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ABSTRACT

The long chromosomal DNAs of cells are organized

into loop domains much larger in size than individual

DNA-binding enzymes, presenting the question of

how formation of such structures is controlled. We

present a model for generation of defined chromo-

somal loops, based on molecular machines consist-

ing of two coupled and oppositely directed motile

elements which extrude loops from the double helix

along which they translocate, while excluding one

another sterically. If these machines do not dissoci-

ate from DNA (infinite processivity), a disordered,

exponential steady-state distribution of small loops

is obtained. However, if dissociation and rebinding

of the machines occurs at a finite rate (finite

processivity), the steady state qualitatively changes

to a highly ordered ‘stacked’ configuration with sup-

pressed fluctuations, organizing a single large,

stable loop domain anchored by several machines.

The size of the resulting domain can be simply

regulated by boundary elements, which halt the

progress of the extrusion machines. Possible real-

izations of these types of molecular machines

are discussed, with amajor focus on structural main-

tenance of chromosome complexes and also with

discussion of type I restriction enzymes. This mech-

anism could explain the geometrically uniform

folding of eukaryote mitotic chromosomes, through

extrusion of pre-programmed loops and concomi-

tant chromosome compaction.

INTRODUCTION

Eukaryote chromosomal DNAs of up to a few centimeters
in length are compacted to fit inside few-micron-diameter
nuclei. Similarly, the millimeter-length chromosomal
DNAs of bacterial cells are compacted into micron-size

nucleoids. It has been proposed that chromosomes
might simply occupy maximum-entropy conformations,
in the manner of confined random-coil polymers (1,2).
However, sequence position analyses reveal DNA to be
spatially ordered. Chromosomes of Escherichia coli (3–5)
and Caulobacter crescentus (6) have loci precisely pos-
itioned inside the cell, with fluctuations too small to be
consistent with random-polymer statistics (7). In eukary-
ote cells, interphase chromosomes in differentiated cells
occupy distinct territories (8). Furthermore, analyses of
DNA juxtapositions inside eukaryote nuclei reveal that
loci up to tens of megabases apart along chromosomes
are positioned near one another in the nucleus (9,10),
with statistical properties inconsistent with random-
polymer organization (10).

Detailed characterizations of specific cases of in cis
gene regulation also indicate that chromosomes have a
well-defined ‘loop domain’ organization, with specific
but distant sequences along the same chromosome pos-
itioned to be near one another (11). It is thought that
‘chromatin-bridging’ proteins (12) somehow stabilize
these loop structures, but the processes by which
sequence-defined chromatin loops are established and
maintained are unknown.

Strong correlations of juxtaposed DNA sequences are
especially clear during eukaryote mitosis, when chromo-
somes are compactly folded, following their replication.
Chromosomes are ‘condensed’ by folding along their
length into linear paired-chromatid noodle-like structures,
with a well-defined thickness and strikingly uniform struc-
tural and mechanical properties (13). As mitotic chromo-
somes are folded, sequences that are a few megabases
apart somehow ‘know’ to associate, while more distant
sequences know to stay apart, implying a highly regulated
lengthwise condensation distinct from usual polymer con-
densation (14,15). Similar considerations apply to the loop
domain organization of meiotic prophase chromosomes,
solidifying the conclusion that strong long-range correl-
ations in DNA sequence position are maintained in
living cells.
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The default mechanism for chromosome looping is
random-polymer motion leading to loop formation.
However, while random motions can quickly form small
loops comparable in size to a polymer’s persistence length
(a few kilobases at most for chromatin) (16), reproducible
formation of specific large loops by random collision is
inefficient, especially when self-avoidance effects are
taken into account. For the case of mitotic/meitoic
chromosome condensation, a random-collision model of
contact formation cannot lead to linearly condensed
chromosomes since the underlying DNA sequence
distance between juxtapositions cannot be sensed: the
result will be conventional polymer collapse of chromo-
somes into spherical globules with no tendency toward
linear organization (17). Formation of chromatin bridges
through random collision would inevitably lead to the
gluing together of chromatids into spherical chromatin
masses, as has been demonstrated using synthetic AT-
hook proteins (18). Random formation of polymer loops
is not by itself likely to be the main mechanism underlying
the spatial self-organization of chromosomes.

It is thought that structural maintenance of chromo-
some (SMC) complexes are in general involved in
mediating distant-site interactions in chromatin (19), with
condensin SMCs playing a key role in mitotic chromosome
folding (20), and with cohesin SMCs playing an important
role in sister chromatid cohesion and in defining interphase
chromatin loops (21). While the mechanistic details of how
SMCs associate with and organize DNA in vivo remain
poorly understood, a few aspects of their function are es-
tablished experimentally. Immuno-inactivation of
condensin complexes in Xenopus egg extracts (an in vitro
system capable of assembling mitotic chromosomes) (22),
or siRNA depletion of even one subunit of condensin
complexes (23,24) in tissue culture cells, causes defective
mitotic chromosome condensation. Cells where one
condensin subunit can be inducibly knocked out also
show chromosome condensation defects (25). In biophys-
ical experiments, purified condensin is known to efficiently
and systematically condense DNA molecules without the
need of other cofactors (26).

