Self-organization at the lowest level: Proactively learning
skills in autonomous systems

Willi Richert, Bernd Kleinjohann, Alexander Murmann
Faculty of Computer Science, Electrical Engineering and Mathematics
University of Paderborn, Germany
richert@c-lab.de

Abstract: To enable autonomous systems to learn basic skills for unknown and chang-
ing environments and stay robust in case of change, Organic Computing principles
have to be applied at all layers. In this work an architecture is presented that can
be used at the lowest layer providing robust skills to higher-level strategy layers, that
depend on encapsulated actions. With emphasis on robustness it is able to learn to
control its actors without a priori information about their meaning. This is made pos-
sible by skill modules that are learned together with their action-effect dependencies
and their enabling preconditions by proactively carrying out experiments within their
environment. The architecture is evaluated by simulating a differentially driven robot.

1 Introduction

When some form of adaptation is needed typically a tiny part in the overall control archi-
tecture is identified and substituted by e. g. neural nets or solved by other statistical learn-
ing methods. However, they all assume a static training set, which hampers the ability to
adapt appropriately to suddenly changing environments. Furthermore, they expect the de-
signer to foresee all possible changes the system might undergo. In this work we present an
architecture that is able to detect changes in the environment that render previously learned
skills useless, and react in a way that relearns the obsolete parts by proactively carrying
out experiments. Thereby, the designer does not have to foresee every possible change the
system might undergo. With skills we understand low-level blocks of behavior that can be
triggered by some higher-level strategy process. We do this by coupling learned skills with
their enabling conditions that have been observed while experimenting and the effects of
the action. Thereby the system can monitor progress via many fine-grained cause-effect
schemata it has learned, and trigger relearning of the previously learned skill. By develop-
ing and finding basic skills the robot drastically reduces the exploration space the higher
levels otherwise had to consider.

Let us assume an upper strategy layer requesting some behavior that has a certain effect
on its environment. The skill learning layer then consults its skill database (Skill DB) for
appropriate skill modules consisting of a set of preconditions, the action and the predicted
effect (similar to start condition, action type, end condition in [Bis05]). If an adequate
skill is found, meaning that there is some behavior that resulted in the desired effects

128

in the past, it is executed. If not, the system starts to tinker with its environment hop-
ing to find a concept that is connected with the goal condition and changes significantly.
Then it focuses on this part and continues to experiment until it has found some model
that expresses the cause-effect relationship. After some time, if the system is sufficiently
confident with the learned skill it stores it in its Skill DB. This approach is supported by
Gibbson’s claim [Gib66] that our perception of the world is dependent on our interac-
tions with it. For this he introduced the term affordance of objects meaning the possible
actions that can be performed at environmental objects. If a system is able to find out
which actions make sense, it has filtered out the vast amount of useless actions. We make
use of this exploration space shortcut by proactively seeking for cause-effect relationships
considering the governing conditions.

2 Related Work

In this work we are interested in an architecture by which an autonomous system is able
to relearn completely new skills on-line. That this is generally possible has been demon-
strated by Schultz, et al. with their Continuous and Embedded Learning (CEL) approach
[SGO0]. With it autonomous vehicles can adapt to partial loss of sensor capabilities on-
line by learning a model of the environment and evolving a rule base in that simulation
model. Once, sufficiently good performance has been achieved in simulation, the evolved
rules are executed in the real world. Their architecture has to relearn its rule-base if a
significant change in sensor capabilities has been monitored. Nording, et al. [NBB98§]
use Automatic Induction of Machine Code by Genetic Programming (AIMGP) to derive
movement control code while the robot is experimenting with its environment.

All these approaches couple the lower level skills tightly to the upper strategy algorithm
whether it is learning or planning. Our architecture, in contrast, encapsulates the skill
learning mechanism so that it can be used by planning or learning algorithms as a black
box by a predefined concept language: this architecture thus works as a skill service layer
to the upper layers. This is a step towards a fully autonomic and organic system consist-
ing of different layers, each of which can be relearned and adapted independently of the
other layers. Thereby, our approach translates the properties that made e. g. the TCP/IP
protocol stack so successful and robust to the autonomous system domain. It can be seen
as a robust autonomous layer for learning low-level skills in a layered learning architec-
ture, as proposed by Stone [Sto0O] or in the subsumption architecture, as suggested by
Brooks [Bro86]. However, we emphasize robustness in contrast to optimality, as done by
Stone.

