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Self-organized criticality has been proposed to be a universal mechanism for the

emergence of scale-free dynamics in many complex systems, and possibly in the

brain. While such scale-free patterns were identified experimentally in many different

types of neural recordings, the biological principles behind their emergence remained

unknown. Utilizing different network models and motivated by experimental observations,

synaptic plasticity was proposed as a possible mechanism to self-organize brain dynamics

toward a critical point. In this review, we discuss how various biologically plausible plasticity

rules operating across multiple timescales are implemented in the models and how they

alter the network’s dynamical state through modification of number and strength of the

connections between the neurons. Some of these rules help to stabilize criticality, some

need additional mechanisms to prevent divergence from the critical state. We propose that

rules that are capable of bringing the network to criticality can be classified by how long the

near-critical dynamics persists after their disabling. Finally, we discuss the role of self-

organization and criticality in computation. Overall, the concept of criticality helps to shed

light on brain function and self-organization, yet the overall dynamics of living neural

networks seem to harnesses not only criticality for computation, but also deviations

thereof.
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INTRODUCTION

More than 30 years ago, Per Bak, Chao Tang, and Kurt Wiesenfeld [1] discovered a strikingly simple
way to generate scale-free relaxation dynamics and pattern statistic, that had been observed in
systems as different as earthquakes [2, 3], snow avalanches [4], forest fires [5], or river networks [6,
7]. Thereafter, hopes were expressed that this self-organization mechanism for scale-free emergent
phenomena would explain how any complex system in nature worked, and hence it did not take long
until the hypothesis sparked that brains should be self-organized critical as well [8].

The idea that potentially the most complex object we know, the human brain, self-organizes to a
critical state was explored early on by theoretical studies [9–12], but it took more than 15 years until
the first scale-free “neuronal avalanches” were discovered [8]. Since then, we have seen a continuous,
and very active interaction between experiment and theory. The initial, simple and optimistic idea
that the brain is self-organized critical similar to a sandpile has been refined and diversified. Now we
have a multitude of neuroscience-inspired models, some showing classical self-organized critical
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dynamics, but many employing a set of crucial parameters to
switch between critical and non-critical states [12–16]. Likewise
the views on neural activity have been extended: We now have the
means to quantify the distance to criticality even from the very
few neurons we can record in parallel [17]. Overall, we have
observed in experiments, how developing networks self-organize
to a critical state [18–20], how states may change from
wakefulness to deep sleep [21–25], under drugs [26] or in a
disease like epilepsy [27–30]. Criticality was mainly investigated
in in vivo neural activity during the resting state dynamics
[31–34], but there are also some studies during task-induced
changes and in presence of external stimuli [35–39]. These results
show how criticality and the deviations thereof can be harnessed
for computation, but can also reflect cases where self-
organization fails.

Parallel to the rapid accumulation of experimental data,
models describing the complex brain dynamics were developed
to draw a richer picture. It is worthwhile noting that the seminal
sandpile model [40] already bears a striking similarity with the
brain: The distribution of heights at each site of the system
beautifully corresponds to the membrane potential of neurons,
and in both systems, small perturbations can lead to scale-free
distributed avalanches. However, whereas in the sandpile the
number of grains naturally obeys a conservation law, the number
of spikes or the summed potential in a neural network does not.

This points to a significant difference between classical SOC
models and the brain: While in the SOC model, the conservation
law fixes the interaction between sites [40–44], in neuroscience,
connections strengths are ever-changing. Incorporating
biologically plausible interactions is one of the largest
challenges, but also the greatest opportunity for building the
neuronal equivalent of a SOC model. Synaptic plasticity rules
governing changes in the connections strengths often couple the
interactions to the activity on different timescales. Thus, they can
serve as the perfect mechanism for the self-organization and
tuning the network’s activity to the desired regime.

Here we systematically review biologically plausible models of
avalanche-related criticality with plastic connections. We discuss
the degree to which they can be considered SOC proper, quasi-
critical, or hovering around a critical state. We examine how they
can be tuned toward and away from the classical critical state, and
in particular, what are the biological control mechanisms that
determine self-organization. Our main focus is on models that
exhibit scale-free dynamics as measured by avalanche size
distributions. Such models are usually referred to as critical,
although the presence of power laws in avalanches properties
is not a sufficient condition for the dynamics to be critical
[45–48].

