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Adiabatic invariants foliate phase space, and impart a macro-scale hierarchy by separating
microscopic variables. On a macroscopic leaf, long-scale ordered structures are created while
maximizing entropy. A plasma confined in a magnetosphere is invoked to unveil the organiz-
ing principle—in the vicinity of a magnetic dipole, the plasma self-organizes to a state with a
steep density gradient. The resulting nontrivial structure has maximum entropy in an appropri-
ate, constrained phase space. One could view such a phase space as a leaf foliated in terms of
Casimir invariants—adiabatic invariants measuring the number of quasi-particles (macroscopic
representation of periodic motions) are identified as the relevant Casimir invariants. The den-
sity clump is created in response to the inhomogeneity of the energy levels (frequencies) of the
quasi-particles.
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1. Introduction

The process of self-organization of a structure may appear to be an antithesis of the maximum entropy
ansatz, yet various nonlinear systems display what may be viewed as the simultaneous existence of
order and disorder. This co-existence begins to make sense if the self-organization processes and
the entropy principle were to manifest on different scales; disorder can still develop at a microscopic
scale while an ordered structure emerges on some appropriate macroscopic scale. Writing a theory of
self-organization, then, will be an exercise in delineating and understanding the characteristic scale

hierarchy of the physical system.
A biological body is a typical example in which an evident hierarchical structure is preprogrammed

enabling effective consumption of energy and materials as well as emission of entropy and waste.
A physical macro-system—a collective system of simple elements (a gravitational system, a plasma,
etc.)—is anchored on a different framework. The automatic emergence of a scale hierarchy is not
programmed; yet the controlling nonlinear dynamics can mimic a fundamental process of creation.

In this paper we develop a new framework to expose the creation process in action. The ordering
principle is generally epitomized in a constraint—a possible conservation law—that, by restricting
the class of motions available to the system, limits its ability to degenerate into general disorder.
The effective phase space (ensemble) limited by such a constraint is the relevant macro-hierarchy on
which nontrivial structures emerge. By invoking the geometrical notion of Hamiltonian mechanics,
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we formulate a macro-hierarchy as a Casimir leaf of foliated phase space, i.e., the level-set of a
Casimir invariant [1]. The connection between the notion of scale hierarchy and a Casimir invariant
(an a priori geometrical structure of the phase space) is built by identifying a Casimir invariant as an
adiabatic invariant; the adiabaticity criterion, then, determines what is macro. After the microscopic
action is separated, the macroscopic object, which we call a quasi-particle, resides on a Casimir
leaf. We will construct the Boltzmann distribution of quasi-particles on a Casimir leaf. The Casimir
invariant represents the number of quasi-particles, which is the determinant of the corresponding
grand canonical ensemble. Interestingly, heterogeneity (structure) is created by the distortion of the
metric (invariant measure) dictating equipartition on the leaf.

Basic physical mechanisms and processes that embody our general framework of describing
macro-hierarchy and self-organization will be brought to light via investigations of a magnetospheric
plasma. Magnetospheric plasmas (naturally occurring ones such as the planetary magnetospheres
[2–4], as well as their laboratory simulations [5–8]) are self-organized around the dipole magnetic
fields in which charged particles cause a variety of interesting phenomena: the often observed inward

diffusion (or uphill diffusion) of particles injected from the outer region is of particular interest. This
process is driven by some spontaneous fluctuations (symmetry breaking) that violate the constancy
of angular momentum. In a strong enough magnetic field, the canonical angular momentum Pθ is
dominated by the magnetic part qψ : the charge multiplied by the flux function [in the (r, θ, z) cylin-
drical coordinates,ψ = r Aθ , where Aθ is the θ component of the vector potential]. The conservation
of Pθ ≈ qψ , therefore, restricts the particle motion to the magnetic surface (level-set ofψ). It is only
via randomly phased fluctuations that the particles can diffuse across magnetic surfaces. Although
the diffusion is normally a process that diminishes gradients, numerical experiments do exhibit pref-
erential inward shifts through random motions of test particles [9,10]. Detailed specification of the
fluctuations or the microscopic motion of particles is not the subject of the present effort. We plan
to construct, instead, a clear-cut description of equilibria that maximize entropy while simultane-
ously bearing steep density gradients. Such an equilibrium will be formulated as a grand canonical
distribution on a leaf of foliated phase space that represents a macro-hierarchy. In a strongly inho-
mogeneous magnetic field (typically a dipole magnetic field), the phase-space metric of magnetized

particles is distorted; thus the projection of the equipartition distribution onto the flat space of the
laboratory frame yields a peaked profile because of the connecting inhomogeneous Jacobian weight.

