Self-Organization in Nonequilibrium Systems

From Dissipative Structures to Order through Fluctuations

G. Nicolis

Université Libre de Bruxelles Belgium

I. Prigogine

Université Libre de Bruxelles Belgium

and

University of Texas at Austin Texas

A Wiley-Interscience Publication JOHN WILEY & SONS New York • Chichester • Brisbane • Toronto • Singapore

Contents

	General Introduction	1
PART I.	THE THERMODYNAMIC BACKGROUND	
1.	Introduction 1.1. General Comments, 19 1.2. Open Systems, 24	19
2.	Conservation Equations 2.1. Open Systems at Mechanical Equilibrium, 26 2.2. The Mass-balance Equations, 27	26
3.	 Thermodynamics of Irreversible Processes: The Linear Region 3.1. Gibbs's Formula: Entropy Production, 31 3.2. Phenomenological Relations: The Linear Range of Irreversible Processes, 36 3.3. Symmetry Properties of the Phenomenological Coefficients, 39 3.4. Stationary Nonequilibrium States, 41 3.5. Theorem of Minimum Entropy Production, 42 3.6. Impossibility of Ordered Behavior in the Linear Range of Irreversible Processes, 45 3.7. Diffusion, 46 	31
4.	 Nonlinear Thermodynamics 4.1. Introduction, 49 4.2. The General Evolution Criterion, 50 4.3. Evolution Criterion and Kinetic Potential, 51 4.4. Stability of Nonequilibrium States. Dissipative Structures, 55 	49 ,

63

70

PART II. MATHEMATICAL ASPECTS OF SELF-ORGANIZATION: DETERMINISTIC METHODS

5. Systems Involving Chemical Reactions and Diffusion-Stability

- 5.1. General Formulation, 63
- 5.2. Lyapounov Stability, 65
- 5.3. Orbital Stability, 66
- 5.4. Structural Stability, 68

6. Mathematical Tools

- 6.1. Introduction, 70
- 6.2. Theory of Bifurcations, 70
- 6.3. Stability Theory, 71
- 6.4. Theory of Catastrophes, 74
- 6.5. Homogeneous Systems Involving Two Variables, 76
- 6.6. Branchings, Bifurcations, and Limit Cycles, 83

7. Simple Autocatalytic Models

- 7.1. Two Intermediates, 90
- 7.2. The Trimolecular Model (the "Brusselator"), 93
- 7.3. Scaling, Steady States, and Boundary Conditions, 94
- 7.4. Linear Stability Analysis, 96
- 7.5. Bifurcation of Steady-state Dissipative Structures: General Scheme, 106
- 7.6. Bifurcation: Fixed Boundary Conditions, 109
- 7.7. Bifurcation: No-flux Boundary Conditions, 113
- 7.8. Qualitative Properties of Dissipative Structures in Vicinity of First Bifurcation, 115
- 7.9. Successive Instabilities and Secondary Bifurcations, 120
- 7.10. Comparison with Computer Simulations, 124
- 7.11. Localized Steady-state Dissipative Structures, 131
- 7.12. Bifurcation of Time-periodic Dissipative Structures, 140
- 7.13. Qualitative Properties of Time-periodic Dissipative Structures, 147
- 7.14. Traveling Waves in Periodic Geometries, 153
- 7.15. The Brusselator as a Closed System, 156
- 7.16. Concluding Remarks, 158

90

Some Further Aspects of Dissipative Structures and 8. Self-organization Phenomena

- 8.1. Introduction. 160
- Conservative Oscillations, 160 8.2.
- Simple Models Giving Rise to Limit Cycles. 165 8.3.
- Multiple Steady States and All-or-none 8.4. Transitions, 169
- 8.5. Two-dimensional Problems, 178
- 8.6. Systems Involving More than Two Chemical Variables, 192
- Coupled Oscillators. 8.7. 195
- 8.8. Heterogeneous Catalysis and Localized Transitions, 197
- 8.9. Systems Involving Photochemical Steps, 200
- 8.10. Some Further Methods of Analysis of Reaction-Diffusion Equations, 202
- 8.11. Thermodynamic Aspects of Dissipative Structures, 212

PART III. STOCHASTIC METHODS

9. General Comments

- 9.1. Introduction, 223
- 9.2. Stochastic Formulation, 224
- 9.3. Markovian Processes. 228
- 9.4. Equilibrium Limit. 232
- 9.5. Fluctuations in Nonequilibrium Systems: An Historical Survey, 236

10. Birth-and-death Description of Fluctuations

- 10.1. Master Equation for Birth-and-death Processes. 239
- 10.2. Limitations of Birth-and-death Formalism, 241
- 10.3. Some Methods of Analysis of Birth-and-death Master Equations, 242
- 10.4. Moment Equations, 252
- 10.5. Simple Examples, 257
- 10.6. Systems Involving Two Stochastic Variables: The Lotka-Volterra Model, 264
- 10.7. Concluding Remarks, 272