Condensins are thought to be capable of interacting
with distinct stretches of chromatin, by a mechanism
possibly involving encirclement of two DNA segments
(27). Few details are known concerning how condensins
act to facilitate mitotic chromosome compaction (28).
However, in single-DNA experiments, condensins have
been observed to dramatically compact naked DNA in
an adenosine triphosphate (ATP)-dependent and pro-
cessive manner, through �70 nm steps comparable in
size to the condensin SMCs themselves (26). The fact
that the single-DNA reactions proceeded to complete con-
densation of DNA through steps of relatively uniform size
argues against a mechanism based on random loop
capture by DNA-bridging protein interactions or multiva-
lent positive ions, and which would be expected to
generate steps with a broad distribution of sizes and of
larger mean �200 nm (29).

The same experiments (26) showed that in the absence
of ATP, condensins are able to bind DNA, but without
any compaction effect. This indicates that the initial

condensin–DNA association does not involve loop
capture, but instead involves binding of condensin to
DNA in a non-loop-trapping mode. In those experiments,
after subsequent washing away of solution-phase protein
and addition of ATP, condensins were observed to re-
organize ‘along’ single DNAs, driving step-wise conden-
sation (26). This result suggests that binding and step-wise
condensation are decoupled processes, the latter strictly
dependent on hydrolyzable ATP.
The idea that condensins act as condensation machines,

rather than simple chromatin crosslinkers, is supported by
the single-molecule experiments (26), and also by consid-
eration of what would happen to chromosomes if
condensins did act by a simple binding mechanism.
Without some sort of loop-binding regulation, purely
DNA-bridging factors will lead to indiscriminate binding
of chromatin to itself, in the manner of ‘poor solvent’
condensation of flexible polymers (30). The result will be
establishment of a surface tension between chromatin and
cytoplasm, causing minimization of interfacial area so as
to form spherical aggregates, strong sticking of different
chromosomes to one another (17) and interchromosome/
chromatid entanglement.
Here, we describe an active mechanism able to form

specific and large loop domains of precise size, based on
hypothetical DNA-loop-extruding enzyme machines with
general properties consistent with those of condensins. We
consider a DNA lattice of some finite length, on which M
enzymes are bound; each enzyme is assumed to have two
binding domains which can bind and therefore bridge two
DNA sites (Figure 1). The size of the lattice sites is com-
parable to the persistence length of DNA (or chromatin),
and also to the size of the machines, �50 nm. When a
machine binds to the DNA lattice, it associates with
adjacent lattice sites, i.e. DNA sites separated by a
distance comparable to the size of the enzyme. We
suppose that ATP hydrolysis causes each binding
domain (motile element) to move along the DNA, away
from its partner; the protein link between the two motile
elements leads the motility to drive extrusion of a DNA
loop. The only interaction between the pairs considered in
our model is their steric repulsion. Beyond this the only
other ingredient is whether or not dissociation of the
machines from DNA is permitted. In the absence of dis-
sociation, a relatively disordered series of variable-size
loops results (Figure 1a). However, when dissociation
and re-association of the machines occur, they self-
organize into a robustly ordered ‘stack’, anchoring a
sturdy loop domain (Figure 1b).
At the outset, we emphasize that the application of this

model to condensin self-organization in chromosomes is
speculative. We also note that other enzymes that extrude
DNA loops are known and have been characterized, most
notably type I restriction enzymes (31), and our model
may prove useful for describing their self-organization.

MATERIALS AND METHODS

We consider a DNA segment of contour length L ¼ La,

divided into lattice sites of size a �50 nm, with a total
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number of sites L � 1: At time t=0, M motile element
pairs are dispersed randomly, each pair initially occupying
adjacent sites of this lattice. The DNA-binding motile
elements (referred to below as ‘motors’) then move
along the DNA with rates independent of position; steps
that move a motor away from its partner (‘forward’ steps
that extrude a DNA loop) occur at a rate r+ and steps that
move a motor back toward its partner (‘reverse steps’ that
retract the loop) occur at a rate r� (Figure 1). We suppose
the motion to be directed by energy gained from ATP
hydrolysis, with r+> r� (when r+¼ r� there is 1D diffu-
sion of each motor; when r� > r+, the motors are driven
together which is not of interest here). The motor pairs are
assumed to have left/right symmetry, i.e. the left and right
motors move with the same rates.
We also suppose the motors to sterically occlude one

another: only one motor can occupy each position on the
lattice, making them unable to pass through one another.
The endpoints of the lattice (sites 1 and L) are ‘domain
boundaries’: the motors are unable to move past them.
The final ingredient of the model is the dissociation of a

motor pair from the DNA; this is taken into account by a
slow-dissociation rate roff � r�: In the non-dissociating
case, roff ¼ 0; when roff > 0 and a dissociation event
occurs, we then replace the motor pair on a randomly
chosen pair of adjacent, empty lattice sites.
We have performed numerical simulations of this model

