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Abstract. Amodel is presented for a neural networkwith competitive learning that demonstrates
the self-organizing capabilities arising from the inclusion of a simple temporal inhibition mech-
anism within the neural units. This mechanism consists of the inhibition, for a certain time,
of the neuron that generates an action potential; such a process is termed Post ___ Fire inhibition.
The neural inhibition period, or degree of inhibition, and the way it is varied during the learning
process, represents a decisive factor in the behaviour of the network, in addition to constituting
the main basis for the exploitation of the model. Speci¢cally, we show how Post ___ Fire inhibition
is a simple mechanism that promotes the participation of and cooperation between the units
comprising the network; it produces self-organized neural responses that reveal spatio^temporal
characteristics of input data. Analysis of the inherent properties of the Post_Fire inhibition and the
examples presented show its potential for applications such as vector quantization, clustering,
pattern recognition, feature extraction and object segmentation. Finally, it should be noted that
the Post ___ Fire inhibition mechanism is treated here as an ef¢cient abstraction of biologically
plausible mechanisms, which simpli¢es its implementation.

Key words: temporal inhibition, competitive learning, self-organizing maps, learning vector
quantization

1. Introduction

The neural network model presented in this paper, in terms of its structure and
learning processes, is based upon a competitive mechanism between the neural
elements that comprise the network [1, 2]. This means that it is composed of sets
of neurons with mutually-inhibiting connections that model lateral inhibition
and are responsible for the competition between neurons. The proposed neural
network model (SOTI) adds, at the neuron level, a particular temporal inhibition
mechanism that we term Post ___ Fire inhibition, which consists of the self-inhibition
that is subsequent to the emission of an action potential. For this study we chose
a neuron model that was greatly simpli¢ed for the purposes of computer simulation.
Nevertheless, this did not imply any loss of generality in relation to other de¢nitions
that might be considered more realistic from a biological point of view but which, for
considerations of practical exploitation, would not justify their complexity. Thus the
main focus of this study is to demonstrate the extent and applicability of the
collective properties derived from a neural network that includes competition
between its elements as a result of including the temporal self-inhibition mechanism.
By this means it is possible to identify the collective behaviour patterns arising from
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such a mechanism, which also represents a valuable simpli¢cation in terms of its
physical implementation by electronic circuitry.

2. The Architecture and Basic Algorithm of the SOTI Model

The basic architecture of SOTI (which we call SOTIb), as shown in Figure 1, consists
of a layer of neurons, each of which is connected to all the inputs, and of inhibitory
connections between different neurons, which represent the basic competitive
mechanism. The TEMPi modules represent the Post ___ Fire self-inhibition
mechanism. Each of these modules inhibits the generation of an effective action
potential during the presentation to the network of a number m of vectors after
the last effective action potential of the neuron Ui considered. This value of m varies
during the learning process, according to a time function �m�t��. This architecture
thus obtains the winning neuron among those that are not inhibited by the TEMPi
modules. It is also assumed that weight adaptation is performed in each iteration
of the learning process on the winning neuron, which is the only one capable of
generating an action potential. For the purposes of the simulation, given an iteration
t and a stimulus vector X �t�, the calculation of the winning unitUg�t� is performed by
means of expression (1).

Ug�t� j d�X �t�;Wg�t�� � minjfd�X �t�;Wj�t�� j Uj 2 CND�t�g �1�

CND�t� � fUj j �tÿ tj�t�� > m�t�g; with j � 1; 2; . . . ;Neug

where d�:� is the Euclidean distance, Neu represents the number of neural elements,

Figure 1. Basic architecture of the proposed SOTIb network.The model's main feature consists of including
TEMPi modules that control the Post ___ Fire inhibition of the units.
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Wj is the weight vector of unit Uj; tj�t� is the iteration in which Uj last won and
�tÿ tj�t�� represents the iterations that have occurred since that moment. Therefore,
CND�t� is the set of neurons that are not inhibited by the Post ___ Fire inhibition
process. Expression (1) reduces to expression (2) when m � 0, in which Ug� �t� is
the winning unit that is normally taken in a conventional vector quantization
network VQ. Such a unit is termed the unconditional winning unit.

