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Abstract: This paper presents a framework for the self-organization of swarm systems based 

on coupled nonlinear oscillators (CNOs). In this scheme, multiple agents in a swarm self-

organize to flock and arrange themselves as a group using CNOs, which are able to keep a 

certain distance by the attractive and repulsive forces among different agents. A theoretical 

approach of flocking behavior by CNOs and a design guideline of CNO parameters are 

proposed. Finally, the formation scenario for cooperative multi-agent groups is investigated to 

demonstrate group behaviors such as aggregation, migration, homing and so on. The task for 

each group in this scenario is to perform a series of processes such as gathering into a whole 

group or splitting into two groups, and then to return to the base while avoiding collision with 

agents in different groups and maintaining the formation of each group. 
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1. INTRODUCTION 
 

The field of cooperative mobile agents or robots offers 

an incredibly rich application domain, integrating a huge 

number of fields that are distinct from the social sciences 

and engineering. That so many theories have been 

brought to bear on “cooperative robotics” clearly shows 

the energy and allure of the field. Yet, cooperative 

robotics is still an emerging area with open directions. It 

is generally believed that proper organization of swarms 

of cooperating mobile agents provides significant 

benefits over single unit approaches for various missions. 

For specific tasks, cooperating agents do not need to be 

sophisticated or expensive to compete with their 

advanced independent counterparts. In addition, the 

integrated multi-agent systems facilitate increased 

mobility, survivability, sensor coverage and information 

flows.  

A swarm is a distributed system with a large 

number of autonomous agents [1]. In [2], many 

simple agents occupied one or two dimensional 

environments and were able to perform tasks such as 

pattern generation and self-organization. Self-

organization in a swarm is the ability to distribute 

itself “optimally” for a given task, e.g., via geometric 

pattern formation or structural organization. The 

mechanisms for self-organization in swarms are 

studied in [1,3].  

Multi-agent systems are becoming more and more 

significant throughout industrial, commercial and 

scientific applications [4,5]. The number of agents 

currently being used in industrial projects is rapidly 

increasing. The rate of scientific and industrial 

development has made way for the use of robots in 

many fields [9]. Numerous solutions to problems 

including path planning [20], obstacle avoidance [21] 

and target-following [18,19] have been proposed and 

tested. However, the increased cost for each unit and 

the complications accompanying the escalating 

number of group members are the two major factors 

limiting those system-theoretic efforts.  

Some research has been performed to investigate 

flocking by autonomous mobile agents [16,17]. [16] 

presented a simple flocking task and described a 

leaderless distributed flocking algorithm. However, 

off-line optimization is required to optimize the 

leaderless performance. [12] and [13] show that 

simple behaviors like avoidance, aggregation and 

dispersion can be combined to create an emergent 

flocking behavior. Other recent related papers on 

formation control include [14] and [15]. [15] 

simulates robots in a line-abreast formation navigating 

past way points to a final destination. Using the 

terminology introduced in this article, agents utilize a 

leader-referenced line formation. Although several 

attempts have been made to study various groups of 

formations or behaviors, there exists no developed 

study on the formation and migration among multi-

agent groups. On the other hand, over the past few 

years much attention has been attracted to the 

behavior-based reactive systems [22]. Behavior-based 

intelligences are motivated by natural species and can 

show great adaptability and robustness to the time-
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varying environment with relatively simple algorithms, 

as well as correspondingly low computation costs 

during real-time operations [6].  

Recent research results indicate that a variety of 

nonlinear systems can exhibit self-organization, 

reactive behavior to external stimulus and pattern 

formation [7,8]. More specifically, CNOs have been 

extensively studied for their simplicity to implement 

and exhibit a wide variety of novel and complex 

spatiotemporal behaviors. In [10], it was reported that 

by using a nonlinear oscillator scheme a sequence of 

basic behavior such as random walking, obstacle 

avoidance and light following could be coordinated in 

a single robot to achieve more complicated behavior. 