3 Architecture

For a low-level skill learning layer to support the system’s robustness to a high degree it
must be as independent from the other layers as possible. For this reason only a mini-

129

mal interface is provided: The wanted effects are specified by the requesting layer via a
behavior-request language and the final success or failure is then fed back. The behavior
request language consists of user-defined concepts of its perception that define ways in
which the skill learning layer can “think in”. In our evaluation example, a robot navigation
task, it is based on the perception, like distance or angle to recognized objects. The goal
for the skill layer is to provide at every time a robust and sufficient set of skills that are
guaranteed to influence the concepts in the desired way. These skills are stored in the Skill
DB as shown in Fig. 1. If an effect is requested by the Exploiter and a corresponding skill

‘ Strategy layer (learning, planning, ...) ‘

Requests for Feedback

effects.

Progress
Monitor
Model

Perception Skill learning/adaptation Action

=

Low Level
Feature
Detection

Marker
Detection

Skill
DB

Figure 1: Autonomous skill learning architecture

module exists in the Skill DB, the system starts and carries on to execute the proper skill
under the given preconditions, unless the Progress Monitor (PM) detects a deviation from
the predicted outcome of the action, which triggers the adaptation process. If it is unable
to fit the new data to one of the models provided by the designer (e. g. polynomials, fuzzy,
...) it delivers control over to the learning process which discards the skill in question from
the Skill DB and tinkers with the environment until it has found some action setting that is
able to effect the concept of the discarded skill modules (SM).

SMs are stored in the Skill DB and can be fetched according to the desired effect the
robot wants to achieve at the moment and the environmental precondition it is currently
in: SM = (pc,a,e), denoting precondition, action, and effects. An action is a vector
setting the values of the robot’s actuators in the appropriate domain (e.g. for a wheel:
[-1,1], for a shooting device: {0,1}, etc.). While tinkering with the environment they
are collected together with the accompanying perceptions. Afterwards multiple SMs with
their corresponding action vectors will be generalized to contain a parametrized action
vector together with a learned function that matches the found invariant. Effects denote
the consequences of an applied action in the predefined concept language. At first, when
the system is in the tinkering phase the effect denotes a time derivative of a relevant con-
cept. With more and more experiments it can contain arbitrary approximated functions.
Currently polynomials are used for learning to control a robot with differential drive.

130

3.1 Behavior request language

The SM that results in the wanted behavior is requested from the skill learning layer in
form of the wanted condition set G on raw perception data P: G C C X ® x R. The raw
perception is projected and filtered by user-defined filter functions from the set 7: C =
{f(p) : f € F,p € P}, e.g. angle(ol), sonar2(), or distance(ol, 02) for recognized
objects ol and 02. They are compared using ® € {<,<=,=,>,>=,<>}. Given an
existent system, the designer is able to constrain the solution space of the skill learning
layer by defining F. In addition, newly designed filters can be easily integrated at run-
time, while the system is on field.

3.2 Effect

An effect describes changes to the environment from the perspective of the system as a
result of an action: e € C x P, with P being the set of predictions using predefined model
functions M the system can approximate. They are stored in the Model DB. The changes
can be expressed in two ways: In case that the learning module successfully generalized
the recorded actions and effects, the change is expressed by some model function. Other-
wise, if the SM simply represents one experiment with the environment, the change is a
constant: e. g. the effect Effect(distance(ol), —0.3) describes that the execution of the SM
results in a decrease of distance to object ol by 0.3m/s. The effect Effect(distance(ol),
—0.3- a) expresses that the decrease of distance is determined by some factor a, which can
be used to control the action vector. The effects that are recorded in the tinkering phase
will serve different purposes later on:

e The upper strategy layer will request skills from the Skill DB by providing the
wanted effects as the low level goal.

e When an SM has been learned and is being executed, its effect will serve as a refer-
ence to the PM, triggering relearning of the SM when deviances are detected.

3.3 Action

An action vector has as many dimensions as the system has different actuators. The system
makes no assumptions as to what purpose the different values have — this will be found
out proactively. Therefore, the domains of the different actuating variables have to be
provided by the system designer. Severe disturbances like e. g. randomly reassigning their
meaning, can thus be handled robustly by the system in that the PM detects abnormal
effects at learned SMs and will relearn them.