Ug� �t� j d�X �t�;Wg� �t�� � minjfd�X �t�;Wj�t�� for all Ujg �2�

With respect to the adaptation of the weight vectors, we consider expression (3):

Wg�t� 1� �Wg�t� � a�t��X �t� ÿWg�t�� �3�

The learning algorithm basically consists of iterating expressions (1) and (3), as
summarized in Figure 2. In this algorithm, we have considered the presentation
of the stimulus vectors as organized in epochs, Epo�k�, such that a constant value
for the degree of Post ___ Fire inhibition is applied within each of them, i.e.
m�t� � m�k�. This facilitates the de¢nition of m by using its dependence on the index
k rather than on the iteration variable t.

Figure 2. A simpli¢ed algorithm to simulate the SOTIb neural network.
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3. Behaviour and Properties of SOTIb. Examples

In spite of the simplicity of the SOTIb algorithm, its behaviour is not trivial, and it
presents characteristics that are very promising for exploitation in applications such
as vector quantization, clustering, object segmentation and the extraction of spatio-
^temporal features. The characteristic properties of SOTIb are due to the Post ___ Fire
inhibition mechanism, and in particular to the fact that this forces the neural
elements to learn with stimulus vectors that are not limited to the standard regions
of the Voronoi mosaics de¢ned by the total quantity of neural elements comprising
the network, but rather to the regions corresponding to the Voroni mosaics de¢ned
by the subset of available units CND�t� (see expression (1)), also taking into account
that this subset changes dynamically during each iteration of the process. Indeed, it is
a simple matter to verify that the degree of Post ___ Fire inhibition determines the
number of elements Nnd of CND�t� according to expression (4).

Nnd � Neuÿ m �4�
Moreover, CND�t� with a constant value of m is formed by different elements at least
until m� 1 iterations have taken place, as the unit that wins in iteration t ceases to be
available during the next m iterations. In other words:

If tj > ti with constant m and tj ÿ ti < m then CND�tj� 6� CND�ti� �p1�

The dynamics of SOTIb is thus highly dependent on the way in which the degree of
Post_Fire inhibition m�k� is varied. As we shall see below, it is also dependent on the
spatio^temporal structure of the stimulus vectors.

3.1. GENERAL BEHAVIOUR OF SOTIb WITH RESPECT TO m�k�

Concerning the de¢nition of m�k�, let us ¢rst consider a decreasing linear dependence
for m in the following form:

m�k� � Neuÿ 1ÿ k where k is the index of the epoch such that k � 0; . . . ;Neuÿ 1
�5�

In this case, the number of elements of CND is given by Nnd�k� � k� 1. This
means that in each epoch the number of units that are available to compete is
increased by one. If k � 0 there is only one free neural element, which consists,
for each iteration t, of the unitUfree�t� that has just scaped from the Post ___ Fire inhibi-
tion. That is:

Ufree�t� � Ug�tÿ mÿ 1� � fUj�t� such that tj�t� � tÿ mÿ 1g
This unit is the only candidate to be the winning unit, i.e. Ug�t� � Ufree�t� and thus
there is no competition. Moreover, during successive iterations, the Ufree�t� units
follow a particular sequence to cover all the elements of the network. For k � 1,
there are two non-inhibited neural elements that compete, according to a two-cell
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Voronoi mosaic. By analogy with the previous case, the elements of CND�t� change
in each iteration according to property (p1). The process continues with decreasing
values of m until a zero value is reached during the epoch k � Neuÿ 1. At this
moment SOTIb reduces to a basic competition scheme.