However, these behavior-based computational organizat-  

ions lack insightful comprehension to the problems 

and sometimes exhibit unpredicted and undesirable 

performances. They require a great deal of time to be 

trained for selection of proper parameter values in 

different working environments [10]. These schemes 

should be combined in a certain trade-off and might 

be employed at various levels of different scenarios 

for a future hierarchically architectural and multi-

strategy adaptive intelligent system consisting of a 

swarm of inhomogeneous mobile agents.  

In this paper, a self-organized scheme based on 

CNOs for a swarm agent system is proposed and 

explored. This scheme shows that mobile agents flock 

using attractive force, and arrange using both 

attractive and repulsive force. As well, swarm 

behavior ensures safe separation between swarm 

members while enforcing the level of cohesion. The 

purpose of this study is to determine the theoretical 

approach of flocking behavior by CNOs for multi-

agent groups and to propose design guidelines of 

CNOs parameters. In addition, it is specifically to 

obtain global behaviors with flexibility and scalability 

by using simple local individual rules. This scheme, 

aided by the relative distance of the nearest agent in 

the same group, does not require that each agent is 

aware of the distance from the farther agent in the 

same group. Moreover it is extended to introduce self-

organization in multi groups unlike previous studies 

dealing with self-organization in a single group. 
 

 2. THE PROPOSED ALGORITHM 
  

In this section, a self-organized swarm system 

controlled by CNOs is presented for the group 

formation. The method for group migration is also 

described and the virtual zone is developed to avoid 

conflict between agents.  
 

2.1. The swarm model 

Suppose the point mass model in which the 

individuals move based on Newton’s law ij ij ijm a F=  

where subscripts i  and j  are defined as the i th 

group and the j th agent respectively, and ijm , ija , 

and ijF  are the mass and acceleration of the agent 

and the force acting to cause the agent’s acceleration 

respectively. This gives rise to the system of motion 

equations  

 

,

,

ijij

ijij ijm u

=

=

vy

v
 

 

where ijy  is the position of the j th agent in the 

i th group, and ij iju F=  is total force acting on the 

individual agent. Now, suppose there is a velocity 

damping term of the form v ijk− v  in iju , where 

0vk > . In other words, assume that we have  

ijij v iju k u= − +v .                       (2) 

Now, note that for organisms such as bacteria we have 

ijm , which is very small (i.e., we have 0ijm ≈ ) and 

the viscosity of the environment for them is high. 

Therefore, we can take 0ijm = . Substituting this in 

the above system of equations we obtain  

1
ijij

ij

u
k

= .y                             (3) 

If we consider with 1vk =  and ij iju U= −∇ , we 

have the equation of motion of each individual i  

described by  

ij ijU= −∇y ,                           (4) 

where U  is the artificial potential energy in the 

system and is given by Section 2.  

For a planar formation on multiple vehicles, similar 

dynamics are used in [11]. Note that the controller 

iju  is an energy minimization controller of the form 

ij iju U= −∇ . Therefore, each of the individuals in the 

swarm moves in such a way as to minimize the total 

artificial potential energy in the system.  

The agent model is based on the premise that in the 

near future technology will allow the production and 

deployment of large-scale masses of agents. The 

agents will be small. They will likely possess only 

basic capabilities and mission specific sensors. Direct 

communication between agents may or may not exist. 

The environment model is very “object-oriented” in 

its approach to agent construction. Sensors and 

behaviors are encapsulated when possible. This 

approach allows individual components to be added 

(1)
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and removed from the model as if the corresponding 

physical component were being added to or removed 

from an actual agent. We restrict the workspace to 

two-dimensional space. The robot moves in [ ]xy  

plane. The proposed method could also be extended to 

a more complex three-dimensional space later on.  

One drawback of the model here is that each 

individual needs to be aware of the nearest agent in 

the group. In biological swarms, often each individual 

can only see (or sense) the individuals in its 

neighborhood because the ranges of their senses are 

limited. Therefore, in nature the attraction depends 

only on the individuals that it can sense. Therefore, 

the final behavior of the swarms described here may 

not be in perfect harmony with actual biological 

swarms. Moreover, in engineering applications the 

sensing limitations of the agents can be overcome 

with technologies such as GPS (Global Positioning 

System). The proposed swarm model can be thought 

of as a group of agents that know the position of the 

nearest agent and the position of a target. Nevertheless, 

the analysis here is first to apply CNOs and deal with 

theoretical treatments of the stability for self-

organization of swarms.  