MODELING NEURAL NETWORKS WITH
PLASTIC SYNAPSES

Let us briefly introduce the very basics of neural networks,
modeling neural circuits and synaptic plasticity. Most of these
knowledge can be found in larger details in neuroscience text-
books [49–51]. The human brain contains about 80 billion

neurons. Each neuron is connected to thousands of other
neurons. The connections between the neurons are located on
fine and long trees of “cables”. Each neuron has one such tree to
collect signals from other neurons (dendritic tree), and a different
tree to send out signals to another set of neurons (axonal tree).
Biophysically, the connections between two neurons are realized
by synapses. These synapses are special: Only if a synapse is
present between a dendrite and an axon can one neuron activate
the other (but not necessarily conversely). The strength or weight
wij of a synapse determines how strongly neuron j contributes to
activating neuron i. If the summed input to a neuron exceeds a
certain threshold within a short time window, the receiving
neuron gets activated and fires a spike (a binary signal). If a
synapse wij allows neuron j to send signals to neuron i, it does not
mean that the reverse synapse, wji is also present. Thus, unlike
classical physics systems, interactions between units are not
symmetric but determined by a sparse, non-symmetric weight
matrix W. Moreover, interactions are not continuous but pulse-
like (spike), and they are time-delayed by a few milliseconds: It
takes a few milliseconds for a spike to travel along an axon, cross
the synapse, and reach the cell body of the receiving neuron. Most
interestingly, the synaptic weights wji change over time. This is
termed synaptic plasticity and is the core mechanism behind
learning.

Before we turn to studying synaptic plasticity in a model, the
complexity of a living brain has to be reduced into a simplified
model. Typically, neural networks are modeled with a few
hundred or thousand of neurons. These neurons are either
spiking, or approximated by “rate neurons” which represent
the joint activity of an ensemble of neurons. Such rate
neurons also exist in vivo, e.g., in small animals, releasing
graded potentials instead of spikes. Of all neurons in the
human cortex, 80% are often modeled as excitatory neurons;
when active, excitatory neurons contribute to activating their
post-synaptic neurons (i.e., the neurons to whom they send their
signal). The other 20% of neurons are inhibitory, bringing their
post-synaptic neurons further away from their firing threshold.
Effectively, an inhibitory neuron is modeled as having negative
outgoing synaptic weights wij, whereas excitatory neurons have
positive outgoing weights. In many simplified models, only one
excitatory population is considered, and inhibition is implicitly
assumed to be contributing to activity propagation probability
that is already included in the excitatory connections. The
connectivity matrix W between the neurons is typically sparse,
since most of the possible synapses are not realized. Inmodels, the
connectivity and initial strength of synapses are often drawn from
some random distribution. In some studies, however, the impact
of specific choices for connectivity and topology is explicitly
explored, as outlined in this review (Network Rewiring and
Growth). Finally, the model neurons often receive some
external activation or input in addition to the input generated
from the network connections to keep the network going and
avoid an absorbing (quiescent) state.

Numerous types of plasticity mechanisms shape the activity
propagation in neuronal systems. One type of plasticity acts at the
synapses regulating their creation and deletion, and determining
changes in their weights wij. Thereby, regulating postsynaptic
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potentials, which govern the ability of the sending neuron to
contribute to the activation of the receiving neuron and thus to
activity propagation in the network. The other types of plasticity
mechanisms regulate the overall excitability of the neuron, for
example, by changing the spiking (activation) threshold or by
adaptation currents.

The reasons and mechanisms of changing synaptic strength
and neural excitability differ broadly. Changes of the synaptic
strengths and excitability in the brain occur at different timescales
that might be particularly important for maintaining the critical
dynamics. Some are very rapid acting within tens of milliseconds,
or associated with every spike; others only make changes on the
order of hours or even slower. For this review we simplified the
classification in three temporally and functionally distinct classes,
Figure 1.

The timescale of a plasticity rule influences how it contributes
to the state and collective dynamics of brain networks. At the first
level, we separate short-term plasticity acting on the timescale of
dozens milliseconds, from the long-term plasticity acting with a
time constant of minutes to days. As an illustration for short-term
plasticity, we present prominent examples of short-term
depression (see Short-Term Synaptic Plasticity). Among the
long-term plasticity rules, we separate two distinct classes.
First, plasticity rules that are explicitly associated with learning
structures for specific activity propagation such as Hebbian and
spike-timing-dependent plasticity (STDP, Figure 1, middle).
Second, homeostatic plasticity that maintains stable firing rate
by up or down regulating neuronal excitability or synaptic
strength to achieve a stable target firing rate over long time.
This plasticity rule is particularly active after sudden or gradual
changes in input to a neuron or neural network, and aims at re-
establishing the neuron’s firing rate (Figure 1, right).