Overall, the Post ___ Fire inhibition process with a linearly decreasing m�t� operates
as a `drag' mechanism that `forces' the participation of the neural elements in
the competition, with the result that these elements move towards the locations
of the stimulus vectors. It represents a useful mechanism in terms of performing
a vector quantization of the input space. Nevertheless, other decreasing dependences
of m�k� may obtain optimum results with an appreciable reduction in the execution
time of the algorithm without having to apply the Nk � Neu epochs corresponding
to the different values of m�k� de¢ned by expression (5). Indeed, it is usually suf¢cient
to have a subset of these to achieve a good trade-off between the duration of the
algorithm and the ¢nal con¢guration of the weight vectors. Thus we have found
[3] that the dependence of m�k� given as

m�k� 1� � 0:5 � d�m�k�� ÿ 1 with d�n� � n� 1 if n odd, and d�n� � n� 2 if n even
�6�

using m�k � 0� � Neuÿ 1, represents a suitable choice in most cases, which further-
more provides a lower limit for the number of different values of m that are required.

Figure 3 illustrates the execution of SOTIb, demonstrating the ``drag'' mechanism
of the weight vectors towards the stimulus regions and its utility in clustering and

Figure 3. Execution of SOTIb that illustrate its e¡ectiveness for vector quantization and clustering. Epochs
with Nn � 2000 � p vectors and a � p �Neu=Nn were used. In (a) we used the dependence of
m�k� from expression (6), Neu � 27 units and p � 5; in (b) we used the linear dependence from
expression (5), Neu � 10 and p � 2.
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vector quantization applications. The stimuli are randomly applied within the
shaded areas in the ¢gure. The white squares containing a circle indicate the weight
vectors when execution of SOTIb has ¢nalised, and the points re£ect the trajectories
of the weight vectors during training, with initial weights equal to zero. Figure 3a
presents a generic example of vector quantization where m varies according to
expression (6). In this case, there is an optimal participation of all the neural elements
in the vector quantization of the stimulus space, a situation which does not occur
when a basic competitive learning scheme is used, in which in the end only one neural
element wins for all the stimuli presented.

The example shown in Figure 3b uses the linear dependence of m�k� given by
expression (5). This shows the usefulness of SOTIb for clustering procedures
and for optimal initialization of prototypes which could be used by other algorithms
as a starting point, using a low number of weight vectors. Indeed, the literature
contains many examples of vector quantization algorithms that require an initial
number of prototypes that is compatible with the a priori probabilities of the classes
that are implicit in the input vector space. One way to do it is to take as N initial
prototypes, N randomly chosen vectors from the input space. However, to ensure
this is achieved it is generally necessary to take a high value of N, which depends
on the topology and the dimension of the vectors of the input space. In contrast,
the example of Figure 3b contains 10 implicit classes (shaded squares) and 10
optimally-distributed weight vectors obtained by SOTIb (one per class), starting
from weight vectors with a value of zero. The resulting weight distribution would
have been highly improbable if 10 vectors had been randomly chosen from the input
space.

3.2. BEHAVIOUR OF SOTIb AND SPATIO^TEMPORAL STRUCTURES OF THE STIMULI

With respect to the behaviour of SOTIb related to the spatio^temporal structures of
the stimulus vectors, the Post ___ Fire inhibition provides important properties to the
exploitation of the proposed network, as it is possible to extract characteristics from
the input stimulus space in which the temporal context must be taken into account by
the application to be solved. This aspect is normally ignored in conventional vector
quantization algorithms, in which it is normal to apply the input vectors in a random
fashion. Nevertheless, in many situations, information that is produced naturally is
not random in nature; the brain processes and extracts characteristics that are depen-
dent on the spatio^temporal structure of these natural ways by which stimuli are
produced. Moreover, it is possible to induce the speci¢c neural organization and
behaviour that is desired by deliberately establishing the spatio^temporal structure
of the input vectors to be processed. With the aim of characterizing and illustrating
the behaviour of SOTIb in relation to the spatio^temporal structures of the stimuli,
let us consider those de¢ned in Figure 4, where an epoch is expressed in generic
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terms as:

Epo � Label of spatio--temporal structure ��basic structure�p� �7�

where p is the number of times the basic structure (in square brackets) is repeated.
The meaning of the spatio^temporal structure notation is clari¢ed below, also
including some simulation experiments of SOTIb with these spatio^temporal
structures.

After this, we continue with the analysis and properties of SOTIb making use of
the above-mentioned experiments.