using Gillespie’s ‘event-driven’ algorithm for simulating
stochastic processes (32). This method is most simply
applied to processes where there are a sequence of transi-
tions between a set of discrete states, such as the rate
model described above. At each step of the simulation,
the approach considers which of the possible transitions
that are possible at that moment actually is the next tran-
sition to occur. At an initial time t, one makes a list of all
possible transitions that might occur, and their rates (for
our model, r+,r� and roffÞ: Suppose there are K possible
‘candidate’ transitions with rates ri, i running from 1 to K.
Two properties of the next transition event must be
determined: the time interval �t between the initial time
t to the event, and which of the K transitions will actually
be the next event.
The rate at which the next event occurs (regardless of

type) is just the sum of the K rates, R ¼
PK

i ri: The time

increment �t to the event is distributed over the range
0 � �t � 1 exponentially, with probability distribution
Pð�tÞ ¼ Re�Rt: The actual realization of �t is drawn
from this continuous distribution. Which of the K transi-
tions actually occurs is determined from their probability
distribution pi ¼ ri=R: This second, discrete, distribution is
be used to select which of the K candidates actually is next.

Once �t and i are determined, the state of the system is
changed, and time is increased to t+�t: The algorithm is
then repeated to propagate the system forward from event
to event, for as many transition steps as one requires
(or for as long a total time as is required). The result is
a series of transition events, distributed in time according
to the rates that define the model. There is no time dis-
cretization; events can occur separated by arbitrarily small
�ts, as in reality (this method is sometimes described as
‘continuous-time’ simulation for this reason). Event-
driven simulation is efficient for models with a finite set
of possible transitions at each moment in time (e.g. the
model studied here), since all computation is focused on
determining the sequence and times at which events occur.

To obtain steady-state properties, individual simula-
tions were run for times of from 104 to 105 times 1=r�,

roughly 1000 times longer than the time required to reach
the steady state. Large numbers of independent simula-
tions (typically 104–105) were run to obtain accurate
steady-state averages with small statistical errors; in
some cases, the error bars are smaller than the plot lines
and are not plotted (errors are described numerically in
those cases). All error bars shown indicate standard
errors. In some cases, exact or approximate analytical
results for statistical properties of the steady state can be
computed to compare with the simulations.

RESULTS

Results for non-dissociating machines

In the case with no dissociation (roff ¼ 0), the ordering of
the enzymes along the molecule is preserved over time,
and the total number of forward and reverse steps taken
by the two motors of any one machine are given by the
total distance between them. This makes it possible to
describe the steady state as governed by an effective

Figure 1. Schematic drawing of machine positions on the lattice as time progresses; lattice model equivalent is sketched below each panel. Black
dumbbell shapes (and arrows in the lattice sketch) depict enzymes and green lines show DNA. Panel (a) depicts the starting point and the progression
of infinitely processive machines, while Panel (b) shows machines with lower processivity (disassociation rate is still relatively small, see text).
Panel (c) depicts a single step, with ATP binding, hydrolysis and release associated with extrusion of a small amount of DNA.
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potential energy E proportional to the inter-motor
distance. One contribution to E acts between the two
coupled motors of each machine, �kBT�li, where � is a
constant dependent on the rates r+ and r� (see below),
kB is the Boltzmann constant, T is the absolute tempera-
ture and li is the distance (in lattice units) between the
motors of the ith pair (the size of the loop anchored by
machine i). If an external force F pulls on the endpoints of
the lattice, there is an extra term added to the effective
energy Fagj, where gj is the length of the gap between the
motor pairs. Here, �, li and gj are all dimensionless. DNA
torsional stress could be added to the model, e.g. as a bias
on the initial loop formation/binding rate, but we leave
this out of the model at present, in part due to the high
concentrations of topoisomerase in vivo that will tend to
relax torsional stress, and in part due to observations of a
null effect of torsional stress in single-DNA-condensin ex-
periments (26).

The total effective energy is the sum of the terms for the
loops and gaps,

E=kBT ¼ ��
X

M

i¼1

li � ðFaÞ=ðkBTÞ
X

M+1

j¼1

gj: ð1Þ

The hard-core repulsion constrains li � 1 and gi � 1;
furthermore, we have the total length constraint
P

ðli+giÞ � 1 ¼ L: The value of � is determined by
the ratio of forward and reverse stepping rates to be
r+=r� ¼ e�, which just reflects the conversion of forward
and reverse reaction rates into an effective energy biasing
forward over reverse steps. If the external force
F � �kBT=a, it should be kept in mind that the rates
r+,r� might be themselves significantly force dependent.

We can then use an effective Boltzmann partition
function ZL ¼

P

all states e
�E=ðkBTÞ to calculate statistical

properties of the steady state. This partition function de-
scribes a thermal equilibrium which coincides with the
steady state for the active system defined through rates
r+ and r�, even though the model as stated describes an
active system where energy is not conserved (the motors
are hydrolyzing ATP). As we show in the appendix, the
partition function is solvable exactly, as

ZL ¼ eM�eðL�M+1Þf
X

L�2M

r¼0

CM+r�1
r CL�M�r

M erð��fÞ
, ð2Þ

where Cn
k ¼

n!
k!ðn�kÞ!

is the binomial coefficient and

f 	 Fa=kBT is the force in units of kBT=a: The summed
variable r is the total length found in loops (between
motors). The probability distribution function for length
l in a loop follows by a similar computation (see the
appendix) as

PLðlÞ¼eðl�1Þð��fÞ

PL�2M�l+1
r¼0 CM+r�2

r CL�M�l+1�r
M erð��fÞ

PL�2M
r¼0 CM+r�1

r CL�M�r
M erð��fÞ

: ð3Þ

Results for the loop-size distribution are shown in
Figure 2; for each value of r+=r�, an exponential-like

distribution is obtained, corresponding to random fluctu-
ations of loop size in the effective potential.