Criticality in Network Models
Studying the distributions of avalanches is a common way to
characterize critical dynamics in network models. Depending on
the model, avalanches can be defined in different ways. When it is
meaningful to impose the separation of timescales (STS), an
avalanche is measured as the entire cascade of events
following a small perturbation (e.g., activation of a single

neuron) - until the activity dies out. However, the STS cannot
be completely mapped to living neural systems due to the
presence of spontaneous activity or external input. The
external input and spontaneous activation impedes the pauses
between avalanches and makes an unambigous separation
difficult [52]. In models, such external input can be explicitly
incorporated to make them more realistic. To extract avalanches
from living networks or from models with input, a pragmatic
approach is often chosen. If the recorded signal can be
approximated by a point process (e.g., spikes recorded from
neurons), the data is summed over all signal sources (e.g.,
electrodes or neurons) and then binned in small time bins.
This way, we obtain a single discrete time-series representing a
number of events in all time-bins. An avalanche is then defined as
a sequence of active bins between two silent bins. If the recorded
signal is continuous (like EEG, fMRI, and LFP), it is first
thresholded at a certain level and then binned in time [8]. For
each signal source (e.g., each electrode or channel), an individual
binary sequence is obtained: one if the signal in the bin is larger
than the threshold and zero otherwise. After that, the binary data
is summed up across all the signal sources, and the same
definition as above is applied. Another option to define
avalanches in continuous signals is to first sum over the
signals across different sources (e.g., electrodes) and then
threshold the compound continuous signal. In this method,
the beginning of an avalanche is defined as a crossing of the
threshold level by the compound activity process from below, and
the end is defined as the threshold crossing from above [53, 54].
In this case the proper measure of the avalanche sizes would be
the integral between two crossings of the threshold-subtracted
compound process [55].

While both binning and thresholding methods are widely
used, concerns were raised that depending on the bin size [8,
21, 52, 56], the value of the threshold [55], or the intensity of
input [57] distribution of observed avalanches and estimated
power-law exponents might be altered. Therefore, to characterize
critical dynamics using avalanches it is important to investigate
the fundamental scaling relations between the exponents of
avalanche size, duration and shapes to avoid misleading results
[58, 59], or instead use approaches to assess criticality that do not

FIGURE 1 | Schematic examples of synaptic plasticity. (A) short-term synaptic depression acts on the timescale of spiking activity, and does not generate long-

lasting changes. (B) For spike-timing dependent plasticity (STDP), a synapse is potentiated upon causal pairing of pre- and postsynaptic activity (framed orange) and

depressed upon anti-causal pairing (framed green), forming long-lasting changes after multiple repetitions of pairing. (C) Homeostatic plasticity adjusts presynaptic

weights (or excitability) to maintain a stable firing rate. After reduction of a neuron’s firing rate (e.g., after a lesion and reduction of input), the strengths of incoming

excitatory synapses are increased to re-establish the neuron’s target firing rate. In contrast, if the actual firing rate is higher than the target rate, then synapses are

weakened, and the neuron returns to its firing rate–on the timescales of hours or days.
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require the definition of avalanches [17, 60]. We elaborate on
these challenges and bias-free solutions in a review book chapter
[61]; for the remainder of this review, we assume that avalanches
can be assessed unambiguously.

The timescale of a plasticity rule might play a deciding role for
the plasticity’s ability of reaching and maintaining closeness to
criticality. While short-term plasticity acts very quickly, it does
not generate long-lasting, stable modifications of the network;
and it can clearly serve as a feedback between activity and
connection strength. Long-term plasticity, on the other side,
takes longer to act, but can result in a stable convergence to
critical dynamics, Figure 2. To summarize their properties:

• Long-term plasticity is timescale-separated from activity
propagation, whereas short-term plasticity evolves at
similar timescales.

• Long-term plasticity can self-organize a network to a
critical state.

• Short-term plasticity constitutes an inseparable part of the
network dynamics. It generates critical statistics in the data,
working as a negative feedback.

• The core difference: long-term plasticity, after convergence,
can be switched off and the system will remain at criticality.
Switching off short-term plasticity will almost surely destroy
apparent critical dynamics.

• There is a continuum of mechanisms on different timescales
between these two extremes. Rules from this continuum can
generate critical states that persist for varying time after
rule-disabling, potentially even infinitely.