Sequential between classes (SC)

In this case, the epoch consists of spatial groups or classesCi, each of which contains
p � Ji vectors. These vectors are applied to the SOTIb algorithm, in a temporal order
that is de¢ned by the class order speci¢ed in the de¢nition of the epoch; for example,
Epo � fJ1C1; J2C2gp�2 means that ¢rstly, J1 vectors from C1 are presented, and then
J2 vectors fromC2, after which the prior basic structure is repeated � p � 2�, although
this does not imply the presentation of the same vectors. Figure 5 shows a simulation
with SOTIb using SC epochs. It uses a decreasing linear dependence for m�k�
(expression (5)) and illustrates the con¢gurations of the weight vectors obtained
for some values of m.

Trajectory (TR)
This is analogous to the SC epoch, although in this case the stimulus vectors for each
class Si are aligned to form linear sections or curves. Furthermore, the vectors cor-
responding to each section Si of the same epoch are required to be in an order that
maintains a certain degree of spatial continuity between a vector and the one
following it within the same section Si. Examples of the natural production of epochs
of the type TR are the sampled and multiplexed positions of a set of mobiles, the
trajectories in multidimensional representations of speech signals, etc. Figure 6
shows a typical case, that of sampling the positions of a mobile with periodic move-

Figure 4. Spatio^temporal structures of stimuli and their notation.
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Figure 5. Example when SOTIb is executed with the epoch: Epo�k� � SC�100C1; 100C2; 100C3�p�5,
Nn � 1500 and the parameters; Neu � 9, m�k� � 8ÿ k, k � 0; . . . ; 8 and a � Nn=Neu, showing
the di¡erent con¢gurations of weight vectors obtained when m equals 6; 4; 3; 2; 1 and 0.

Figure 6. Execution of SOTIb using stimuli �x1; x2� generated continuously by applying xi � sin�ot� and
x2 � cos�ot� with o � 2pt=8:97. (a) 100 stimulus points and the 9 sections created by the
subsampling e¡ect. (b) The trajectories of the weight vectors. (c^e) The weight vectors with
m � 9; 8 and 7, using epochs with Nn � 20000, a � 0:01, Neu � 10 and linearly decreasing m�k�.
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ment at a frequency that is close to a multiple of the sampling frequency, thus
producing epochs taking the form TR�JiSi; i � 1; . . . ; n�p with Ji � 1.

The stimulus points �x1; x2� are generated by applying x1 � sin�ot� and
x2 � cos�ot� with o � 2pt=8:97, which gives 9 Si sections. Each Si evolves following
a circumference that starts at the positions indicated in Figure 6a. These, although
they are spatially equal, are nevertheless out of phase with each other. The simu-
lation illustrates how at m � 9 (Figure 6c) all the neural elements are concentrated
in the centre and a sudden expansion of the weight vectors is produced at m � 8
(Figure 6d). Figure 6b shows the trajectories corresponding to this expansion process
(inner circumferences). This phenomenon is a consequence of correlation
Ngp � m� 1 � 9 winning units with nine stimuli from different sections, thus
revealing a spatio^temporal structure TR�1S1; 1S2; . . . ; 1SNgp � for the input stimuli.
Therefore, detection of such expansions would be useful for appplications intended
to search for this type of spatio^temporal structures in the natural production
of stimuli.

Random (RND)
In this case, the epoch vectors are randomly presented. Note that it is possible to use
the same vectors from an epoch that was initially de¢ned as type SC or TR to obtain
an RND epoch. For this purpose it is only necessary to establish a random pres-
entation of the vectors to the neural network. It should be noted that this kind
of application of stimuli, compared with SC, usually leads to a more uniform dis-
tribution of the weight vectors among classes. In this way, for example, if we repro-
duce the experiment illustrated in Figure 5 with an RND presentation of the
stimuli, we obtain in m � 0 the result in Figure 7 instead of the one obtained in Figure
5 �m � 0� with SC presentation.