2. General Framework

2.1. Preliminaries: Poisson algebra and Casimir invariants

A general Hamiltonian system is endowed with a Poisson bracket {a, b} satisfying antisymmetry
{a, b} = −{b, a}, Jacobi’s identity {{a, b}, c} + {{b, c}, a} + {{c, a}, b} = 0, and Leibniz’s property
{ab, c} = a{b, c} + b{a, c}. Let z ∈ X = R

n denote a state vector (here we assume that the phase
space X is an n-dimensional Euclidean space), and ∂z the gradient in X . An observable is a real
function on X . We may represent a Poisson bracket as

{a, b} = 〈∂za,J ∂zb〉, (1)

where 〈u, v〉 is the inner product of X , and J (Poisson operator) is an antisymmetric n × n matrix
(then the antisymmetry and Leibniz’s property are satisfied, while Jacobi’s identity is conditional [1]).
Given a Hamiltonian H , the evolution of an observable f (z) is described by

d

dt
f = { f, H}. (2)
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In a canonical Hamiltonian system, the Poisson operator is a symplectic matrix; writing the state
vector as z = (q1, p1, . . . , qm, pm),

Jc :=

⎛
⎜⎝

Jc 0 0

0
. . . 0

0 0 Jc

⎞
⎟⎠ , Jc :=

(
0 1

−1 0

)
. (3)

Because Ker(Jc) = {0}, the equilibrium point is given by ∂z H(z) = 0. As we see in many exam-
ples of so-called weakly coupled systems, Hamiltonians are rather simple—they are often norms of
the phase space—and thus the equilibrium points are at most trivial (remember the example of a
harmonic oscillator).

A general Hamiltonian system may allow the Poisson operator J to be nontrivial; it may be a
function of z, and, moreover, may have a nontrivial kernel Ker(J ) = {u ∈ X; J u = 0}. A nontrivial
kernel introduces an essential noncanonicality to the system, and brings about interesting structures
(Sect. 2.2). If

∂zC ∈ Ker(J ), (4)

such a C(z) is called a Casimir invariant (or a center of the Poisson algebra). Evidently, {C,G} = 0
for every G(z). Hence, by (2), dC/dt = 0 , i.e. C(z) is a constant of motion.

Notice that the constancy of C(z) is independent of the choice of Hamiltonian, a clear contrast to
the more usual invariant that is related to a symmetry of a Hamiltonian. In later discussion, however,
we will connect a Casimir invariant to an adiabatic invariant, and then the constancy of a Casimir
invariant will be interpreted as a result of a micro-scale (coarse-grained) symmetry of a Hamiltonian.

Remark 1. Obviously, if RankJ (z) = n (the dimension of the phase space), (4) has only a trivial

solution (C = constant). If the dimension ν of Ker(J (z)) does not change, the solution of (4) may

be constructed by “integrating” the elements of Ker(J (z))—then the Casimir leaves are symplectic

manifolds. This expectation turns out to be true as far as the Poisson bracket satisfies Jacobi’s identity

and n − ν is an even number (Lie–Darboux theorem). However, the point where RankJ (z) changes

is the singularity of PDE (4), from which singular Casimir elements are generated [11–13].

2.2. Energy-Casimir function

When we have a Casimir invariant C(z) in a noncanonical Hamiltonian system, a transformation of
the Hamiltonian H(z) such as (with an arbitrary real constant μ)

H(z) �→ Hμ(z) = H(z)− μC(z) (5)

does not change the dynamics. In fact, the equation of motion (2) is invariant under this transforma-
tion. We call the transformed Hamiltonian Hμ(z) an energy-Casimir function [1].

Interpreting the parameterμ as a Lagrange multiplier of variational principle, Hμ(z) is the effective
Hamiltonian with the constraint restricting the Casimir element C(z) to a fixed value (since C(z) is
a constant of motion, its value is fixed at the initial value). Even when a Hamiltonian is simple, an
energy-Casimir functional may have a nontrivial structure. Geometrically, Hμ(z) is the distribution
of H(z) on a Casimir leaf (a surface of C(z) = constant). If Casimir leaves are distorted with respect
to the energy norm, the effective Hamiltonian Hμ(z) may have complex distribution on the leaf,
which is, in fact, the origin of various interesting structures in noncanonical Hamiltonian systems.
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2.3. Grand canonical ensemble

The foliated phase space of a noncanonical Hamiltonian system can be viewed as an ensemble of a
constrained system—a Casimir invariant, representing the constraint, is often regarded as a “charge”
of the system (the conservation of charge is an a priori condition of dynamics, which is independent
of the Hamiltonian). To formulate the statistical mechanics for such a system, we consider a grand

canonical ensemble determined by a total charge M , in addition to the standard determinants, the
total particle number N , and the total energy E . The equilibrium is, then, the maximizer of the
entropy S = − ∫ f log f dnz under the constraints on the particle number N = ∫

f dnz, the energy
E = ∫

H f dnz, and the charge M = ∫
C f dnz; the variational principle

δ(S − αN − βE − γM) = 0 (6)

yields a Boltzmann distribution

f (z) = Z−1e−βH−γC , (7)

where Z (= eα+1) is the normalization factor, β is the inverse temperature, and γ /β is the chemical

potential measuring the energy brought about by a change in the charge.