The effective Boltzmann steady-state loop-size distribution
matches the simulation’s steady state
To verify that the effective potential computation is a
correct description of the steady state, we compared the
above results with simulation results and found them to be
equal. One case (L=50, r+=r� ¼ 1:25) is shown in the
inset of Figure 2; similarly precise agreement was found
for other values of r+=r� and L for steady-state properties,
validating the effective inter-motor potential. As the
motor bias is increased, the simulations reach the steady
state more slowly, but for biases up to r+=r� ¼ 5:0 we
have found precise agreement of the effective Boltzmann
result with the simulated steady state. Figure 3a shows
typical dynamics of mean loop size for M=5, L=50
and r+=r� ¼ 4; the mean loop size �L=M and show
strong fluctuations as a function of time.

The loop distribution peaks at small sizes and flattens as
bias increases
Figure 2 shows that the loop-size distribution is similar for
various values of motor bias (r+=r�); in each case, an
exponential-like decaying distribution peaked at zero
loop size is obtained, with the distribution broadening as
r+=r� is increased. In conclusion, the model with roff ¼ 0
generates a broad distribution of relatively small loops,
because the initially adjacently bound motors cannot
move past one another and generate essentially independ-
ent loop-size fluctuation against the inter-motor effective
potential. We note that even though the peak is at the
lowest allowable value for all biases, the average loop
size depends on the bias.

Results for machines that dissociate and rebind

We again consider M machines on a lattice of L sites, but
now we suppose that the machines can disassociate at a

Figure 2. Loop-size distribution for M=5 pairs of non-disassociating
loop-extruding machines on a lattice of size L=50. The probability
distribution broadens as the bias (r+=r�) increases. Main figure shows
results for r+=r� ¼ 1.05 (dot-dashed line), 1.5 (dashed line) and 4.0
(solid line). Inset: comparison of steady-state loop-size distributions
for exact statistical theory (solid black line) and kinetic simulation
r+=r� ¼ 1:25 (gray bars); difference between them is negligibly small.
The simulation was run 3
 105 times, each for a time of 1
 104=r�:
Standard errors for the histogram bars have a maximum value of
6
 10�4 and are invisible on this plot.
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rate roff: As mentioned above, dissociated enzymes are
considered to immediately rebind at an unoccupied pair
of lattice sites chosen at random (the total number of
bound machines is thus constant in time). We focus on
the case where the disassociation rate roff is much smaller
than r+ and r�, which is the regime where the machines are
able to interact (collide) with one another between dissoci-
ation events. Since the machines bind so as to occupy
adjacent lattice sites, there is no possibility of binding
where two motor pairs cross one another. This is a
simple consequence of the steric hindrance of the motor
pairs and the relative inflexibility of the underlying DNA
or chromatin at the scale of the lattice size a �50 nm.
Dark solid curves in Figure 3 show the average loop size

as a function of time for both non-disassociating and
dissociating cases, for r+=r� ¼ 4:0 and L=50. The
dashed colored curves indicate the distribution of loop
size. Without dissociation (Figure 3a), the loop sizes fluc-
tuate strongly, reflecting the stochastic dynamics of indi-
vidual machines. Adding dissociation rebinding leads to

loop sizes being driven toward their maximum possible
value, with strong suppression of loop-size fluctuations.

Increased bias leads to ‘stacked’ machines, large loops and
suppressed fluctuations
With dissociation, as the motor bias r+=r� was increased,
fluctuations in the loop size trapped by each motor
decreased, indicating the onset of ‘stiffening’ of the
steady state (Figures 3b and 4). Furthermore, as the bias
was increased, we observed a gradual increase in the prob-
ability of large loop sizes, eventually leading to a peak of
the loop-size distribution at values close to the lattice
length L (Figures 4 and 3b). Thus, dissociation allowed
self-organization of the machines so as to ‘stack’ up in the
manner shown in Figure 1b. To understand this phenom-
enon, note that since roff � r� < r+, when a machine dis-
sociates and then rebinds, most of the DNA lattice is
already captured by loops, and so it is likely that rebinding
occurs ‘inside some loop’. But then this enzyme will
proceed to move along the loop it is inside, until it
catches up with the other enzymes ‘anchoring’ that loop
(Figure 1b). Repetition of this process results in the
‘stacking’ of enzymes on top of one another at the loop
base; the multiple enzymes anchoring the large loop make
it robust against dissociation of individual enzymes.
Gradually, the entire lattice becomes a single organized
loop domain, with a series of motor pairs at the base of
the loop, each subtending �L lattice sites.