To return to the SOTIb analysis, a large part of its dynamics, particularly for the
SC and TR spatio^temporal structures, becomes apparent by taking into account

Figure 7. Weights obtained when m � 0, reproducing the experiment from Figure 5 with RND-type
presentation.
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that the Post ___ Fire inhibition induces a self-organization in the responses of neurons,
which form groups that respond in a `forced' cyclic fashion, following a ¢xed
sequence, i.e. developing a rhythmic activity. We use the term active group to refer
to each of these neuron sets, and the term absolute maintained time of the group
to describe the number of consecutive iterations during which the rhythmic activity
is maintained. Formally, an active neural group at instant t, GP�t�, is given by:

GP�t� � fUj j Uj 2 CNI�t� [Ug�t�g �8�

CNI�t� � fUj such that �tÿ tj�t��W m�t�; with j � 1; 2; . . . ;Neug
i.e. the set of inhibited units CNI�t� plus the winning unit at instant t, Ug�t�, which
then forms part of CNI�t� 1� if m is greater than zero. This set contains a quantity
of elements that is given by:

Ngp � m�t� � 1 �9�

The `forced' cyclic response of the group GPj appears when the groupGP�t� � GPj

does not change during an interval of iterations, which is de¢ned by its absolute
maintained time. Indeed, GP�t� is formed by the CNI�t� [Ug�t� �
fUg�tÿ m�;Ug�tÿ m� 1�; . . . ;Ug�tÿ 1�;Ug�t�g. In the iteration t� 1 the unit
Ug�tÿ m� becomes the available unit, i.e. it does not belong to CNI�t� 1�, and there-
fore the group maintained time condition GP�t� � GP�t� 1� � GPj is equivalent to
the condition Ug�tÿ m� � Ug�t� 1�, as expressed in the following property:

GP�t� � GP�t� 1� if and only if Ug�tÿ m� � Ug�t� 1� �p2�

This property, therefore, is responsible for inducing the ¢xed ¢ring sequences of the
winning units when the length of the sequence that is repeated coincides with
Ngp. It also enables us to calculate, in a simple way, the Absolute Maintained Time
�AMT � of a group GP, from expression:

AMT �GP�t� � GPj� � Tf ÿ Ti such that 8 t 2 �Ti;Tf ÿ 1� ) Ug�tÿ m� � Ug�t� 1�;

and Ug�Ti ÿ 1ÿ m� 6� Ug�Ti� and Ug�Tf ÿ 1ÿ m� 6� Ug�Tf � �10�

with: Gpj � fUg�tÿ m�;Ug�tÿ m� 1�; . . . ;Ug�tÿ 1�;Ug�t�g

The particular ¢ring sequence of the neurons in a particular active group Gpj is
established during the ¢rst Ngp iterations that led to the group being activated,
and is maintained as long as Gpj remains unchanged. This, however, does not mean
that the same order is upheld in a subsequent activation of Gpj after this has been
interrupted. Moreover, during the time in which the group is active, the ¢ring fre-
quency fc of its units is very precise, and given by: fc � 1=�Tm �Ngp�, where
Ngp � m� 1 and Tm is the sampling period of the stimulous vectors. An additional
point to note is that, during the learning process, the different active groups
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may have elements in common and differ only in certain units. The formation of
groups with signi¢cant AMT is apparent when we use spatio^temporal structures
of the type SC � �JiCi; i � 1; . . . ; n� with Ji � Neu and n < Neu, as is the case of
the simulation in Figure 5. As m�k� decreases, active groups are formed with units
that become more and more specialized in the different Ci classes. During the
iterations in which a group is maintained, its neural elements learn cyclically with
vectors X �t� that are located in the classes that activate it; thus, the weight vectors
tend to become grouped around their centres of gravity, taking into account that
the weight vectors of the neural elements that are common to different active groups
will be grouped in areas between the classes that activate such groups. The longer the
AMT , the more ef¢cient is this grouping mechanism. The experiment illustrated in
Figure 5 clearly shows this phenomenon, while Figure 8 provides an example of
the self organization of cyclic neural responses (Figures 8a,b), together with other
results that are discussed below. Figure 8a illustrates the neural responses obtained

Figure 8. Experimental results corresponding to Figure 5. (a), (b) and (c) show results when m � 6. (a)
Example of the self organization of the cyclic neural responses; (b) The weight vectors of the
maintained active groups; (c) The signal Sg�t� � tÿ tg�t�, useful for temporal segmentation
of patterns; (d) The measures de¢ned for MTmax and Tran (expression (11)) versus the values
of m�k� that enable discrimination of the SC type presentation from RND (see Figure 9).

