number of tasks increases, the task 
blocking rate of DPDA is about 5% lower than the 
benchmark algorithm. In addition, the ratio of idle time to 

 
Fig. 5.  Distributed training of AI models based on data parallelism: (a) model training process based on data parallelism; (b) performance results of DPDA. 
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task completion time of the algorithm is relatively low, 
which means that the computing resources of each node can 
be effectively used. 

D. DNN Inference as a Service 
The inference of deep neural networks (DNN) can also 

benefit from SOON with cloud-edge collaboration. In order 
to reduce the computational burden of a single node or 
satisfy the delay requirements of different services in SOON, 
a concept of flexibly adjusting the DNN inference process 
was proposed, which called DNN inference as a service 
(DIaaS) [33]. DIaaS refers to the on-demand provisioning of 
DNN inference based on flexible model partition and 
distribution according to service requirements and network 
resources. Specifically, as shown in Fig. 6(a), a DNN model 
with multiple layers can offload some layers to edge or cloud 
nodes to complete the overall inference process of DNN. 
This partition of DNN model can effectively reduce the 
inference delay and the calculation burden of a single node. 
This process involves two issues: the partitioning of 
multi-layer DNN and the deployment of computing nodes, 
which requires comprehensive consideration of service 
delay requirements, node computing resources and spectrum 
resources used for data transmission.  

We designed the DNN inference provisioning (DIP) 
algorithm to realize the DIaaS, with the aim of maximizing 
the inference provisioning [30]. According to the 
requirements of inference delay and network resource 
availability, the DIP algorithm can select the most suitable 
DNN partition and inference deployment between the edge 
and the cloud for each task. In the process of DNN 
partitioning and offloading, two network resources need to 
be considered: i) the available computing units (CU) of each 
node for data caching, and ii) the available frequency slots 
(FS) for data transmission. The DIP algorithm is constrained 
to the edge node where the inference task originates, the 
input data size and the maximum tolerable delay of the task. 
The sizes of intermediate data and transmission route 
selection all affect the task delay. Network resource metrics 
(CU and FS metrics) are used as load balance metrics to 
evaluate candidate solutions for each model partition 
deployment. Finally, DIP will select the candidate with the 
lowest load balance metric as the best solution for model 
partition and deployment. 
 To verify the effectiveness of the DIP algorithm, 

ResNet-18 was used as the DNN model. DIP-CU and 
DIP-E2C are designed as comparison algorithms. The 
former only considers the usages of computing resources and 
ignores the transmission resources during model partitioning. 
The latter only studies the DNN partition between edge 
nodes and cloud nodes, without considering the coordination 
of edge nodes. As shown in Fig. 6(b), higher traffic load 
leads to higher resource utilization, which makes it more 
difficult to meet the inference delay requirements. Compared 
with the other two algorithms, DIP has the highest success 
rate. When the traffic load is set to 500 Erlangs, the success 
rate of DIP reaches 85.3%. Moreover, the ratio of edge 
coordination is the ratio of inference tasks completed by 
edge coordination to the total inference of services. Fig. 6(b) 
shows that DIP and DIP-CU are close in terms of the ratio of 
edge coordination. 

V. INNOVATIVE AI-BASED APPLICATION  
Various innovative AI-based optimization applications 

are developed within the SOON testbed. These applications 
are designed to use AI technology to provide users with 
network optimization services. In this section, several 
important use cases are reviewed. 

(1) Alarm prediction. A single fiber/node failure in optical 
networks may cause massive service interruption and heavy 
economic loss, even for a few seconds. Alarms are the most 
direct manifestation of network failures. Therefore, 
predicting alarm information can provide advantages for 
network administrators to deal with faults in a timely and 
effective manner. The alarm prediction use case can perform 
data preprocessing and data enhancement on a large amount 
of dirty data reported in networks, combining AI algorithms 
and knowledge-based collective self-learning methods to 
extract the features of performance data in multi-domain 
networks to predict the next time series of alarms [34]-[35]. 

(2) Resource allocation. Allocating resources for network 
services in optical networks has always been the focus of 
research. There are many heuristic algorithms for routing 
and wavelength assignment (RWA) that can only achieve 
approximately optimal performance under certain 
circumstances. The resource allocation optimization 
application in SOON uses reinforcement learning (RL) to 
make resource allocation decisions for multi-modal optical 
networks to maximize the utilization of network resources 
[36]. In addition, the application also considers the 

 
Fig. 6.  DIaaS: (a) DNN inference process based on cloud-edge collaboration; (b) performance results of DIP. 
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constraints of other resources such as the number of device 
ports [37]. 

(3) Fault localization. A major difficulty in dealing with 
faults in optical networks is that the complex relationship 
between the alarms will interfere with the identification of 
root-cause alarms. A single point of fault in networks may 
cause the reporting of massive alarms, and one alarm will 
generate multiple alarms. Fault localization use case 
proposes the concept of alarm knowledge graphs (KGs). 
According to the alarm knowledge in the equipment manual, 
the knowledge graph is automatically constructed. And 
graph neural network (GNN) is used to infer the location of 
network faults [38]-[39]. 

 

VI. CONCLUSION 
The deployment of AI in the optical network is conducive 

to improving network control capabilities. This paper 
reviews the evolution of self-optimizing optical network 
architecture that implements AI services in SDON. In 
addition, on-board AI is introduced to SOON to achieve the 
cloud-edge collaboration. Based on this architecture, a 
SOON testbed and several collaborative strategies have been 
proposed and verified to improve the efficiency of AI 
applications in the network and balance computing resources. 
Finally, we summarize several innovative AI-based use 
cases. The current AI model training and testing methods 
based on cloud-edge collaboration are limited by the 
performance of on-board AI. In the future, as the 
performance of AI embedded boards improves, more AI 
service strategies based on cloud-edge collaboration will be 
proposed, which means that AI services can be provided 
better in optical networks. 
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