Remark 2. One may interpret (7) as a Boltzmann distribution with two different energies H and

C (with the corresponding inverse temperatures β and γ ). Here, we remember the pioneering work

of Nambu [14], in which a similar grand canonical distribution function was derived for a “gener-

alized Hamiltonian system” with two Hamiltonians on an SO(3) configuration space—the second

Hamiltonian corresponds to a Casimir invariant in the present framework.

2.4. Diffusion on distorted phase space

How a density f depends on the metric of the phase space (n dimensional) is formulated by identi-
fying it as a differential n-form (or an n-covector). It is essential to distinguish an extensive quantity
f and an intensive quantity φ; the former (latter) is an n-form (a 0-form); the former transforms as
[with a Jacobian weight D(y1, . . . , yn)/D(x1, . . . , xn)]

f (x1, . . . , xn) = f (y1, . . . , yn)
D(y1, . . . , yn)

D(x1, . . . , xn)
,

while the latter is independent of the coordinate transformation. This is because f (x1, . . . , xn)dx1

∧ · · · ∧ dxn (instead of f alone) represents a physical number, and is exactly at the core of the
calculus performed in the foregoing subsections.

In the theoretical foundation of statistical mechanics, the invariant measure based on Liouville’s
theorem (corresponding to the Poisson bracket of the system) is of fundamental significance. A dif-
fusion equation (or a collision operator), therefore, must be formulated to be consistent with the
invariant measure. The equilibrium state is, then, given by maximizing entropy with respect to the
invariant measure. Given an invariant measure dx1 ∧ · · · ∧ dxn , the diffusion equations governing
f and φ are, respectively,

∂t f = d(Dδ f ), (8)

∂tφ = δ(Ddφ), (9)

where D is a diffusion coefficient, d is the exterior derivative (gradient), and δ := (−1)n+1 ∗ d∗ is
the codifferential (∗ is the Hodge star operator). Thus, the diffusion of f is a process of flattening
∗ f = f ∗ dx1 ∧ · · · ∧ dxn , while that of φ is simply the flattening of φ. When we observe the
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diffusion on some reference frame with coordinates y1, . . . , yn , the volume element dx1 ∧ · · · ∧ dxn

may be inhomogeneous, and then the diffusion results in creating an inhomogeneous density
f (y1, . . . , yn). In the next section, we will see such an example of a distorted metric caused by
the inhomogeneity in the magnetic field; instead of the conventional Lebesgue measure of the flat
Galilean space, the flux-tube volume is invariant, and this is the root cause of the inward diffusion
observed in magnetospheres (for example, [15] formulates a diffusion equation for the flux-tube
density of a magnetospheric plasma).

The diffusion of f is caused by fluctuations that violate conservation of microscopic data (the initial
conditions of each particle) while conserving the macroscopic invariants that serve as the determi-
nants of a statistical ensemble. What is highly nontrivial is that the diffusion (occurring “inward”
as demonstrated, for example, in an electron plasma [6,7]) is a process creating an inhomogeneous
structure. In a flat (homogeneous metric) space, the equilibrium state is just trivially stable, while
the equilibrium associated with a distorted (inhomogeneous) metric remains stable because the free

energy is constrained by the macroscopic constants. The free energy of a grand canonical system
(the logarithm of the grand canonical partition function) is the sum of the internal energy E and the
coupled “external” energies; the latter are measured by “particle numbers” multiplied by chemical
potentials.

3. Foliation by adiabatic invariants

In the foregoing argument, a Casimir invariant was considered as an abstract constraint on a Hamilto-
nian system; while we called M = ∫

Cdnz a total charge of a grand canonical ensemble, the physical
meaning of such a charge has not been identified. In this section, we study a concrete example
in which a Casimir invariant is equivalent to an adiabatic invariant. The physical meanings of the
foliated phase space and the Boltzmann distribution on it then become clear.

3.1. Hamiltonian of charged particle

As an example of Hamiltonian system that has a hierarchical structure in terms of adiabatic invariants
[16], we study a plasma confined by a magnetic field, and by which we relate Casimir invariants to
adiabatic invariants.

3.1.1. Magnetic coordinates. Here we consider an axisymmetric system with a poloidal (but no
toroidal) magnetic field that can be written as

B = ∇ψ × ∇θ, (10)

where θ is the toroidal angle and ψ is the magnetic flux function (the Gauss potential of B). Let ζ be
the parallel coordinate along each magnetic surface (the level-set of ψ). We can choose (ψ, ζ, θ) as
the coordinates of the configuration space (θ is ignorable in an axisymmetric system). For example,
a point-dipole magnetic field is represented by

{
ψ(r, z) = Mr2(r2 + z2)−3/2,

ζ(r, z) = Mz(r2 + z2)−3/2,
(11)

where (r, z, θ) are the cylindrical coordinates and M is the magnetic moment.