Effective Boltzmann model for the steady state of enzymes
with dissociation is a ‘restricted solid-on-solid’ model and
can be solved using transfer matrix method
We sought an effective Boltzmann description of the
steady state including dissociation. To do this, we need
to keep track of the ‘nesting’ of loops corresponding to
the ‘stacked’ motor pairs. We define a ‘motor position
index’ ni for each lattice site, defined as follows:

ni ¼

ni�1+1 a left motor between i� 1 and i;

ni�1 � 1 a right motor between i� 1 and i;

ni�1 no motor between i� 1 and i:

8

>

<

>

:

ð4Þ

The motors are now described by the positions of up
and down ‘steps’ in the ni variable along the lattice. The
number of up and down steps must each be constrained to
be M; note that also jni � ni�1j � 1, and n0 ¼ nL ¼ 0:
Apart from these constraints, all configurations of the
nis are permitted.

The effective energy must keep track of the distance
the motor pairs should have moved from their initial
adjacent positions to obtain the configuration ni: This is
done using

E=kBT ¼ ��
X

L

i¼0

ni � f
X

L

i¼0

�ni,0+�
X

L�1

i¼0

ð1� �ni,ni+1
Þ: ð5Þ

The first term in the right-hand side (RHS) of Equation
(5) is the product of the bias factor � ¼ lnðr+=r�Þ and the
total looped length, with the ni doing the necessary
multiple counting of regions enclosed by more than one
motor pair. The second term couples the external force f

Figure 3. Example time series of loop size for r+=r� ¼ 4:0 for a
(a) non-disassociating and a (b) dissociating case (roff ¼ 1
 10�4r�),
for M=5 machines on a substrate of length L=50. The dark solid
line shows the average of the sizes of the M loops, and the red and blue
dashed lines indicate the width (one standard deviation) of the distri-
bution of loop sizes subtended by the machines as a function of time.
As in all cases mentioned in this article, time is in units of 1=r�.
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to the unlooped region of the lattice with ni ¼ 0: The last
term uses a chemical potential � to fix the average number
of machines on the lattice at M. Equation (5) is a ‘re-
stricted solid-on-solid’ model used to describe interface
fluctuations, some properties of which can be solved
exactly (33). However, the average ni profile requires a
numerical solution of this problem; we use a transfer
matrix method (34) to obtain this.

Equation (5) cannot describe the roff 6¼ 0 steady state
exactly, since when an enzyme dissociates, ‘memory’ is
lost of the number of forward and reverse steps taken by
that motor, eliminating the possibility of an exact
potential-energy-based description. However, in the
slow-dissociation case of interest, we do not expect this
to be a severe problem since the motor pairs will reach a
steady state between dissociation events. We expect the
Boltzmann distribution for Equation (5) to describe the
statistics of the roff=r+! 0 limit quantitatively, and small
values of roff=r+ at least qualitatively (note that roff does
not appear in the Boltzmann model as � is used to control
hMi).

Agreement of effective Boltzmann and simulation results
improve as motor bias increases
The insets in Figure 4a–c show the results for motor
position index (labeled ‘head index’ in insets) ni, for the
average of the effective Boltzmann theory (solid line), and
for simulations with roff ¼ 10�4 (dashed lines indicate 1
SD around the average), for increasing motor bias
(r+=r�) values. Here, � has been adjusted in the
Boltzmann theory to obtain hMi ¼ 5: For small motor
bias, effective Boltzmann and simulation results are in
discord (as expected), but as motor bias is increased, pro-
gressively better agreement occurs. For the largest
simulated bias value, the ni profile obtained from the
Boltzmann theory is closely bracketed by the small
range of fluctuation obtained in the simulation. The
profile indicates that essentially all the motors are at the
ends of the lattice, with ni �5 in the entire interior region
of the lattice. This indicates formation of a robust loop
structure as sketched in Figure 1b.

Increasing domain size increases robustness of loop
domain ordering
To examine how the robustness of the loop-domain
ordering in the model was affected by loop size, we per-
formed simulations with L=200 and M=5; this kept the
motor numbers the same as in Figure 4, but increased the
lattice size by 4-fold (roff remained the same). Figure 5
shows the results for motor bias r+=r� ¼ 1:5: Comparing
with the inset in Figure 4b, it is clear that the increased size
has resulted in a suppression of fluctuations and a pileup
of motors at the domain endpoints. The agreement
between the effective Boltzmann and simulation results
is much closer than in the r+=r� ¼ 1:5 case for the
smaller (L=50) lattice.

DISCUSSION

We have shown that two-DNA-site-binding and in cis-
translocating machines are capable of robust
self-organization of large loop domains along a long
DNA molecule. Loop formation through this mechanism
is efficient even for low motor biases thanks to the syn-
chronization of multiple motors, which occurs due to their
mutual steric hindrance. The main requirement for the
machines is that they be sufficiently processive so they
can traverse the length of the loop domain before their
dissociation. Below, we discuss the regulation of forma-
tion of multiple loop domains along a single long DNA,
with the application of mitotic chromosome condensation
in mind. We then discuss the speculative proposal that this
model might be applicable to condensin activity during
mitotic chromosome condensation; however, we note
that this type of loop-domain self-organization could
occur for any DNA-loop-extruding enzyme, e.g. type I
restriction enzymes (31).