Short-Term Synaptic Plasticity
The short-term plasticity (STP) describes activity-related changes
in connection strength at a timescale close to the timescale of
activity propagation, typically on the order of hundreds to
thousands of milliseconds. There are two dominant
contributors to the short-term synaptic plasticity: the depletion
of synaptic resources used for synaptic transmission, and the

transient accumulation of the Ca2+ ions that are entering the cell
after each spike [62].

At every spike, a synapse needs resources. Inmore detail, at the
presynaptic side, vesicles from the readily-releasable pool are
fused with the membrane; once fused, the vesicle is not available
until it is replaced by a new one. This fast fusion, and slow filling
of the readily releasable pool leads to synaptic depression,
i.e., decreasing coupling strength after one or more spikes
(Figure 1A). Synapses whose dynamics is dominated by
depletion are called depressing synapses [63]. At the same time,
for some types of synapses, recent firing increases the probability
of release for the vesicles in a readily-releasable pool. This
mechanism leads to the increase of the coupling strength for a
range of firing frequencies. Synapses with measurable
contributions from it are called facilitating synapses [64].
Hence, depending on their past activity, some synapses lower
their release (i.e., activation) probability, others increase it,
leading effectively to a weakening or strengthening of the
synaptic strength.

Short-term plasticity (STP) appears to be an inevitable
consequence of synaptic physiology. Nonetheless, numerous
studies found that it can play an essential role in multiple
brain functions. The most straightforward role is in the
temporal filtering of inputs, i.e., short-term depression will
result in low-pass filtering [65] that can be employed to
reduce redundancy in the incoming signals [66]. Additionally,
it was shown to explain aspects of working memory [67].

We consider a network of neurons (in the simplest case, non-
leaky threshold integrators) that interact by exchanging spikes.
The state Vi ≥ 0 of neuron i � 1, . . . ,N represents the membrane
potential and obeys the following equation:

_V i � δi,ζτ(t)I + CN ∑N
j�1

wij(tjsp)δ(t − tjsp − τd), (1)

where tjsp is the time of the spike of presynaptic neuron j, wij(t
j
sp)

is the strength of synapse between neuron j and i at time tjsp. Each

FIGURE 2 | Classical plasticity rules and set-points of network activity. (A) Short-term plasticity serves as immediate feedback (top). The resulting long-term

behavior of the network hovers near the critical point (orange trace, bottom panel). (B) Long-term plasticity results in slow (timescale of hours or longer) convergence to

the fixpoint of global coupling strength. In some settings, this fixpoint may correspond to the second-order phase-transition point (bottom), rendering the critical point a

global attractor of dynamics.
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neuron integrates inputs until it reaches a threshold θ. As soon as
Vi(t)> θ, the neuron emits a spike and delivers excitatory
postsynaptic potentials to every connected neuron in the network
after a fixed delay τd . The neurons receive external input defined by a
random process ζτ(t) ∈ {1, . . . ,N} that acts on a very slow timescale
τ≫ τd (timescale separation) by selecting a random neuron and
increasing its membrane potential by an amount I. The timescale τ
defines a time-step in the discrete simulation between the avalanches.

To model the changes in the connection strength associated
with short-term synaptic plasticity, it is sufficient to introduce
two additional dynamic variables: Ji indicates the number of
synaptic resources (i.e., vesicles) available in neuron i, and ui the
fraction of these resources that is used for one spike. Coupling
strength is captured by wi(t) � Ji(t)ui(t). Each time when
neuron i emits a spike at time tisp, Ji is reduced by
Ji(t

i
sp)ui(t

i
sp). This reflects the use of one or more vesicles to

transmit the spike. After a spikes, the resources recover (i.e., the
readily-releasable vesicle pool is filled again), and Ji approaches its
resting value Jrest at a time scale τJ .

_J i �
1

τJ
(Jrest − Ji) − uiJiδ(t − tisp), (2)

with δ denoting Dirac delta function. To add synaptic facilitation,
we equip ui with temporal dynamics, increasing it at each spike
and decreasing between the spikes:

_ui �
1

τu
(urest − ui) + (1 − ui)urestδ(t − tjsp). (3)

Including depressing synapses (Eq. 2) in the integrate-and-fire
neuronal network was shown to increase the range of coupling
parameters leading to the power-law scaling of avalanche size
distribution [68] as compared to the network without synaptic
dynamics (Figure 3). If facilitation (Eq. 3) is included in the
model, an additional first-order transition arises [69] (Figure 3).
Both models have an analytical mean-field solution. In the limit
of the infinite network size, the critical dynamics is obtained for
any large enough coupling parameter. It was later suggested that

the state reached by the system equipped with depressing
synapses is not SOC, but self-organized quasi-criticality [70],
as it is not locally energy preserving.