3.1.2. Hierarchy of adiabatic invariants. The magnetized particles have three different adiabatic
invariants, i.e., the magnetic moment μ, the action J‖ of bounce motion, and the action (canonical
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angular momentum) Pθ of the toroidal drift [16]. When the magnetic field is sufficiently strong, the
corresponding frequencies define a hierarchy: ωc (cyclotron frequency) � ωb (bounce frequency)
� ωd (drift frequency). Hence, μ is the most robust adiabatic invariant. On the other hand, the
constancy of Pθ is easily broken by large-scale (∼ system size), slow (� ωd) perturbations destroying
the azimuthal symmetry. In a quasi-neutral plasma (φ = 0), we may estimate |vd|/|vc| ∼ ρc/L �
1 (vc is the gyration velocity, vd is the toroidal drift velocity, ρc is the gyro-radius, and L is the
macroscopic system size). Neglecting vd in Pθ = mrvd + qψ , we may approximate Pθ = qψ .

3.1.3. Hamiltonian. The Hamiltonian of a charged particle is the sum of the kinetic energy and
the potential energy:

H = m

2
v2 + qφ, (12)

where v := (P − qA)/m is the velocity, P is the canonical momentum, (φ,A) is the electromagnetic
4-potential, m is the particle mass, and q is the charge. In the present work, we may treat electrons
and ions equally. In a non-neutral plasma, φ includes the self-electric field that plays an essential role
in determining the equilibrium [6,17].

In order to take into account the aforementioned hierarchy of actions, we invoke a canonical phase
space of action–angle pairs (denoting the gyro angle by ϑc and the bounce angle by ϑb):

z = (μ, ϑc; J‖, ϑb;ψ, θ), (13)

and write the Hamiltonian of a particle as

Hgc = ωcμ+ ωb J‖ + qφ. (14)

Here, we have omitted the kinetic energy of the toroidal drift velocity by approximating Pθ = qψ .1

The gyro angle is coarse grained (averaged out), so it is eliminated in Hgc (i.e., Hgc dictates the
motion of the guiding center of the gyrating particle). In the standard interpretation, in analogy with
the Landau levels in quantum theory, ωc is the energy level and μ is the number of quasi-particles
(quantized guiding center) at the corresponding energy level;2 the term ωcμ in Hgc represents the
macroscopic (classical) energy of the quasi-particles.

3.2. Foliation by adiabatic invariants

3.2.1. Foliation by μ. To extract the macro-hierarchy, we separate the microscopic variables
(ϑc, μ) by modifying the Poisson matrix as

Jμ :=

⎛
⎜⎝

0 0 0
0 Jc 0
0 0 Jc

⎞
⎟⎠ . (15)

1 There is a subtlety in the representation of the energy of the drift velocity if it were retained in the Hamil-
tonian formalism in order to analyze the dynamics (in response to the electromagnetic perturbations) of the
guiding center [18]. While we omit the energy of the drift velocity, we still have a drift velocity; the drift fre-
quency (including all grad-B, curvature, and E×B drifts) is given by bounce-averaging the toroidal angular
velocity, i.e., ωd = dθ/dt = ∂Hgc/∂ψ . In a homogeneous magnetic field, both ωc and ωb are constant, and
then ωd evaluates the E×B drift frequency.

2 To be correct about the dimension of μ, μ/� is the particle number, and �ωc is the energy level, where � is
a certain constant having the dimension of action (which may not be Planck’s constant in the classical regime).
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The Poisson bracket

{F,G}μ := 〈∂z F,Jμ∂zG〉
determines the kinematics on the macro-hierarchy that separates the canonical pair (μ, ϑc).

The nullity ofJμ makes the Poisson bracket { , }μ noncanonical. Evidently,μ is a Casimir invariant
(more generally, every C = g(μ) with g being any smooth function is a Casimir invariant). The
level-set of μ, a leaf of the Casimir foliation, identifies what we may call the macro-hierarchy.

Remark 3. The adiabatic invariantμ appears in several manifestations; it has been called “Casimir

invariant,” “charge,” and “particle number.” Although these names are used synonymously, their

specific conservations carry different implications. As noted above, the Landau level analogy allows

us to assign an adiabatic invariant with a particle number, and this interpretation plays an essential

role in formulating the “grand canonical ensemble” (Sect. 2.3) in which μ plays the role of a quasi-

particle number (Sect. 3.3). The equivalent christening of μ as “charge” or a Casimir invariant is

rather profoundly motivated. In a noncanonical Hamiltonian system, the nullity of the Poisson bracket

yields a topological charge, i.e., a Casimir invariant (Sect. 2.1). Such a topological charge can be

related to a Noether charge pertinent to a symmetry of some appropriate action principle. When a