Formation of multiple loop domains on a long DNA and
mitotic chromosome structure

Here, we have considered formation of a single loop
domain. The boundaries of our 1D lattice model act as

Figure 4. Results for model with dissociation, for L=50, M=5 and roff=r� ¼ 10�4
, for different motor biases r+=r� ¼ 1:05 (a), 1.50 (b) and 4.00

(c). Panels (a–c) show loop-size distributions for the simulation steady state: as bias is increased, a peak grows at � L as motor pairs begin to trap
the entire domain. Each panel was computed using 4
 104 simulations each of total time 5
 105=r�: The maximum size of the standard error bars
for the histograms are 2
 10�3

, 1
 10�3 and 3
 10�3 for panels (a)–(c), respectively. The insets show the motor position (labeled ‘head index’)
index ni along the lattice: dashed lines show the average ( 1 SD for the simulations (standard error bars for the insets are invisible on this plot); solid
curves show average obtained from approximate effective Boltzmann description of the steady state. As bias is increased, fluctuations are suppressed
and the motors become ‘stacked’.
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boundary elements for the loop self-organization process.
One may ask how the formation of many loop domains
along a whole chromosome might be regulated.
A straightforward scheme to do this could be based on
periodic sequence-defined boundary markers (e.g. proteins
bound to specific locations) that would provide a stop
signal to the loop-forming machines (by promoting
either halting or dissociation). The outcome would be for-
mation of a series of loop domains anchored by discrete
clusters of condensing machines, with domain sizes
programmed by domain boundaries (Figure 6) (13).
In application to eukaryote mitotic chromosome

folding, this scheme could produce metaphase chromatids
with the tightly regulated shape seen in vivo, given periodic
location of domain boundary markers. This cis-condensa-
tion mechanism would drive topological separation of
entangled chromatids through the buildup of inter-
chromatid tension which would direct topo II to remove
entanglements as condensation proceeds (13,17).
For very long DNAs, one might ask about the effect of

poorly regulated binding events that inadvertently cause
‘crosslinks’ between different chromatids or ‘pseudoknots’
along one chromatid. Such non-local binding events will
be suppressed by the fact that the local concentration of
polymer segments ‘seen’ at a given polymer locus is
dominated by nearby segments along the same polymer.
Therefore, pseudoknots and inter-chromatid crosslinks
can be expected to be relatively rare, appearing as ‘defects’
among arrays of gradually loop-translocating machines.
Dissociation of a machine participating in a pseudoknot
or crosslink will release it. Contrast this with dissociation
of one machine in a loop cluster; we have shown that this
does not disturb the loop organization. The effect of
pseudoknot/crosslink defects could be tested in our
model by adding a background of randomly oriented
single-motor walkers, which when sufficiently dilute
should be outcompeted by the collective effect of self-
organization of the loop-forming machines.

The length scale relevant to our model (�50 nm) is
much longer than the screening length for electrostatic
interactions under physiological conditions (<2 nm for
�150mM univalent salt), and we expect our results to
be insensitive to small changes in ionic or other ‘solvent
quality’ conditions that may occur through mitosis. We
emphasize that the amount of simple adhesion of chroma-
tin to itself must be low during mitotic chromosome con-
densation, to avoid derailing the processes of formation of
linear chromosomes and resolution of sister chromatids
and chromosomes (13,17). The essential point of this
article is that the ‘loop-extrusion’ mechanism discussed
in this article can accomplish a high degree of chromo-
some compaction, while maintaining non-adhering condi-
tions for chromatin fibers, and thus allowing packing of
the fibers together to facilitate chromatid and chromo-
some separation.

Are mitotic chromosomes organized by condensin
through loop extrusion?

A number of pieces of evidence suggest that the
‘loop-extrusion’ mechanism may be relevant to eukaryote
mitotic chromosome condensation through mitotic
condensin activity. Recently, it has been discovered that
condensins interact with DNA through a ‘topological
embrace’ mechanism whereby condensins are linked to
DNA through their tripartite ring-like structure (27).
This topological interaction could constrain condensins
to interact with DNA in cis, could facilitate their sliding
along a chromatin loop in the manner sketched in Figure 6
and could enforce the steric hindrance necessary for the
loop-organization process discussed above.

In our model, condensation (and chromatid resolution)
depends on processive translocation (or effective trans-
location, e.g. treadmilling, see below) of loop-extruding
machines from starting points where the two motor
elements of a machine are bound along a single stretch
of chromatin, near to one another and in opposite orien-
tations. Evidence exists that condensin–DNA interactions
favor binding along a stretch of chromatin, from

Figure 5. Loop-size distribution and motor position index profile for
larger lattice (L=200) with bias r+=r� ¼ 1:5, and M=5 motor pairs.
The simulation was run 1:7
 104 times, each for a time of 5
 105=r�:
The maximum size of the standard error bars is 2
 10�3: For the ni
profile (inset, labeled ‘head index’), the solid line is the effective
Boltzmann theory, dashed lines show average±1 SD of the simulation
ni distribution; standard errors of the simulation results are negligibly
small. Dissociation rate is roff� ¼ 10�4r�.