SELF-ORGANIZATION BY TEMPORAL INHIBITION 209



in iterations t0 � 1; . . . ; 300, corresponding to the last 300 iterations with m�k� � 6
from the experiment shown in Figure 5.

Note the formation of the active groups, with signi¢cant AMT ,
GP1 � �1; 2; 3; 4; 7; 8; 9�, GP2 � �1; 2; 3; 5; 6; 7; 8] and GP3 � �1; 2; 4; 5; 6; 7; 8�, which
respond in a speci¢c way to the respective classes C1, C2 and C3, despite having just
one neural element, unit 9, that responds speci¢cally to a single class, while the others
respond to more than one class. The ¢gure also shows, with vertical lines, the
iterations in which the active groups change, which is when: Ug�tÿ m�Ug�t� 1� (see
property (p2)). Figure 8c represents the signal Sg�t� � tg�t�, i.e. the time elapsed
since the last occasion when the unit Ug�t� won; as can be seen, the peaks indicate
the start of the presentation of a new class of stimuli. These peaks are caused
by units that cease to respond in a speci¢c way to one or more classes and that
do respond in a speci¢c way to another class or classes. For example, the peak
on t0 � 1, with Sg�t� � 200, is caused by neuron 9, as this neuron does not respond
to the stimuli of two consecutive classes (Figure 8a) and thus remains inactive during
approximately 200 iterations. In an analogous way, the second peak �t0 � 101� is
caused by neurons 5 and 6, while the third �t0 � 201� is caused by neuron 4.
Therefore, identi¢cation of the groups with an appreciable absolute maintained time,
the iterations in which the active groups change and identi¢cation of the signal Sg�t�
are all useful in pattern segmentation when the natural production of stimuli is
expected to be of the type SC with Ji � Neu. On the basis of these concepts,
promising results in phoneme segmentation are currently being obtained. Other
useful measurements in the exploration of active groups and in the discrimination
of the type of spatio^temporal structure of the stimuli are de¢ned by:

MTmax�k� � maxj
AMT �GPj�

Nn=p

� �
Tran�k� � Nchange

Nn
�11�

where Nn is the number of vectors in epoch k, p is the number of times the basic
structure is repeated and Nchange is the number of changes on the active groups.
Figure 8d provides an example of these measurements for the experiment shown
in Figure 5, where Nn=p � SiJi � 300 and Ji � 100. It presents stepped MTmax

values that reveal a SC stimulus structure. Thus the MTmax values that are close
to Ji=300 � 1=3 and 2Ji=300 � 2:3 indicate the formation of active groups that
respond hierarchically to 2 and 1 classes. On the other hand, from m < 3 there is
an increasing number of changes of active groups, Tran. Thus, class C1 captures
4 neural elements (see Figure 5 for m � 3; 2; 1 and 0) such that with m � 2 the active
groups must contain Ngp � m� 1 � 3 elements, and so the random presentation
of the stimulus vectors in class C1 has the possibility of randomly activating any
group of 3 neurons formed from the 4 that are located within class C1. By this pro-
cess, the number of changes on the active groups increases and the random pro-
duction of intraclass stimuli can be detected. In an analogous fashion, when
m � 2, the C2 class captures 3 neurons and the Tran value increases when there
is a greater number of groups that can be randomly activated with the C1 class.
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These measurements enable us to obtain relevant information about the
spatio^temporal structure of the stimuli and to determine whether a particular pro-
duction of stimuli is random or has an intrinsic spatio^temporal structure that
can be assimilated to type SC or TR. To demonstrate such a discrimination, Figure
9 gives the results of MTmax and Tran obtained from the experiment described
in Figure 5 when RND-type epochs are applied. The differences from the results
given in Figure 8d are evident; it can be seen immediately, i.e. from
m < Neuÿ 1 � 8, that the behaviour of the stimuli is random, in accordance with
the low values of MTmax and the increasing Tran values. When the stimuli are type
SC or TR with SiJi comparable to the number of neurons, the formation of groups
with signi¢cative AMT is indicative of correlations that have been produced between
the sequences of winning neurons in these groups and the presentation sequence of
different classes of input vectors.