Casimir invariant is an adiabatic invariant (as constructed here), it is a consequence of symmetry

with respect to a coarse-grained angle ϑ . The following mathematical formality provides content

to the preceding statement. Let S = ∫
�− Hdt be a microscopic (canonical) action, where � is a

canonical 1-form and H is a Hamiltonian. Suppose that ϑ is a microscopic angle of some periodic

motion, which gives an adiabatic invariant J = ∮
Pϑdϑ/2π . Then a macroscopic action S′ can be

defined by separating, from S, a microscopic action SJ = ∫
(J ϑ̇ − ωJ )dt (ωJ is the energy of the

microscopic periodic motion with frequency ω). Averaging over the periodic motion, S′ is made to be

independent of ϑ . The symmetry ∂ϑ = 0 of the coarse-grained action S = S′ + SJ yields a Noether

charge ∂ϑ̇ S = J , i.e., the Casimir invariant (the variation of the macroscopic part S′ = ∫
�′ − H ′dt

yields a degenerate 2-form d�′ whose nullity is spanned by the Casimir invariant).

3.2.2. Foliation by J‖. We may define a more macroscopic hierarchy by separating the second
canonical pair (ϑb, J‖) from the phase space. In comparison with the previous process of defining
{ , }μ we need a somewhat complicated procedure, because the bounce angle (ϑb) is not ignored in
Hgc; the frequencies ωc and ωb (as well as φ in a non-neutral plasma) are functions of the spatial
coordinates including ϑb (ζ = �‖ sinϑb with the bounce orbit length �‖). We have

J̇‖ = ∂Hgc

∂ϑb
. (16)

For the periodic bounce motion,
∮
(∂Hgc/∂ϑb)dϑb = ∮

d Hgc = 0. Integrating (16) over the cycle of
bounce motion yields the bounce-average 〈J‖〉 = constant. When we calculate macroscopic quanti-
ties (like the total energy or the total action), we evaluate J‖ as the adiabatic invariant 〈J‖〉, and then
the second action–angle pair (ϑb, J‖) is separated from the dynamical variables; the corresponding
Poisson matrix is

JμJ‖ :=

⎛
⎜⎝

0 0 0
0 0 0
0 0 Jc

⎞
⎟⎠ , (17)

and the Poisson bracket is

{F,G}μJ‖ := 〈∂z F,JμJ‖∂zG〉.
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Now, the dynamical variables are only θ and ψ . The drift frequency is given by bounce-averaging
the toroidal angular velocity:

ωd = θ̇ = ∂Hgc

∂ψ
= μ

∂ωc

∂ψ
+ J‖

∂ωb

∂ψ
+ q

∂φ

∂ψ
. (18)

As long as the system maintains the toroidal symmetry ∂/∂θ = 0, the third action ψ remains con-
stant, and the orbit of the guiding center is completely integrable. A slow perturbation, however, may
break the constancy of ψ , allowing the guiding center to cross magnetic surfaces. As shown in the
next section, the Boltzmann distribution on this minimum (most macroscopic) phase space has an
interesting structure.

3.3. Boltzmann distributions

3.3.1. Microscopic phase space. The standard Boltzmann distribution function is derived when
we assume that d6z = d3vd3x is an invariant measure and the Hamiltonian H is the determinant
of the ensemble. Maximizing the entropy S while keeping the total energy E and the total particle
number N constant, we obtain

f (x, v) = Z−1e−βH . (19)

The corresponding configuration-space density is

ρ(x) =
∫

f d3v ∝ e−βqφ, (20)

which becomes constant for an electrically neutral system (φ = 0).
Needless to say, the Boltzmann distribution or the corresponding configuration-space density, with

an appropriate Jacobian multiplication, is independent of the choice of phase-space coordinates.
Moreover, the density is invariant no matter whether we coarse-grain the cyclotron motion or not.
Let us confirm this fact by a direct calculation. The Boltzmann distribution of the guiding-center

plasma is

f (z) = Z−1e−βHgc

= Z−1e
−β

[
m(v2

⊥+v2
‖)/2+qφ

]
, (21)

where v⊥ and v‖ are the perpendicular and parallel (with respect to the local magnetic field) com-
ponents of the velocity. Here we neglected the kinetic energy of the drift motion to approximate
ωcμ ≈ mv2

⊥/2. The corresponding density reproduces (20).

3.3.2. Boltzmann distribution on the μ leaf. Now we calculate the Boltzmann distribution on
the macro-hierarchy. We start with the Casimir leaf of μ. The adiabatic invariance of μ imposes a
topological constraint on the motion of particles; this constraint is the root cause of a macro-hierarchy
and of structure formation.