Figure 6. Condensation of multiple loop domains. (a) Initially
condensins (black dumbbell shapes) bind along a long stretch of chro-
matin (green), between condensation boundary elements (red octagons).
(b) As condensation proceeds, condensins organize into a ‘stacked’ con-
figuration at the bases of chromatin loops defined by the boundary
elements. The resultant crowding of chromatin at the bases of the
loops generates inter-chromatid tension that will drive topo II to
remove inter-chromatid entanglements.
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single-DNA experiments where in the absence of ATP
condensins bind along DNA without any loop-
formation-type condensation signal (26), suggestive of a
strong preference for condensin initially occupying a
single position along DNA.

The motion of individual condensin complexes on chro-
matin or DNA has not been directly observed. Indeed, the
molecular details of how condensin binds DNA are not
fully understood (28). It is known that the condensin
complex has a well-defined overall shape in solution,
with its ATP-hydrolyzing heads held in relative spatial
position by the kleisin subunit. Therefore, it appears
likely that initial binding of condensin to DNA is con-
strained by the geometry of the complex. Further
evidence for this comes from the apparent binding of
condensin to DNA in the absence of ATP observed by
Strick et al. (26) without observation of any random
loop capture. In those same experiments, addition of
ATP to condensin pre-bound to DNA resulted in system-
atic step-wide condensation, suggesting distinct and
well-defined DNA-binding and DNA-condensing
modes of condensin–DNA interaction. Furthermore, ex-
periments that observe an ATP-dependent (35) and
phosphorylation-regulated (36) DNA supercoiling
activity of condensin indicate that condensin is able to
impose 3D constraints on the bound DNA, so as to
generate positive writhe (37). Therefore, initial binding is
likely to lead to a well-defined relative alignment of
condensin along DNA/chromatin that will bias successive
ATP-dependent unbinding/rebinding and possible trans-
location steps.

The observation of 70 nm condensation steps by Strick
et al. (26) that depend on hydrolizable ATP and which are
decoupled from initial condensin–DNA binding suggests a
highly constrained release-rebinding behavior: if any
DNA orientation could be rebound during enzyme
release rebinding, one would expect to see a much
broader distribution of condensation steps with a larger
mean step size; theoretically, a broad distribution centered
at roughly 200 nm is expected for the 0.4 pN forces used in
the Strick et al. (26) experiment (see (16) for theory
and (29) for experimental validation using non-specific
DNA–loop-binding proteins). The Strick et al. experi-
ments showing a defined step size indicate a rather
tightly controlled condensin unbinding/rebinding cycle.
Furthermore, the progressive condensation dominated
by condensation steps (with de-condensation steps of the
same size) observed in the experiments of the same group
indicates a directed reaction.

Use of our loop-extrusion-condensation model to
control global mitotic chromosome architecture requires
sequence-correlated condensin–DNA interactions, perhaps
through other components of chromatin. Condensin is
known to be ‘loaded’ onto yeast chromosomes at
specific locations (38), but it is not yet known if this is
true in higher eukaryotes. A piece of evidence in favor
of sequence-defined chromosome condensation in mam-
malian cells is the observation that insertions of
non-eukaryote DNA into chromosomes lead to chromo-
somes which ‘thin’ at those locations when put under
stress (39), indicating that the foreign DNA induces

chromosome condensation defects. While it is unknown
how DNA sequence controls mitotic chromosome con-
densation, one possibility is that cohesin SMCs, which
act to hold sister chromatids together until late in
mitosis, act as the boundaries. The gradual loss of
cohesins known to occur during mitosis would be
required to facilitate condensation and separation of
sister chromatids.
It is also conceivable that other DNA-binding proteins

which trigger condensin unbinding, or which inhibit
condensin activity, could define condensation domain
boundaries. Notably, the protein MCPH1 has recently
been observed to control condensin activity; its suppres-
sion leads to ‘dumpy’, over-condensed chromosomes (40).
It is also feasible that a wide variety of interactions of
condensins with chromatin proteins regulate mitotic
chromosome condensation activity, including interactions
with core histones (41). Finally, it is also possible that
condensins might associate with replicated sister chroma-
tids during DNA replication, with the advance of
condensin condensation within replication bubbles
controlled by enzymes associated with the replication
forks.
Another piece of evidence in favor of application of our

model to mitotic condensin activity is observation of
condensin-rich regions in the axial ‘core’ regions of
mitotic chromatids (23). This can be simply understood
in the context of our model as a consequence of relocation
of condensin units to the bases of chromatin loops.
A prediction of our model is that the condensin-rich chro-
matid cores actually consist of a series of isolated
condensin clusters (Figure 6). This prediction is consistent
with experiments indicating that cutting DNA alone is
sufficient to entirely dissolve eukaryote metaphase
chromosomes (13,42,43).