131

3.4 Precondition

Preconditions are recorded in order to detect whether an SM is applicable in the given sit-
uation. While the system is tinkering with its environment it stores all the environmental
conditions. Generalizing over the preconditions is done by creating a convex hull [BDH96]
of enabling conditions in |C|-dimensional space, C' € C. These conditions must hold so
that the according SM can be executed. In addition to the enabling precondition convex
hull, a disabling hull is stored to gather information about situations in which the SM
clearly is not applicable. If the Exploiter is retrieving only SMs from the Skill DB that do
not match the enabling preconditions and are also not covered by the disabling precondi-
tions, the SM is regarded as a potential skill and tried as if it were applicable. If the result
is validated by the PM, the enabling hull is updated.

In addition, as the data for representing preconditions quickly gets enormous and the con-
vex hull algorithm in general dimensional space is too time consuming to allow e.g. a
robot to perform in real-time over a longer period of time, the perception is preprocessed
using the non-parametrized clustering algorithm “Resource Allocating Vector Quantizer”
(RAVQ) [LNOO] to handle sensor information flow. RAVQ automatically builds model
vectors for salient perception events which are used as salient condition description events.
With this preprocessing the system in addition becomes robust to noise at the sensor level.

4 The Learning Process

While acting in its environment the robot is constantly comparing the predicted outcome
of its action in the last step with the resulting situation in the current step. If then, e. g.,
the environment or the hardware of the robot changes due to wear out or other reasons, the
PM detects the deviance of the activated SMs and has the possibility to choose the level
of adaptation to the changes dependent on the severance of the changes. If this process
comes to the conclusion that it is unable to adapt the parameter, it turns the control over
to the learning process. It does so only for the actual skill that is executed. Thus, only the
affected SMs will be adapted or relearned, and only to the minimally necessary degree.
The same applies for the situation that no SM is found for the requested effect.

When the learning phase is triggered, the system has recognized that some important skill
is missing or not working as expected. This is the case either because no SM in the Skill
DB matches to the requested effect, or the previously executed SM turned out to have
different consequences than it had when it was learned. After some time of collecting
perception data with the newly chosen actor values, the data is processed by following
four stages: 1) relevance checker, 2) segmentation and approximation, 3) model invariant
tester, and 4) behavior generator. At first the system tries out random actor values, until
the relevance checker signals a significant change in the concept of the request effect.
If the concept has not changed enough, new actor values are chosen and the process is
repeated. Afterwards, the time derivatives of the requested concept based on the recorded
perceptions are built. To be able to generalize over the perceived data, not only a decent

132

set of model functions M is needed, but also a segmentation function for every model
class m € M, that slices the perception P into consecutive chunks of data p; € P,
\J; pi = P, that can be approximated by m. This is necessary because over the course
of proactively experimenting in its environment the system probably perceived data that
has to described in different ways. For every processed segment an individual SM will
be created to account for that. The choice of the model function m is subject to future
research. A straightforward approach is to just try all model functions and take the one
that is able to approximate the most of the perceptual data.

For every approximated segment the invariant testers of the provided models are applied
to ensure that useful abstractions has been made. The invariant testers are also dependent
on the model function and detect underfitting. The system will continue to experiment and
test whether its invariants match the criteria of the approximated data, until an invariant
signals a sufficient match, which results in the creation of an SM using the perception
data together with the action. The more sophisticated the provided models are, the less
SMs will be created, because they are applicable to a wider range of situations captured as
preconditions. This is a very important property for robust skills since the preconditions
of the SMs will by their nature limit the range of situations in which the SM in question
approximates valid behavior: the simpler the model the more local approximations will be
created.

The now created SMs can be fetched the next time the system is in the exploitation phase.
In this phase it requests its Skill DB for some SM with the wanted effect. If two SMs
are found they can be merged into a generalized SM if the following conditions hold: 1)
The action vectors are linearly dependent. 2) The preconditions are similar to a predefined
degree (i.e. their convex hulls overlap). The SMs are merged by placing variables in
the actor, which are then used in the effect as prediction functions. Given e.g. two skill
modules b; and b, with the corresponding actors and effects. If the above mentioned
conditions hold they will be discarded from the Skill DB and a new SM b will be inserted
with the actor a and effect e:

a1 =(0.2,0.4,0) ey = Effect(Distance(100),—0.8)
as = (0.1,0.2,0) es = Ef fect(Distance(100), —0.4)
a = (z,2z,0) e = Ef fect(Distance(100), f(z))

Here, f(z) is a prediction function instead of a simple prediction value. As in the current
system M only contains polynomials we would get f(z) = —0.4 - . However, with the
current architecture new prediction functions together with the corresponding invariant
testers can quickly be added to the system.