The mechanism of the near-critical region extension with
depressing synapses is rather intuitive. If there is a large event
propagating through the network, the massive usage of synaptic
resources effectively decouples the network. This in turn prevents
the next large event for a while, until the resources are recovered.
At the same time, series of small events allow to build up
connection strength increasing the probability of large
avalanche. Thus, for the coupling parameters above the critical
values, the negative feedback generated by the synaptic
depression allows to bring the system closer to the critical
state. Complimentary, short-term facilitation can help to shift
slightly subcritical systems to a critical state.

A network with STD is essentially a two-dimensional dynamical
system (with one variable corresponding to activity, and other to
momentary coupling strength). Critical behavior is observed in the
activity-dimension, over a long period of time while the coupling is
hovering around the mean value as response to the changing
activity. If the plasticity is “switched off”, the system may be close
to–or relatively far from the critical point of the networks. The
probability that the system happens to be precisely at its critical
state when plasticity is switched off goes to zero, because 1)
criticality only presents one point in this one-dimensional phase
transition, and 2) for the large system size, already the smallest
parameter deviation results in a big difference in the observed
avalanche distribution, rendering the probability to switch off
plasticity at the moment of critical coupling strength effectively 0.

In critical systems, not only the avalanche size distribution, but
also the absence or presence of correlation between the
avalanches are of interest. Already in the classical Bak-Tang-
Wiesenfeld model [40], subsequent avalanche sizes are not
statistically independent, whereas in the branching process
they are. Hence, the correlation structure of subsequent
avalanche sizes allows inference about the underlying model
and self-organization mechanisms. In the presence of such
correlations, fitting the avalanche distributions and

FIGURE 3 | Short-term plasticity increases the range of the near critical regime. Left: model without plasticity reaches critical point only for single coupling

parameter,wi(t) � w. Middle: short-term depression extends the range of parameters resulting in the critical dynamics. Fraction ui of synaptic resources for each spike:

ui � u � 0.2, coupling parameter represents resting synaptic strength wrest � uJrest � 0.2Jrest. An actual connection strength at time t is wi(t) � uJi(t), where Ji(t) is

described by Eq. 2. Different lines correspond to different values of Jrest ∈ [2,5]. Right: short-term facilitation and depression together generate a discontinuous

(first order - like) phase transition. Resting state fraction of synaptic resources urest � 0.1, coupling parameter is resting state synaptic strength wrest � urestJrest,

connection strength wi(t) � ui(t)Ji(t) is given by Eqs 2,3. Different lines correspond to different values of Jrest ∈ [4.5,6.5]. For all simulations, network size N � 300,

τu � τJ � 10Nτ, where τ is a timescale of external drive.
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investigating power-law statistics should also be applied properly
[71]. For models with short-term plasticity, both the avalanche
sizes and inter-avalanche intervals are correlated, and similar
correlations were observed in the neuronal data in vitro [72].

After the first publication [73], short-term depression was
employed in multiple models discussing other mechanisms or
different model for individual neurons. To name just a few: in
binary probabilistic networks [74], in networks with long-term
plasticity [75, 76], in spatially pre-structured networks [77, 78]. In
one of the few studies using leaky integrate-and-fire neurons,
short term depression was also found to result in critical
dynamics if neuronal avalanches are defined by following the
causal activation chains between the neurons [79]. However, it
was shown later that the causal definition of avalanches will lead
to power-law statistics even in clearly non-critical systems [80]. In
all cases, the short-term plasticity contributes to the generation of
a stable critical regime for a broad parameter range.

Long-Term Synaptic Plasticity and Network
Reorganization
Long-termmodifications in neuronal networks are created by two
mechanisms: long-term synaptic plasticity and structural
plasticity (i.e., changes of the topology). With long-term
synaptic plasticity, synaptic weights change over a timescale of
hours or slower, but the adjacency matrix of the network remains
unchanged. However, with structural plasticity, new synapses are
created or removed. Both these mechanisms can contribute to
self-organizing the network dynamics toward or away from
criticality.

Three types of long-term synaptic plasticity have been
proposed as possible mechanisms for SOC: Hebbian plasticity,
Spike-timing-dependent plasticity (STDP) and homeostatic
plasticity. In Hebbian plasticity connections between near-
synchronously active neurons are strengthened. In STDP, a
temporally asymmetric rule is applied, where weights are
strengthened or weakened depending on the order of pre- and
post-synaptic spike-times. Last, homeostatic plasticity adapts the
synaptic strength as a negative feedback, decreasing excitatory
synapses if the firing rate is too high, and increasing it otherwise.
Thereby, it stabilizes the network’s firing rate. In the following, we
will discuss how each of these mechanisms can contribute to
creating self-organized critical dynamics and deviations thereof.