This fact is clearly apparent when SiJi � m� 1, as the neural elements are divided
into subsets of neurons where each subset learns with a speci¢c class of stimulus
vectors. When this occurs, we observe sudden expansions of the weight vectors, such
as when m � 8 in the experiment described in Figure 6. One important aspect to note
is that the desired correlations may be induced, by deliberately establishing a depen-
dence on m�k� and a spatio^temporal structure of the stimuli that induces the learning
of known neurons with particular classes of stimuli. This process is termed induced
supervised learning. Figure 10 illustrates a simple example of this learning, where
the epochs are prepared as follows: Epo�k� � SC�JiCi with Ji � J � 3;
i � 1; . . . ; 5�p; number of neural elements Neu � SiJi � 15; initial values
ti�0� � i ÿ 1ÿNeu with i � 1; . . . ;Neu and the list Lm � fNeuÿ 1 � 14;
J ÿ 2 � 1; J ÿ 3 � 0g to induce sets of J neurons per class such that the units Us with

Figure 9. Measurements for MTmax and Tran obtained by reproducing the experiment from Figure 5 with
RND epochs.
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s 2 �J � �zÿ 1� � 1; J � z� learn with vectors of the class Cz. This ¢gure shows how the
weight vectors are directed, from the start, to their respective classes and how they
subsequently evolve in the local quantization of these classes.

4. Discussion

This paper presents a neural network model with competitive learning based on the
temporal inhibition of its elements for a controllable time after the emission of action
potentials. Taking into account the behaviour described in Section 3 and in [3], the
applicability of the basic learning algorithm to typical applications of vector
quantization is evident; it provides an ef¢cient mechanism to `drag' the weight
vectors towards the regions where input stimuli are produced (Figures 3, 5, 6).
Naturally, there exist other neural network models and VQ algorithms that achieve
this result, but these are more complex than SOTIb, both from the computational
viewpoint and in terms of their physical implementation. For example, in the cases
of Self-Organizing Maps [4] and Growing Cell Structures [5], a neighbourhood
of neural elements is de¢ned for each winning unit, which requires the adaptation
not only of the winning neuron but also of all those in its neighbourhood. These
requirements do not exist with SOTIb. Another example is the case of the algorithms
developed in [6], where learning must be carried out for sets of neurons that have to
be ordered previously according to the distance of the weight vectors from the input
vector presented during each iteration. Many other algorithms could be cited to
demonstrate the relative simplicity of SOTIb. Morever, we have stressed the fact
that the Post_Fire inhibition represents a simple mechanism which, in addition to
being biologically plausible, produces self-organized neural responses (Figure 8)

Figure 10. Induced supervised learning. Epochs are deliberately prepared to direct the learning process,
such that 3 neurons are dedicated to each class. It is possible to identify, a priori, which neurons
will learn with the vectors from a particular class.
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with a high information content. In this sense, the properties of the temporal
inhibition mechanism, as shown in Section 3, provide the basis for exploiting
the SOTIb model. The dynamics of the formation of active groups and their depen-
dence on the degree of Post ___ Fire inhibition, as well as the ability to detect such
groups and obtain measures of their absolute maintained time and changes of
the active groups, justify the applicability of SOTIb to processes such as the
extraction of intrinsic spatio^temporal features of stimuli (Figures 6, 8), pattern
segmentation (Figures 8a,c) and induced supervised learning (Figure 10). The Post-
_Fire inhibition mechanism here described is also useful in a supervised learning con-
text [3, 7].
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