The formation and maintenance of coherent group 

movement has long been studied in natural systems, 

and more recently efforts have been made to reproduce 

this type of behavior in artificial systems. The first 

such work appeared in the context of computer 

animation, and since then this behavior has been 

extensively studied in simulation [24]. It has 

successfully synthesized bird behaviors such as 

collision avoidance, velocity matching and flock 

centering. To avoid collision with other birds and 

obstacles, birds use the steer-to-avoid rule. However, 

theoretical treatments or analysis of flocking behavior 

have not been presented. Such a model is only used as 

a computer model of coordinated animal motion such 

as bird flocks and fish schools for simulating visually 

satisfying flocking and schooling behaviors for the 

animation industry. The model was based on three 

dimensional computational geometry of the sort 

normally used in computer animation or computer 

aided design. As such, the generic simulated flocking 

creatures became known as boids. Other experiments 

by the same author [24] have been conducted by 

evolving groups of artificial creatures. [30] evolved 

the control system of a group of creatures placed in an 

environment with static obstacles and a manually 

programmed predator for the ability to avoid obstacles 

and predation. Despite the fact that the results 

described in the paper are rather preliminary, some 

evidences indicate that coordinated motion strategies 

were beginning to emerge. The problem is how to get 

the developed boid system to satisfy the theoretical 

analysis of flocking behavior. In the next Section, a 

self-organized swarm system based on CNOs is 
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Fig. 1. The force and potential between two agents. 

 

proposed and explored.  

 

2.2. To maintain the group formation 

Artificial potential methods have been previously 

used for obstacle-avoidance path planning [25-27]. In 

the last decade, they have been extended to group 

behaviors such as swarming and aggregation of 

autonomous mobile agents. However, most of the 

previous studies deal with multiple agents that belong 

to only one group, not multiple groups. In this study, 

the interaction of group behaviors in multi groups are 

dealt with and the virtual zone is proposed to avoid 

conflict among the agents of different groups. 

Previous studies have used artificial potential 

functions within restricted relative distance among 

agents [28,29] because their corresponding attractive 

force also increases as the relative distance increases. 

For this reason, saturated maximal attractive force or 

restricted distance in implementation was needed.  

The CNO that has simple interaction potential 

operates among the self-organization agents to keep 

the group formation. It is modeled as follows.  

2( || || / )ij ij irl
ij irU c e

− −= y y
2( || || / )ij ij ial

iac e
− −− y y

,   (5) 

where iac , irc , ial , and irl  are the strengths and 

correlation distances of the attractive and repulsive 

force respectively, and ijy  is the position of the 

nearest agent from the j th agent in the i th group.  

From (5) we obtain corresponding force  

2

2

( || || / )

( || || / )

2 ( )

2 ( ).

ij ij ir

ij ij ia

lir
ij ij ij ij

ir

lia
ij ij

ia

c
F U e

l

c
e

l

− −

− −

= −∇ = −

− −

y y

y y

y y

y y

 (6) 

Fig. 1 shows the attractive and repulsive force 

between two agents where || ||ij ijr = −y y , 

lnir ia ir ia
c

ia ir ia ir

l l c l
r

l l c l
=

−
, and ijU∇  and ijU  signify the 
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force and potential, respectively. cr  is the minimum 

distance in order to maintain a distance between two 

agents. 

Each time, the individual agent evaluates its 

potential profile and decides its force using the 

gradient descent method. Attraction is modeled by an 

attractive field, which draws the charged agent 

towards the nearest agent. The agent simply moves 

downhill in the direction provided by the local field 

gradient in Fig. 1. Then it maintains constant distance 

cr  by a repulsive field.  