Hebbian-Like Plasticity
Hebbian plasticity is typically formulated in a slogan-like form:
Neurons that fire together, wire together. This means that
connections between neurons with similar spike-timing will be
strengthened. This rule can imprint stable attractors into the
network’s dynamics, constituting the best candidate mechanism
for memory formation. Hebbian plasticity in its standard form
does not reduce coupling strength, thus without additional
stabilization mechanisms Hebbian plasticity leads to runaway
excitation. Additionally, presence of stable attractors makes it
hard to maintain the scale-free distribution of avalanche sizes.

The first papers uniting Hebbian-like plasticity and criticality
came from Lucilla de Arcangelis’ and Hans J. Herrmann’s labs

[81–83]. In a series of publications, they demonstrated that a
network of non-leaky integrators, equipped with plasticity and
stabilizing synaptic scaling develops both power-law scaling of
avalanches (with exponent 1.2 or 1.5 depending on the external
drive) and power-law scaling of spectral density [81, 82]. In the
follow up paper, they realized multiple logical gates using
additional supervised learning paradigm [83].

Using Hebbian-like plasticity to imprint patterns in the
network and simultaneously maintain critical dynamics is a
very non-trivial task. Uhlig et al. [84] achieved it by
alternating Hebbian learning epochs with the epochs of
normalizing synaptic strength to return to a critical state. The
memory capacity of the trained network was close to the maximal
possible capacity and remain close to criticality. However, the
network without homeostatic regulation toward a critical state
achieved better retrieval. This might point to the possibility that
classical criticality is not an optimal substrate for storing simple
memories as attractors. However, in the so-far unstudied setting
of storing memories as dynamic attractors, the critical system’s
sensitivity might make it the best solution.

Spike-timing-dependent Plasticity
Spike-timing-dependent plasticity (STDP) is a form of activity-
dependent plasticity in which synaptic strength is adjusted as a
function of timing of spikes in pre- and post-synaptic neurons. It
can appear both in the form of long-term potentiation (LTP) or
long-term depression (LTD) [85]. Suppose the post-synaptic
neuron fires shortly after the pre-synaptic neuron. In that case,
the connection from pre-to the post-synaptic neuron is
strengthened (LTP), but if the post-synaptic neuron fires after
the pre-synaptic neuron, the connection is weakened (LTP),
Figure 1B. Millisecond temporal resolution measurements of
pre- and postsynaptic spikes experimentally by Markram et al.
[86–88] together with theoretical model proposed by Gerstner
et al. [89] put forward STDP as a mechanism for sequence
learning. Shortly after that other theoretical studies [90–94]
incorporated STDP in their models as a local learning rule.

Different functional forms of STDP are observed in different
brain areas and across various species (for a review see [95]). For
example, STDP in hippocampal excitatory synapses appear to
have equal temporal windows for LTD and LTP [86, 96, 97], while
in neocortical synapses it exhibits longer LTD temporal windows
[98, 99]. Interestingly, an even broader variety of different STDP
kernels were observed for inhibitory connections [100].

The classical STDP is oftenmodeled by modifying the synaptic
weight wij from pre-synptic neuron j to post-synaptic neuron i as

Δwij �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A+(wij) exp(tj − ti

τ+
) tj < ti

−A−(wij) exp(tj − ti

τ−
) tj ≥ ti

(4)

where ti and tj are latest spikes of neurons i and j and τ+ and τ−
are LTP and LTD time constants. Weight dependence functions
A+(wij) and A−(wij) control the synaptic weights to stay between
0 and wmax, which is required from the biological point of view.
Two families of weight dependence functions have been
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introduced: 1) soft weight bounds (multiplicative weights) [103],
2) hard weight bounds (additive weights) [89]. Soft weight
bounds are implemented as

A+(wij) � (wmax − wij)η+, A−(wij) � wijη− , (5)

where η+ < 1 and η− < 1 are positive constants. Weight
dependence functions with hard bounds are defined using a
Heaviside step function H(x) as

A+(wij) � H(wmax − wij)η+, A−(wij) � H(−wij)η− . (6)

There are two types of critical points that can be attained by
networks with STDP. The first transition type is characterized by
statistics of weights in the converged network. For instance, at this
point synaptic coupling strengths [104] or the fluctuations in
coupling strengths [105] follow a power-law distribution. The
second transition type is related to network’s dynamics, it is
characterized by presence of scale-free avalanches [101, 102, 106].
In these models STDP is usually accompanied by fine-tuning of
some parameters or properties of the network to create critical
dynamics. This suggests that STDP alone might not be sufficient
for SOC.