239

223

vii

	11.	Effect	of Diffusion: Phase-space Description and		
	Numeriate Master Equation				
		11.1.	Fluctuations 273		
		11.2	Phase-space Description of Eluctuations 274		
		A Simple Model 276			
		11.4	Approximate Solution of Master Equation 280		
		11.5	Molecular Dynamics Studies of Fluctuations 283		
		11.6.	Discussion. 284		
		11.7.	Reduction to a Multivariate Master Equation in		
			Concentration Space, 285		
		11.8.	The Multivariate Master Equation in a Model		
			System, 289		
		11.9.	Spatial Correlations in the Trimolecular		
			Model, 297		
		11.10.	Critical Behavior, 302		
		11.11.	Concluding Remarks, 309		
	12. A "Mean-field" Description of Fluctuations:				
		ear Master Equation 313			
		12.1.	Introduction, 313		
		12.2.	Derivation of Nonlinear Master Equation, 314		
		12.3.	Further Properties and Moment Equations, 317		
		12.4.	Onset of a Limit Cycle, 319		
		12.5.	Onset of a Spatial Dissipative Structure, 324		
		12.6.	Multiple Steady-state Transitions and		
		10.7	Metastability, 327		
		12.7.	Asymptotic Solutions of Nonlinear Master		
		12.0	Equation, 331		
		12.8.	Concluding Remarks, 334		
PART	IV.	CONT	FROL MECHANISMS IN CHEMICAL AND		
		BIOL	OGICAL SYSTEMS		
	13.	Self-o	rganization in Chemical Reactions 339		
		13.1.	Introduction, 339		
	13.2. Belousov-Zhabotinski Reaction:				
	Experimental Facts, 339				
		13.3.	Mechanism, 343		
		13.4.	The "Oregonator", 345		
		13.5.	Oscillatory Behavior, 347		
		136	Snatial Patterns 351		

13.6. Spatial Patterns, 35113.7. Briggs–Rauscher Reaction, 352

viii

387

409

14. Regulatory Processes at the Subcellular Level

- 14.1. Metabolic Oscillations, 354
- 14.2. The Glycolytic Cycle, 354
- 14.3. Allosteric Model for Glycolytic Oscillations, 358
- 14.4. Limit-cycle Oscillations, 369
- 14.5. Effect of External Distrubances on Limit-cycle Oscillation, 371
- 14.6. Patterns of Spatiotemporal Organization in Allosteric Enzyme Model, 375
- 14.7. Periodic Synthesis of cAMP, 379
- 14.8. Reactions Involving Membrane-bound Enzymes, 382
- Physiological Significance of Metabolic Oscillations, 384

15. Regulatory Processes at Cellular Level

- 15.1. Introduction, 387
- 15.2. Lac Operon, 388
- 15.3. Mathematical Model for Induction of β -Galactosidase, 389
- 15.4. All-or-none Transitions, 391
- 15.5. Catabolite Repression: Sustained Oscillations and Threshold Phenomena, 394
- 15.6. Control of Cellular Division, 402
- 15.7. Quantitative Model, 404

16. Cellular Differentiation and Pattern Formation

- 16.1. Introductory Remarks, 409
- 16.2. Positional Information, 410
- 16.3. Mechanisms Involved in Positional Information, 413
- 16.4. Dissipative Structures and Onset of Polarity, 415
- 16.5. A Quantitative Model, 416
- 16.6. Positional Differentiation, 421
- 16.7. Applications, 424

PART V. EVOLUTION AND POPULATION DYNAMICS

17. Thermodynamics of Evolution

429

- 17.1. The Notion of Competition, 429
- 17.2. Prebiotic Evolution: General Presentation, 429
- 17.3. Prebiotic Polymer Formation, 430
- 17.4. Biopolymer Competition and Hypercycles, 434

448

7.5.	Evolution	Viewed as	a Problem	of Stability,	438

17.6. Evolutionary Feedback, 441

17.7. Energy Dissipation in Simple Reaction Networks, 442

17.8. A Biochemical Illustration, 446

18. Thermodynamics of Ecosystems

- 18.1. Introduction, 448
- 18.2. Basic Equations, 448
- Example of Ordered Behavior: Organization in Insect Societies, 452
- 18.4. Evolution of Ecosystems, 455
- 18.5. Structural Instabilities and Increase of Complexity: Division of Labor, 459
- 18.6. Stability and Complexity, 462

Perspectives and Concluding Remarks

464

- 1. Introduction, 464
- 2. Fluctuation Chemistry, 464
- 3. Neural and Immune Networks, 466
- 4. Immune Surveillance against Cancer, 469
- 5. Social Systems and Epistemological Aspects, 472

References	475
Addendum: Mathematical Problems	487
Index	489