By applying Liouville’s theorem to the Poisson bracket { , }μ, the invariant measure on the macro-
hierarchy (the �-space of quasi-particles) is

∏
j

d4z j =
∏

j

d6z j/(2πdμ j ),

i.e., the total phase-space measure modulo the microscopic measure (suffix j is the index of each par-
ticle). The most probable state (statistical equilibrium) on the macroscopic ensemble must maximize
the entropy with respect to this invariant measure.
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Fig. 1. Density distribution (contours) and the magnetic field lines (level-sets of ψ) in the neighborhood of
a point dipole. Left: The equilibrium on the leaf of μ-foliation. Right: The equilibrium on the leaf of μ- and
J‖-foliation.

To determine the distribution function, the variational principle is set up immersing the ensemble
into the general phase space, and incorporating the constraints through the Lagrange multipliers: We
maximize entropy S = − ∫ f log f d6z for a given particle number N = ∫

f d6z, a quasi-particle
number M1 = ∫

μ f d6z, and an energy E = ∫
Hgc f d6z, to obtain the distribution function (see

Sect. 2.3)

f = fγ := Z−1e−(βHgc+γμ). (22)

The factor e−γμ in fγ yields a direct ωc dependence of the coordinate-space density:

ρ =
∫

fγ
2πωc

m
dμdv‖ ∝ ωc(x)

βωc(x)+ γ
. (23)

Here, we are assuming electric neutrality to put φ = 0. Notice that the Jacobian (2πωc/m)dμmulti-
plying the macroscopic measure d4z reflects the distortion of the macroscopic phase space (Casimir
leaf) caused by the magnetic field. Figure 1 (left) shows the density distribution and the magnetic
field lines.

3.3.3. Boltzmann distribution on the μ-J‖ leaf. We may further restrict the second action J‖
and calculate the Boltzmann distribution of the μ-J‖ leaf. Imposing another constraint on M2 =∫

J‖ f d6z, we modify (22) as

fγ1,γ2 = Z−1e−(βHgc+γ1μ+γ2 J‖). (24)

To find explicit expressions for the parallel action–angle variables, let us solve the equation of parallel
motion under some approximations. Neglecting the curvature of magnetic field lines and putting
φ = 0,

mζ̈ = −μ∇‖ωc, (25)

where ∇‖ := b · ∇ with the magnetic unit vector b := B/B. In the vicinity of ζ = 0, where ωc has a
minimum on each magnetic surface, we may approximate

ωc = �c(ψ)+�′′
c (ψ)

ζ 2

2
,
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where �c(ψ) is the minimum of ωc on each contour of ψ , and �′′
c (ψ) := d2ωc/dζ 2|ψ . Integrating

(25), we obtain a harmonic oscillation with the bounce frequency

ωb =
√
�′′

c (ψ)μ

m
= v⊥

L‖(ψ)
, (26)

where L‖(ψ) := √
2�c(ψ)/�′′

c (ψ) is the length scale of the variation of ωc along ζ . The amplitude
of the oscillation, i.e., the bounce orbit length, is

�‖ =
√

2E‖
mω2

b

, (27)

where E‖ := (mv2
‖)/2|ζ=0 is the kinetic energy of the parallel motion. Assuming E‖ ≈ E⊥ := μ�c,

we may estimate �‖ ≈ L‖. By E‖ = ωb J‖, we obtain

dv‖ = ωb

mv‖
dJ‖ =

√
ωb

2m J‖
dJ‖.

Using the relation ωb/(mv‖) = v⊥/(L‖mv‖) ≈ 1/(mL‖), we may write

dv‖ ≈ dJ‖
mL‖

. (28)

The density is given by

ρ =
∫

fγ1,γ2

2πωcdμ

m

dJ‖
mL‖

,

∝ ωc(x)

m2

∫ ∞

0

e−(βωc+γ1)μdμ

β
√

2ωcμ/m + γ L‖(ψ)
. (29)

Numerical integration of (29) gives the density profile depicted in Fig. 1 (right) [19].

Remark 4. The derived distribution function fγ1,γ2 is a particular solution of the stationary kinetic

equation {Hgc, f }μJ‖ = 0. This thermodynamic equilibrium, however, has a deeper meaning than

the arbitrary solutions such as f = F(μ, J‖, ψ) that are often invoked in drift-kinetic calculations.

For instance, f = F(μ, J‖) yields a density ρ ∝ ωc/L‖ (implying that the particle number per unit

flux tube distributes homogeneously), which in a dipole magnetic field scales as ∝ r−4, precisely the

density profile given by Hasegawa [20] (for example, see [21] for a realization of a similar distribu-

tion in Saturn’s magnetosphere). Choosing F to be a Gaussian, Z−1e−(γ1μ+γ2 J‖) is the asymptotic

form of (29) in the limit r → ∞ (ωc → 0 so that βHgc � γ1μ+ γ2 J‖). Such a solution is also the

β → 0 (infinite temperature) limit of fγ1,γ2 . For finite temperatures, the energy constraint prevents

the particle distributing homogeneously on the ensemble foliated by μ and J‖. Notice that, for the

distribution fγ1,γ2 , the density ρ remains finite, while for the solution f = F(μ, J‖), it diverges as

ωc → ∞. For experimental evidence of density limitation, see [8].