Rubinov et al. [101] developed a leaky integrate-and-fire (LIF)
network model with modular connectivity (Figures 4A,B). In
their model, STDP only gives rise to power-law distributions of
avalanches when the ratio of connection between and within
modules is tuned to a particular value. Their results were

unchanged for STDP rules with both soft and hard bounds.
However, they reported that switching off the STDP dynamics
leads to the deterioration of the critical state, which disappears
completely after a while. This property places the model in-
between truly long-term and short-term mechanisms.
Additionally, avalanches were defined based on the activity of
modules (simultaneous activation of a large number of neurons
within a module). In this modular definition of activity, SOC is
achieved by potentiating within-module synaptic weights during
module activation and depression of weights in-between module
activations. While the module-based definition of avalanches
could be relevant to the dynamics of cell-assemblies in the
brain or more coarse-grained activity such as local field
potentials (LFP), further investigation of avalanches statistics
based on individual neurons activity is required.

Observation of power-law avalanche distributions was later
extended to a network of Izhikevich neurons with a temporally
shifted soft-bound STDP rule [102] (Figures 4C,D). The shift in
the boundary between potentiation and depression reduces the
immediate synchronization between pre- and post-synaptic
neurons that eventually stabilizes the synaptic weights and the
post-synaptic firing rate similar to a homeostasis regulation [107].
In the model, the STDP time-shift is set to be equal to the axonal
delay time constant that also acts as a control parameter for the
state of dynamics in the network. The authors showed that for a
physiologically plausible time constant (τ � 10 ms) network
dynamics self-organizes to the edge of synchronization

FIGURE 4 | Different STDP rules and their role in creating SOC. (A) Classical STDP rule with asymmetric temporal windows (STDP parameters: τ+ � 15 ms,

τ− � 30 ms,wmax � 1, η+ � 0.75, η− � 0.5). (B) Amodular network that is rewired to create particular inter- and intra-modules connections (left) combined with classical

STDP gives rise to dynamics characterized by power-law avalanche-size distribution (right, thick line). Non-power-law avalanche-size distributions correspond to other

rewiring probabilities with the gray lines showing the two extremes of ordered and random networks (reproduced from [101] under CC BY license). (C) Shifted

STDP rule (STDP parameters: τ+ � τ− � 20 ms,wmax � 0.6, η+ � η− � 0.05, time-shift � 10 ms). (D) (left) Average coupling strength G(t) in a network with shifted STDP

will converge to a steady state value. (right) Setting the STDP time-shift to τ � 10 ms (equal to axonal delay time-constant) leads to emergence of power-law avalanche-

size distributions that scale with the system size (reproduced from [102] under CC BY license). N indicates the network size.
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transition point. At this transition point, distribution of size and
duration of avalanches follow a power-law-like distribution. They
showed that the power-law exponents can be approximately fitted
in the standard scaling relation required for a critical system [59].
However, since they defined avalanches based on thresholding of
the global network firing, estimated avalanche distributions and
fitted exponents might be generated by the thresholding [55].

Homeostatic Regulations
Homeostatic plasticity is a mechanism that regulates neural
activity on a long timescale [108–113]. In a nutshell, one
assumes that every neuron has some intrinsic target activity
rate. Homeostatic plasticity then presents a negative feedback
loop that maintains that target rate and thereby stabilize network
dynamics. In general, it reduces (increases) excitatory synaptic
strength or neural excitability if the spike rate is above (below) a
target rate, Figure 1C. This mechanism can stabilize a potentially
unconstrained positive feedback loop through Hebbian-type
plasticity [114–121]. The physiological mechanisms of
homeostatic plasticity are not fully disentangled yet. It can be
implemented by a number of physiological candidate
mechanisms, such as redistribution of synaptic efficacy [63,
122], synaptic scaling [108–110, 123], adaptation of membrane
excitability [112, 124], or through interactions with glial cells
[125, 126]. Recent results highlight the involvement of
homeostatic plasticity in generating robust yet complex
dynamics in recurrent networks [127–129].