S Experimental Setting

We evaluated this architecture by simulation using a differentially steered Pioneer2DX
robot having sonar, laser range-finders, and differential drive. The experiments were per-
formed using the Player/Stage [GVHO3] simulation environment. The robot was provided
with three anonymous actors, of which two of them corresponded to the left and right

133

wheel. The robot had the task to drive to a goal at the right side of the field. Thereby,
a request to reach the situation Condition(Distance(goal) < 1) by the upper strategy
layer was simulated (Fig. 1). Every time the robot reached the goal it was repositioned
randomly in the field and restarted with the previously learned skill modules (called ’run’
in the following). The experiment was performed ten times with five runs each.

The system was only provided with a 1d-polynomial model function to show the over-
all feasibility of the approach. In that case the perception can be sliced into monotonic
segments. For this quasi-monotonic intervals [FLBOS5] turned out to be especially suited
due to their adjustable error allowances to cope with noise in the sensor readings. As in-
variant testers mean and variance of the fitted polynomial were used: By requesting the
mean to be above some threshold and the variance below some threshold the system only
approximated perceptual data that was the effect of sufficient change to the environment
and enough confidence in the approximation. As this might be a too strong restriction at
first view, it turned out that the architecture can pretty good cope with such simple rela-
tionships, by just generating more specific skills that map to the corresponding situation.
Only if the invariant testers are passed, the perception data together with the action at that
time is used to generate a skill and stored in the Skill DB.

The difficulty in the experiment was to learn the proper skills for the different situations.
In contrast to omni-wheel robots, the problem with the experimental robot is that it has to
learn to cope with its non-holonomicity. I. e. that in order to move, e. g., to a goal that is at
the right side of it, the robot has to learn how to turn in order to be able to reach that goal.
The used RAVQ parameters were 6 = 0.3 and € = 2.

6 Results

The number of simulation steps the robot needed to reach the goal at each run is shown in
Fig. 2. The number of skill modules the robot learned is depicted in Fig. 3. While it needs
8,811 steps to reach the goal at the first run, the number of steps quickly drops down to
293 steps in the third. After the third run, the high CPU load causes sporadic perception
errors in the robot because of which the performance slightly decreases. This is due to
the increased data amount of the positive and negative convex hulls — an issue that we
will pursue in the future. When bumping against a wall, the progress monitor correctly
detected that something unforeseen had happened. As an effect the current situation was
stored in the negative convex hull for the according skill in every time step. This is done
as long as the negative convex hull is growing and current perception does not fall into it.
If that is the case the SM is discontinued and will not be executed any more in the future in
similar situations. As a result, another then “best” SM is chosen that leads away from the
wall towards a more promising situation in which the goal can be reached. It is important
to note that the number of additionally learned skills decreases with every run, as can be
seen in Fig. 3. That means that the system created useful skills, which were reused over
and over again, and only created new ones in previously unforeseen situations.

134

1 oxled

Simulation steps to reach the goal
°
Total behaviors in the skill database

\/

1 2 3 4 5 1 2 3 4 5
Simulation run Simulation run

Figure 2: The number of steps needed to reach ~ Figure 3: The number of total skills modules
the goal condition at each run averaged over 10 after each run averaged over 10 trials. The grey
trials (ordinate in thousands). The grey back- background is the 95% confidence interval.
ground is the 95% confidence interval.

7 Conclusion and Outlook

Supporting Organic Computing principles is also possible at the lowest behavior layer.
The robust architecture in this paper is able to learn low-level skills guided by behavior
dependent predictions it recorded while the skill was learned. Even with simple model
functions the system was able to learn skills without having a priori information about its
actors. As an effect of our architecture not paying attention to actor semantics and the
way it dynamically creates, chooses, or deprecates skills, it has all necessary properties of
being robust in unforeseen environments. This also holds if the environment or the robot
itself changes due to wear out or harm caused by other robots. As long as there is a way
to proceed and fulfill the goal the autonomous system will find skills to reach it.