Remark 5. In the foregoing analysis, we did not pay attention to the field equation (Maxwell’s

equation), and dealt with the magnetic flux function ψ as a given function of space. However, when

the plasma pressure becomes comparable to the pressure of the dipole magnetic field (i.e., the so-

called beta ratio is of order unity; see [19]), we have to adjust the magnetic field to take into account

the spontaneous component. This can be done by solving the Grad–Shafranov equation for ψ with

the plasma pressure given by the distribution function (to take into account the pressure anisotropy,
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we have to use the generalized Grad–Shafranov equation [22,23]). We also assumed charge neu-

trality, and put the electric potential φ = 0. In a non-neutral plasma [6], the spontaneous electric

potential φ must be determined by solving the Poisson equation (the grand canonical ensemble of a

non-neutral plasma is also constrained by the third adiabatic invariant Pθ ≈ qψ , because the total

angular momentum plays an important role in “neutralizing” the spontaneous electric field on the

comoving frame; see also [24]). The field equations (the Grad–Shafranov equation for ψ , and the

Poisson equation for φ) pose a nonlinear problem, because we have to find a self-consistent distri-

bution function that depends on ψ and φ. Numerical analyses of these equations will be presented

elsewhere.

4. Summary and concluding remarks

In this paper, we have developed a conceptual framework for delineating and understanding the
advanced notion of self-organization simultaneous with entropy production. An appropriate scale

hierarchy, encompassing large-scale order and small-scale disorder, is established by exploiting
phase-space foliation provided by the adiabatic invariants of the system; the corresponding invariant
measure is also specified. A leaf of the foliated phase space is identified as a grand canonical ensem-
ble of macroscopic quasi-particles representing coarse-grained (averaged over microscopic angle of
periodic motion) orbits.

As an explicit example, we have constructed a foliated phase space representing the scale hierar-
chy of magnetized particles in a magnetospheric plasma. The Boltzmann distribution is obtained by
maximizing the entropy for a given particle number and a quasi-particle number as well as a total
energy. The system is driven to such a Boltzmann distribution by some entropy production mech-
anism that, inherently, preserves the adiabatic invariants (Casimir invariants). The spatiotemporal
scales of associated fluctuations must be larger than the scales on which the conjugate coarse-grained
angle variables vary. Under the same condition on possible perturbations, the Boltzmann distribution
on the macro-hierarchy is absolutely stable, because it is the minimizer of the energy (as an isolated
system). It is interesting that the steep density gradient predicted by the distribution (29) is stable
against macroscopic modes such as interchange modes (cf. [15]); an intuitive explanation is that the
magnetized particles reside in the magnetic-coordinate space, where the actual density distribution
is flat, leaving no free energy for instabilities.

The derived grand canonical distribution function opens a new channel for extracting interesting
properties of magnetized plasmas. For example, μ could be boosted by cyclotron heating (for mag-
netically confined particles), and the resulting increase in the total magnetic moment of the system
could cause macroscopic motion of the levitated magnet accompanied by the plasma [25]. In our
model, an increase of μ means injection of quasi-particles; an increased quasi-particle number M ,
in turn, automatically increases the macroscopic magnetic moment. This simple picture is beyond
the reach of the conventional canonical (or micro-canonical) distributions that are unaware of any
direct relation between the macroscopic magnetic moment and μ [even if we write mv2

c/2 = μωc

as in (21)]. Heating, therefore, could not create or destroy magnetic moment (or any axial vector);
the coupling of heat and mechanical energy could manifest only through the pressure force. Our dis-
tribution function, on the other hand, is capable of delineating such connections since it embodies
magneto–fluid–thermo couplings. Many other applications such as estimate of fluctuations, phase
equilibrium relations, possible condensation at low temperature, etc. will become accessible through
the grand canonical distribution.
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The framework we have developed will apply to general systems with nontrivial topologies.
Viewing from a different angle, our work has a common perspective with Nambu’s “generalized
Hamiltonian system” that has two Hamiltonians (one of which is a Casimir invariant in the present ter-
minology); see [14] and Remark 2. In the present theory, connecting a Casimir invariant further to an
adiabatic invariant, we have written a kinetic–thermodynamic theory with a built-in scale hierarchy.
Structure formation is a direct consequence of embedding the Casimir leaf (where the microscopic
actions are abstracted as quasi-particle numbers) into the laboratory flat space.