Alternatives to translocation by individual condensins

While translocation might literally apply in the sense that
individual condensins may move along DNA (their
ATPase domains are homologous to those of ABC trans-
porters (20)), it is alternately possible that individual
condensins do not actually translocate on DNA.
However, the model of this article could also describe
condensin driven mitotic chromosome condensation even
in the absence of translocation of individual condensins.
Movement of condensin clusters along DNA could result
from simple binding and release dynamics at adjacent pos-
itions (e.g. through ‘treadmilling’) without actual trans-
location of individual condensin units.
Figure 7 sketches this process, where the triangular

binding sites indicate the role of the asymmetric shape
of condensins in regulating an asymmetric ‘elongation’
process (this asymmetry was present for the translocating
machines discussed above in the directed motion of the
motor elements). The combination of structural asym-
metry and ATP hydrolysis could drive ‘directional poly-
merization’ of condensins on chromatin so as to move
condensin clusters along DNA by a treadmilling process
reminiscent of cytoskeletal filament polymerization (44).
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Other motors, notably the chromokinesin KIF4A that
controls chromosome condensation and the chromatid-
axial distribution of condensins in metaphase chromo-
somes (45) might also contribute to condensin relocation.
Another mechanism for the generation of translocation
energy might be simply the polymer free energy of a chro-
matin loop subject to constraint by condensins, which will
be minimized by locating the complexes at the base of a
large chromatin loop. To detect condensin motion and
clustering (as predicted by our model), ChIP-seq analysis
during progressive stages of prophase and metaphase
might be useful. Combining ChIP-seq data with
chromosome-conformation-capture analysis could correl-
ate condensin binding with distant-site-looping.
In bacteria, SMC complexes also play a major role in

chromosome condensation and segregation. The E. coli
SMC complex MukBEF forms clusters near OriC and
appears to mediate chromosome condensation and OriC
segregation after replication (46). The clustering and
chromosome segregation functions of bacterial SMCs
may be due to the same mechanism as in the eukaryote
case, and we speculate that the translocation-stacking
mechanism discussed in this article is operative in
bacteria. For both bacterial and eukaryote condensins, it
may be possible to directly observe the mechanism of
DNA compaction, e.g. through single-molecule fluores-
cence imaging methods.
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APPENDIX

With non-disassociating enzymes, each lattice site is either
in ‘one’ loop or in no loop (gap). Therefore, for M
enzymes, the total length of the lattice is the sum of the
lattice length caught in each loop and gap.

L ¼
X

M

i

li+
X

M+1

i

gi � 1, ðA1Þ

where the smallest loop and gap sizes are l=1 and g=1;
Note that for M pairs of motors, there are M loops and
M+1 gaps (counting the gaps at the ends as well as the
ones in between machines).
The effective energy is given by Equation (1), i.e.

E=kBT ¼ ��
X

i

li � f
X

i

gi, ðA2Þ

where f ¼ Fa=kBT; F is the applied force and a is the
length of each lattice site.
To calculate the probability distribution functions, we

need to calculate the partition function Z. In order to do
so, we relax the length constraint, adding a tension term
kBT�L coupled to the total length to the energy to control
the average length.
The partition function Z then becomes

Z ¼ e�E=kBT ¼
Y

M

i¼1

X

1

li¼1

eð���Þli
Y

M+1

j¼1

X

1

gj¼1

eðf��Þgje�: ðA3Þ

The sum is calculated using the geometric series
P1

n¼0 x
n ¼ ð1� xÞ�1: The partition function Z, then

follows as

Z ¼ eM�+ðM+1Þf�ð2MÞ� 1

1� e���

� �M
1

1� ef��

� �M+1

: ðA4Þ

We rewrite the RHS of the above equation by factoring
out powers of e�� and finding the coefficients of each term.
These coefficients (for a given L of the ‘grand canonical’
(fluctuating-L) partition function Z are themselves the
partition function for the fixed length (canonical)
system ZL.

Z ¼
X

1

L¼2M+1

ZLð�, fÞe
��L: ðA5Þ

By expanding Z in powers of e�� (Equation (A4) can be
expanded in powers of e�� using Newton’s generalized
binomial theorem (47), and then terms with a net fixed
power of e�� can be selected) the fixed-L partition
function ZL is obtained:

ZL ¼ e�MefðL�M+1Þ
X

L�2M

r¼0

CM+r�1
r CL�M�r

M eð��fÞr
, ðA6Þ
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where r is the looped length. Note that in the non-
disassociating case, the maximum length of any loop
occurs when the other loops are of size 1, making the
maximum allowable loop size equal to L – 2 M.
To find the probability of any loop being of size l, we

recalculate the fluctuating-L partition function but now
with the constraint that one loop is of size l:

Zl ¼ e�
Y

M�1

i¼1

X

1

li¼1

eð���Þli
Y

M+1

j¼1

X

1

gj¼1

eðf��Þgjeð���Þl: ðA7Þ

This constrained partition function then can be
calculated using the same steps as above:

Zl¼eðM�1Þ�+ðM+1Þf�ð2M�1Þ�+ð���Þl 1

1�e���

� �M�1
1

1�e f��

� �M+1

:

ðA8Þ

Expanding Zl ¼
P1

L¼0 ZL,le
�L� gives

ZL,l¼ e�ðM+l�1ÞeðL�M�l+2Þf



X

L�2M�l+1

r¼0

CM+r�2
r CL�M�l+1�r

M eð��fÞr:
ðA9Þ

The probability distribution follows as

PlðM,L,�,fÞ ¼
ZL,l

ZL

¼ eð��fÞðl�1Þ




PL�2M�l+1
r¼0 CM+r�2

r CL�M�l+1�r
M eð��fÞr

PL�2M
r¼0 CM+r�1

r CL�M�r
M eð��fÞr

:

ðA10Þ
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