Remark 1: The following issue may be raised. The 

attractive force in Fig. 1 decreases as the distance 

increases over a particular range of distance. Also, the 

repulsive force decreases as the distance decreases 

under a particular range of distance. In the proposed 

CNO scheme, in order to control the relative distance 

between two agents, there should be a negative sign 

for attractive force and a positive sign for repulsive 

force, respectively. Thus, unless attractive force 

converges to zero as relative distance increases, its 

potential function based on the gradient decent 

method is not constituted. For this reason, it is not 

possible for the entire region to increase the attractive 

force as the distance increases, in terms of the 

configuration of a potential function. Such a behavior 

based on CNOs could be a drawback. However, from 

a biological aspect, the behavior of the agent to move 

slowly over a long relative distance and the behavior 

of the agent to move quickly over a short relative 

distance, when the relative distance is longer than cr , 

corresponds to the swarming process of collective 

behavior in nature. When it comes to the decreasing 

repulsive force under a particular distance range, 

because it is applicable to the agents initially 

positioned at less than the relative distance mr  

between two agents, it is not an important issue. Also, 

small irl  can be used to reduce the region of 

decreasing repulsive force. 

Now let us analyze swarm cohesion and investigate 

how to set the design guidelines of their scaling 

factors in CNOs satisfying such a swarm behavior, 

based on Lyapunov stability.  

Theorem 1: For formation force (6), 

( ) ( )c
ij ijt ε→y Β y  as t →∞ , where  

1
( ( )) { :|| || }

2

c c
ij ij ij ij ct rε = − ≤Β y y y y         (7) 

and the center of two agents is defined as 
1
2

( )c
ij ij ij= +y y y .  

Proof: We define the distance between ijy  and 

c
ijy  as c

ij ij ij= −e y y . From the definition of the 

center of two agents, we have 2 c
ij ijij+ =y yy . 

Subtracting from both sides 2 ijy  we obtain  

( ) 2( ) 2c
ij ij ij ijij− = − = .y y y ey              (8) 

The error equation can be written as  

 

2

2
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since we obtain 
2

1

1
0

2
ijj

U= ∇ =∑  which follows 

from the fact that 

2( || || / )
2 ( )ij ij irlir

ij ij
ir

c
e

l

− − −y y
y y )/||||( 2

2 iaijij l

ia

ia e
l
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( )ij ij−y y
2( || || / )

2 ( )ij ij irlir
ij ij

ir

c
e

l

− −+ −y y
y y 2 ia

ia

c

l
−   

2( || || / )
( ) 0ij ij ial

ij ije
− − − =y y

y y . 

Defining a Lyapunov function as 
2|| || / 2ij ijV = e / 2T

ij ij= e e  and using (9), we obtain  

2 2( 4|| || / ) ( 4|| || / )24 || || [ ].ij ia ij irl lia ir
ij ij

ia ir

c c
V e e

l l

− −≤ − −e e
e (10) 

For the right-side to be negative definite, 
2 2( 4|| || / ) ( 4|| || / )ij ia ij irl lia ir

ia ir

c c
e e

l l

− −>e e
. Using the natural 

logarithm function 24 || || ln( )ir ia ir ia
ij

ia ir ia ir

l l c l

l l c l
>

−
e  gives  

1
|| || ln( )

2

ir ia ir ia
ij

ia ir ia ir

l l c l

l l c l
>

−
e ,            (11) 

 

that is, 2 || ||ij cr r> >e . There exists a constant cr  

such that for 
cij rr >> ||||2 e  we obtain 0iV < . 

Thus, it is guaranteed that in that region |||| ije  is 

decreasing and eventually 
cij r

2

1
||| ≤e  is achieved.   

(9)
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Theorem 2: For ia irl l>  and ( ) 1

l lir ia
l lir ia ia ir

ia ir

c l

c l

− >  in 

(5), each agent can maintain its distance from the 

other agents by repulsive and attractive forces.  

Proof: 1) Repulsive force  

In Fig. 2, we suppose that ijy  and ijy  are 

located in 1 1( )x y,  of the top-left plane and 2 2( )x y,  

of (0,0), respectively. Here 2 2( )x y,  is the position of 

the nearest agent from ijy . If we assume cr r< , 

1 1( )x y,  of ijy  gets a repulsive force to 0x ijU−∇ <  

and 0y ijU−∇ > .  