We end this paper with some comments on self-organization in fluid-mechanical systems. The
dynamics in some fluid models can be cast into a unified Hamiltonian form [1]

∂tω = J ∂ωH(ω), (30)

where ω is a state vector belonging to a Hilbert space X , H(ω) is the Hamiltonian which is a
real-valued functional on X , and J is the Poisson operator. The Poisson bracket is defined by
〈∂ωF,J ∂ωG〉, where 〈 , 〉 is the inner-product of X . The vortex equation of two-dimensional Eule-
rian (inviscid, incompressible) flow is the simplest example; with a Poisson operator J = [ω, ◦]
(where ω is the vorticity, and [a, b] = ∂ya · ∂x b − ∂xa · ∂yb), and a Hamiltonian H(ω) = ∫

ω ·
(−�)−1ω d2x/2 (where � is the two-dimensional Laplacian, and �−1 is its inverse), (30) reads
∂tω = [ω, φ] (where φ = (−�)−1ω is the Gauss potential of the flow). Notice that J depends on
the dynamical variable ω. Evidently, C f = ∫

f (ω) d2x ( f is an arbitrary C2-class function) is a
Casimir invariant. Slightly modifying the Poisson operator as J = [ω − g, ◦] with an inhomoge-
neous term g (cf. [26]), and the Hamiltonian as H = ∫

ω · L−1ω d2x/2 with L = −�+ 1 (the term
+1 in the operator L reflects the compressibility of the fluid), Hamilton’s equation (30) becomes
∂tω = [ω − g, φ] with φ = L−1ω, which is formally the Hasegawa–Mima equation [27] of drift
waves in a magnetized plasma (g represents the inhomogeneity of the equilibrium plasma density),
or the Charney equation [28] of Rossby waves (g represents the inhomogeneity of the Coriolis force
and the depth of the atmospheric fluid). The Casimir invariant is C f = ∫

f (ω − g) d2x .
A theory of self-organization can be described by invoking the scenario of selective dissipa-

tion which compares different constants of motion, the Hamiltonian (energy), and some Casimir
invariants (choosing f (ω) = ω2/2, C f is the enstrophy); a functional including higher-order spatial
derivatives is more fragile in comparison with a lower-order one, because small-scale turbulence can
dissipate it more easily, thus the energy conserves better than the enstrophy. Minimizing the enstro-
phy for a fixed energy, we obtain a “relaxed state.” The review paper by Hasegawa [29] describes a
list of successful applications of this model, including the creation of zonal flows by Rossby wave
turbulence, and the Taylor relaxed state [30] by magnetohydrodynamic (MHD) turbulence (which
dissipates the energy while conserving the magnetic helicity, a Casimir invariant of an MHD system).

The same minimization principle has a different connotation, which aligns with the present theory.
The target functional to be minimized is nothing but the energy-Casimir functional (see Sect. 2.2),
thus the minimizer is an equilibrium point of the Hamiltonian mechanics (by the duality of well-
posed variational principles [31], the minimizer of the enstrophy for a given energy is equivalent
to the maximizer of the energy for a given enstrophy, and the latter is also an equilibrium point of
the Hamiltonian system). To put this equilibrium point into the perspective of the entropy principle,
we have to consider statistical mechanics on a function space. In [32], a grand canonical ensemble
of MHD is formulated by considering a “magnetic-helicity quantum.” The Taylor relaxed state is,
then, the low-temperature limit (ground state) of the Boltzmann distribution (here, the temperature

measures the strength of the turbulence).
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While the present theory of self-organization has wide applications encompassing particle models
to fluid models, the connection between the two formalisms awaits further exploration. For example,
the helicities are the determinants of the macroscopic hierarchy (Casimir leaf) of the MHD system,
which control the bifurcation of various equilibrium points by shifting the leaf in the phase space
[11]. However, we have not yet unearthed the coarse-grained “angle variable” corresponding to the
magnetic helicity. If we can specify the origin of the fluid Casimir invariants in the particle model, we
will be able to write a kinetic theory of far richer structures that have various helicities (or vorticities
and currents twisting the stream lines and magnetic field lines).

The foliation is also an interesting subject to be explored in the framework of a new variable—the
entropy production rate. Since, for a driven (or open) system, the standard entropy is no longer an
effective state variable to characterize long-lived structures, the entropy production rate (σ ) has been
deemed to be an alternative determinant of the state. Debates have raged whether the organizing prin-
ciple is the minimum or maximum of σ . While the minimum σ principle3 applies to linear systems,
typical nonlinear fluid-mechanical systems instead prefer maximum σ states. Sawada [38] proposed a
nonlinear mechanism that maximizes σ ; for other models of fluids and plasmas, see [39–41]. Dewar
[42] proposed to evaluate the probability of phase-space trajectories (instead of points), which is
shown to have a Boltzmann distribution by replacing the minus energy by the entropy production
along each trajectory; hence the maximum entropy production is most probable (see also [43,44]
for the thermodynamic duality of the maximum and minimum principles that switch depending on
whether the system is flux driven or force driven). When the phase space is foliated, such trajectories
must be restricted on a Casimir leaf, and then the structures self-organized by maximizing σ will
have topological complexity charged by the Casimir invariants.
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