The performance of the architecture can, however, be drastically increased in several ways:
As the dimension of the state space grows proportionally with the number of concepts and
number of detected features, some means is needed to generalize over the features, if more
sophisticated environments are used. Instead, the system should detect the similarities and
generalize them into some task dependent topology. We plan to deploy the architecture at
our testbed, the mid-size soccer robots Paderkicker [RKK+06b]. Successful experiments
with online adaptation at the action sequence learning layer have shown how the knowl-
edge transfer in societies of autonomous systems leads to the propagation of the most valu-
able information units that offer the biggest performance advantage [RKKO05, RKKO06a].
This can now be used not only to robustly learn the sequencing of behaviors, but also
the behaviors themselves. We can think of a scenario where a swarm of mobile systems
is working on site and only some of the mobile systems are within the designer’s reach.
With the architecture in this paper and a modification to the authors’ previous works, the
designer is able to provide some of the systems within reach with new or updated versions
of C, F or M, which have the potential to increase the adaptation performance. These
modules are then distributed based on the successes or failures of the individual system.

135

References

[BDH96]

[Bis05]

[Bro86]

[FLBO5]

[Gib66]

[GVHO3]

[LNOO]

[NBB9§]

[RKKO5]

[RKKO06a]

[RKKT06b]

[SGO0]

[Sto00]

C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The Quickhull Algo-
rithm for Convex Hulls. ACM Transactions on Mathematical Software, 22(4):469-483,
1996.

Alexander Bisler. Organizing an Agent’s Memory. In Proceedings of the Workshop for
Memory and learning mechanisms in autonomous robots at the European Conference
on Artificial Life, ECAL’05, 2005.

Rodney A. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE
Journal of Robotics and Automation RA-2, pages 14-23, 1986.

Will Fitzgerald, Daniel Lemire, and Martin Brooks. Quasi-Monotonic Segmentation
of State Variable Behavior for Reactive Control. In Manuela M. Veloso and Subbarao
Kambhampati, editors, AAAI pages 1145-1150. AAAI Press AAAI Press / The MIT
Press, 2005.

James J. Gibson. The Senses Considered as Perceptual Systems. Houghton-Mifflin
Company, Boston, 1966.

Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems. In Proceedings of the Inter-
national Conference on Advanced Robotics, pages 317-323, Coimbra, Portugal, Jul
2003.

Fredrik Linaker and Lars Niklasson. Sensory Flow Segmentation Using a Resource
Allocating Vector Quantizer. In Francesc J. Ferri, José Manuel Ifiesta Quereda, Adnan
Amin, and Pavel Pudil, editors, SSPR/SPR, volume 1876 of Lecture Notes in Computer
Science, pages 853-862. Springer, 2000.

Peter Nordin, Wolfgang Banzhaf, and Markus Brameier. Evolution of a world model
for a miniature robot using genetic programming. Robotics and Autonomous Systems,
25(1-2):105-116, 1998.

Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Learning Action Sequences
through Imitation in Behavior Based Architectures. In Systems Aspects in Organic and
Pervasive Computing — ARCS 2005, number 3432 in LNCS, pages 93-107. Springer-
Verlag Berlin, 14 - 17 March 2005.

Willi Richert, Bernd Kleinjohann, and Lisa Kleinjohann. Trading off impact and mu-
tation of knowledge by cooperatively learning robots. In IFIP Conference on Biologi-
cally Inspired Cooperative Computing — BICC 2006, 2006.

Willi Richert, Bernd Kleinjohann, Markus Koch, Alexander Bruder, Stefan Rose, and
Philipp Adelt. The Paderkicker Team: Autonomy in Realtime Environments. In Pro-
ceedings of the Working Conference on Distributed and Parallel Embedded Systems
(DIPES), 2006.

Alan C. Schultz and John J. Grefenstette. Continuous and Embedded Learning in
Autonomous Vehicles: Adapting to Sensor Failures. In Chuck M. Shoemaker Grant
R. Gerhart, Roboert W. Gunderson, editor, Unmanned Ground Vehicle Technology II,
volume 4024 of Proceedings of SPIE, pages 55-62. 2000.

Peter Stone. Layered Learning in Multiagent Systems: A Winning Approach to Robotic
Soccer. MIT Press, 2000.

136