Considering x  and y  separately in (6) gives  
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  (12) 

 

1 2 0x x− <  and 1 2 0y y− >  give 
2

1 2( )ir ir

ir

c x x l

l
e
− − / >  

2
1 2( )ia ia

ia

c x x l

l
e
− − /

and
2 2

1 2 1 2( ) ( )ir iair ia

ir ia

c cy y l y y l

l l
e e
− − / − − /> , 

respectively. Using natural logarithm function 

give 2
1 2ln( ) ( )ir ia ir ia

ia ir ia ir

l l c l

l l c l
x x− > − , 2

1 2ln( ) ( )ir ia ir ia

ia ir ia ir

l l c l

l l c l
y y− > − , 

respectively. Combining both equations gives 

 

ln( ) || ||ir ia ir ia
ij ij

ia ir ia ir

l l c l

l l c l
> −

−
y y             (13) 

 

, i.e. cr r> . Thus, when cr r< , 1 1( )x y,  of ijy  

gets the repulsive force between two agents of 

1 1( )x y,  and 2 2( )x y, . Using the identical procedure, 

it can be proved whether 1 1( )x y,  of ijy  is located 

on the top-right, bottom-left or bottom-right plane.  

 

2) Attractive force  

If we assume cr r> , 1 1( )x y,  of ijy  gets an 

attractive force to 0x ijU−∇ >  and 0y ijU−∇ < .  

Considering x  and y  separately gives 
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that is, cr r< . Thus, when cr r< , 1 1( )x y,  of ijy  

gets the attractive force between two agents of 

1 1( )x y,  and 2 2( )x y, . Using the identical procedure, 

in the same manner it can be proved whether 1 1( )x y,  

of ijy  is located on the top-right, bottom-left or 

bottom-right plane.                            

Thus, if one agent is far from another agent on the 

basis of cr , the agent is drawn to another agent by 
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attractive force. On the other hand, if the distance 

between individual agents is too close on the basis of 

cr , they are able to keep a certain distance as a result 

of repulsive force. Thus, each agent possesses the 

characteristic of flocking to keep the formation while 

ensuring safe separation between swarm agents.  

The nonlinear paradigm of CNOs allows for 

smooth transitions between behaviors, giving a high 

degree of control over robot performance, unlike 

[28,29] giving unsmooth transition. Moreover it does 

not need to saturate attractive forces compulsively in 

the case of a large relative distance, neither does it 

require restricted relative distance, unlike in quadratic 

potential functions [28,29]. As for planar functions, 

their corresponding forces are constants as relative 

distance increases, signifying the same force for any 

relative distance and allowing the switching 

phenomenon near a desired relative distance. As for 

quadratic functions, their corresponding forces  

proportionally increase as relative distance increases, 

which is not practically implementable over the 

complete relative distance range and also requires 

saturated attractive forces over a long relative distance.  

Remark 2: There is a primary difference between 

the work of C. Reynolds (boid model) [24] and our 

work. Reynolds’ boid system does not encompass 

theoretical treatments or the analysis of formation 

behavior. However, the proposed study shows the 

theoretical approach of flocking behavior by CNOs, 

artificial potential functions based on gradient descent 

method, and also proposes the design guideline of 

CNO parameters as shown in Section 2.2. As a result, 

the proposed scheme using CNOs is completely 

different from that of his work merely illustrating 

visual simulating motion satisfying a flocking 

behavior for the animation industry.  

 

2.3. To avoid conflict between agents and to maintain 

the group migration 

The worst-case scenario is that the agent of one 

group may conflict with the agent of another group. 

Thus, an additional algorithm is required. The virtual 

zone is proposed to avoid conflict among the agents of 

different groups. If one agent located in ( 1 1x y, ) 

approaches near enough to conflict with the agent of a 

different group located in ( 2 2x y, ), the agent located 

in ( 1 1x y, ) keeps its distance dr  as follows  

1 2
1 1 1 2

1 2
1 1 1 2

( )
' ( ),

( )
' ( ),

d
o

d
o

x x
x x r x x

r

y y
y y r y y

r

−
= + − −

−
= + − −

    

where 1 'x  is the new value of 1x , 1 'y  is the new 

value of 1y , dr  is the radius of the virtual zone, i.e., 

a desired distance between the centers of the two 

agents, and 2 2
1 2 1 2( ) ( )or x x y y= − + − .  

Fig. 3 illustrates that the agent located in ( 1 1x y, ) 

cannot be closer than 1 1( ', ')x y  when it approaches 

the other agent located in ( 2 2x y, ). In the next chapter, 

the worst-case scenario is dealt with.  

The behavior of migration in this study is distinct 

from that of formation control (e.g. [23]), because the 

goal of migration is simply to achieve and maintain 

coherent group movement rather than to govern well 

organized inter-agent position relationships. Also, 

formation control is not an end in itself, but rather can 

be used as a component of a multi-agent system, 

organizing the nodes of a distributed sensing system.  

The PD type controller is used for group migration.  

t
ijt

ij p ij d

d
V K K

dt
= +

e
e ,                  (17) 

where pK  and dK  are the proportional and 

derivative gains, t t
ij ij i= −e y y  and t

iy  is the desired 

positions of the agents in i th group.  

The approach taken for formation does not require a 

central controller, which is an important characteristic 

of a self-organizing system. Instead, an assumption is 

needed that each agent can detect signals from the 

others. Each agent determines the positions of its 

peers by direct perception of the other agents. When 

communication between agents is demanded, the 

agents transmit their current position in world 

coordinates.  

Remark 3: Note that we are not attempting to solve 

possible oscillatory or unstable motion of the agents 

for potential function configuration in narrow 

passages or in the presence of obstacles. We shall 

restrict our attention to propose the formulation of 

CNOs for swarm behavior in single groups and 

multiple groups, and for the design guideline of their 

scaling factors in CNOs satisfying such a swarm 

behavior.  
         

3. FORMATION OF THE SELF-ORGANIZED 

SWARM USING CNOS 
 

Use of CNOs to keep a formation has a great deal 

of flexibility. While maintaining the swarm 

characteristics, the agent can wander about flexibly, 

i.e. it has a nature of self-organized flocking allowing 

it to make a formation dynamically without explicit 

reorganization contrary to [23]. Because the proposed 

approach does not explicitly use the alignment of 

other group members, the individual agent is not 

commanded to be located in a certain position for 

alignment. Moreover, this approach has a good 

(16)
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scalability that adds or removes any number of agents 

easily. Simulations running this algorithm have 

provided very satisfactory results. Some of the results 

are shown in Figs. 4-7. Fig. 4 illustrates flocking at 

(0 0),  when 3707.0=cr . The small dots indicate the 

initial configuration of agents and the big dots 

indicate the configuration of the group after 2=t . 

Randomly initialized 30 agents flock by attractive 

force, and then arrange by attractive and repulsive 

forces. The standard deviation value for the distance 

between an agent and centered-agents is 0.2663. 

Consider the sample run. Fig. 5 shows that the 

randomly initialized 7 agents on the left side of the 

frame immigrate into the right side of the frame. Fig. 6 

illustrates agents moving in for a 90o  turn. In Fig. 6, 

the agents were randomly initialized on the top-left side 

of the simulation environment, then directed to proceed 

to the lower center of the frame. After the formation 

was established, a 90o  turn to the right was initiated. 

Fig. 6 depicts that each agent moved flexibly without 

fixed formation. In the existence of a group of obstacles, 

25 agents are illustrated in Fig. 7. The agents start on 

the left side of the field and move to the right around a 

group of obstacles in the middle of the field. After the 

formation splits around an obstacle, each agent comes 

together. This example shows that the proposed 

algorithm ensures safe separation and good cohesion 

performance among the agents. 

Consider the worst-case scenario in which two 

groups having 7 agents each move across, i.e., the 

agents of one group conflict with the agents of the 

another group. Fig. 8 shows the intersection of the two 

groups. Two agent groups were randomly initialized on 

the top-left and bottom-left side of the simulation 

environment and then directed to proceed to the 

bottom-right and top- right side of the frame, 

respectively. Accordingly, they conflict with each other 

in the middle of the simulation 

environment. Though each agent maintains a distance 

against the other agents within its own group by the 

CNOs, it could potentially conflict with the agents of 

the other group. In this case, the virtual zone is 

effective. Fig. 9 is the snap shot of Fig. 8 in the middle 

of the simulation environment. It shows that all of the 

agents keep their distance without bumping into one 

another due to the virtual zone. 

 

4. FORMATION SCENARIO FOR 

COOPERATIVE MULTI-AGENT GROUPS 
 

The proposed formation scenario for cooperative 

multi-agent groups shows basic group behaviors such 

as aggregation, dispersion and migration, and also 

complex group behaviors such as homing, flocking 

and arranging. It is supposed that, in this scenario, 

there are four multi-agent groups in which each group  

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X

Y

 
Fig. 4. Flocking when 3707.0=cr . 
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Fig. 6. Following for a 90o  turn. 
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Fig. 7. 25 agents negotiating a group of obstacles in 

the middle of the field. 
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Fig. 8. Intersection of two groups (dot: A group, 

triangle: B group). 
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Fig. 9. Snap shot of Fig. 8 (dot: A group, triangle: B 

group). 

  

is composed of 7 agents. The purpose of this scenario 

is to obtain the characteristics of aggregation and 

separation among multi-agent groups intentionally 

and randomly. Its procedure is presented below. 

 

•  Procedure  

a. Four multi-agent groups are randomly initialized 

on the left and center side of the simulation 

environment. ⇒ Fig. 10(a)  

b. Each agent group flocks at a certain point and 

then arranges into a large group. ⇒ Fig. 10(b)  

c. The large group immigrates to the right side. ⇒ 

Fig. 10(c)  

d. The large group is separated into two groups by 

random selection. ⇒ Fig. 10(d)  

e. Each agent is segregated from the two groups in 

order to return to the base located in the left and 

center side of the simulation environment. ⇒ Fig. 

10(e)  

f. Each agent joins together in its original group and 

then comes together in a group arrangement. ⇒Fig. 

10(f)  

This mission also includes avoiding collision with 
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Fig. 10. Formation Scenario for Cooperative Multi-

Agent groups. 
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other agents and maintaining a formation, typically in 

the context of a higher-level mission scenario. It is 

very similar to the group characteristics of birds, i.e. a 

series of process (flocking, aggregation, migration and 

homing) [24].  

Each agent from every group is physically and 

functionally identical. Therefore, new agents can be 

added to the team whenever necessary. The proposed 

approach is designed for a broad range of tasks, not 

for a specific task in current multi-agent systems. 

They can be adapted to various tasks with minimal 

structural changes. Individually, agents have limited 

capabilities and limited knowledge of the environment. 

However, as a swarm, they can exhibit “intelligent 

behavior”. Simple individual behavior will result in an 

intelligent swarm behavior provided that some type of 

direct or indirect communication between agents 

exists. Examples from possible military applications 

for multiple groups through various maneuvers 

include swarm bombs or troop agents. In particular, it 

is highly effective for swarm bombs that have come 

out of their shell and need to self-organize to the 

specified region containing its individual group that is 

different from the region for the other groups in the 

same bomb.  

 

5. CONCLUSIONS 
 

 This paper presents a design framework based on 

CNOs for multi-agent groups. An analytical approach 

to self-organization for multi-agents and design 

guidelines has been proposed and studied. In this 

scheme, flexible formation based on CNOs and the 

virtual zone makes each agent in a swarm split against 

collision with agents of the other groups while 

migrating, and then allows it to flock to each 

individual group. Thus, the proposed approach does 

not require specified formation and each agent is self-

organized according to the given environment by 

flexible and simple formation for an individual group. 

Global behaviors such as formation and migration 

among multi-agent groups can be obtained by using 

the simple local individual interactive rules. The 

framework is fully scalable for the distributed control 

that operates independently of the size of the group. 

As well, initial arrangement for the formation is not 

required since each agent tries to flock after it is 

positioned randomly at initial state. The proposed 

CNO is applicable to the entire relative distance 

between the agents, without restricting the distance or 

requiring any compulsively saturated distance. 

Although self-organization for multi-agent groups in 

two-dimensional environment has just been studied, 

the method could be extended to a more general 

scenario in three-dimensional space. With the 

proposed concept and system structure, further 

scenarios including cooperation with group agents and 

migration in more complicated environments can be 

additionally studied. 
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