In models, homeostatic plasticity was identified as one of the
primary candidates to tune networks to criticality. The
mechanism of it is straightforward: taking the analogy of the
branching process, where one neuron (or unit) on average
activates m neurons in the subsequent time step, the stable
sustained activity that is the goal function of the homeostatic
regulation requires m � mc � 1 which is precisely the critical
value [130]. In 2007, Levina and colleagues made use of this
principle. They devised a homeostasis-like rule, where all
outgoing weights were normalized such that each neuron in
the fully connected network activated on average m � 1
neurons in the next time step [131, 132]. Thereby, the
network tuned itself to a critical state.

Similar ideas have been proposed and implemented first in
simple models [133] and later also in more detailed models. In the
latter, homeostatic regulation tunes the ratio between excitatory
and inhibitory synaptic strength [53, 129, 134–136]. It then
turned out that due to the diverging temporal correlations,
which emerge at criticality, the time-scale of homeostasis
would also have to diverge [135]. If the time-scale of the
homeostasis is faster than the timescale of the dynamics, then
the network does not converge to a critical point, but hovers
around it, potentially resembling supercritical dynamics [14,
135]. It is now clear that a self-organization to a critical state
(instead of hovering around a critical state) requires that the
timescale of homeostasis is slower than that of the network
dynamics [14, 135].

Whether a system self-organizes to a critical state, or to a sub-
or supercritical one is determined by a further parameter, which
has been overlooked for a while: The rate of external input. This

rate should be close to zero in critical systems to foster a
separation of time scales [52, 137]. Hence, basically all
models that studied criticality were implemented with a
vanishing external input rate. In neural systems, however,
sensory input, spontaneous activation, and other brain areas
provide continuous drive, and hence a separation of timescales
is typically not realized [52]. As a consequence, avalanches
merge, coalesce, and separate [51, 56, 137]. It turns out that
under homeostatic plasticity, the external input strength can
become a control parameter for the dynamics [14]: If the input
strength is high, the system self-organizes to a subcritical state
(Figure 5, right). With weaker input, the network approaches a
critical state (Figure 5, middle). However when the input is too
weak, pauses between bursts get so long that the timescale of the
homeostasis again plays a role - and the network does not
converge to a single state but hovers between sub- and
supercritical dynamics (Figure 5, left). This study shows that
under homeostasis the external input strength determines the
collective dynamics of the network.

Assuming that in vivo, cortical activity is subject to some level
of non-zero input, one expects a sightly subcritical state - which is
indeed found consistently across different animals [14, 17, 30,
139, 140]. In vitro systems, however, which lack external input,
are expected to show bursty avalanche dynamics, potentially
hovering around a critical point with excursions to
supercriticality [14, 136]. Such burst behavior is indeed
characteristic for in vitro systems [8, 14, 19, 59].

Recently, Ma and colleagues characterized in experiments
how homeostatic scaling might re-establish close-to-critical
dynamics in vivo after perturbing sensory input [139]
(Figure 6). The past theoretical results would predict that
after blocking sensory input in a living animal, the spike rate
should diminish, and with the time-scale of homeostatic
plasticity, a state close to critical or even super-critical would
be obtained [14, 136]. In a recent experiment, however, the
behavior is more intricate. Soon after blocking visual input, the
network became subcritical (branching ratiom smaller than one
[17, 130]) and not supercritical. It then recovered to a close-to-
critical state again within two days, potentially compensating
the lack of input by coupling stronger to other brain areas. The
avalanche size distributions agree with the transient deviation to
subcritical dynamics. This deviation to subcriticality is the
opposite of what one might have expected under reduced
input, and apparently cannot be attributed to concurrent rate
changes (which otherwise can challenge the identification of
avalanche distributions [47]): The firing rate only started to
decrease one day after blocking visual input. The authors
attribute this delay in rate decay to excitation and inhibition
reacting with different time constants to the blocking of visual
input [139].

Overall, although the exact implementation of the homeostatic
plasticity on the pre- and postsynaptic sides of excitatory and
inhibitory neurons remains a topic of current research, the
general mechanism allows for the long-term convergence of
the system to the critical point, Figure 1B. Homeostasis
importantly contributes to many models including different
learning mechanisms, stabilizing them.
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Network Rewiring and Growth
Specific network structures such as small-world [68, 81, 141, 142]
or scale-free [75, 83, 143–146] networks were found to be
beneficial for the emergence of critical dynamics. These
network structures are in particular interesting since they have
been also observed in both anatomical and functional brain
networks [147–150]. To create such topologies in neural
networks long-term plasticity mechanisms have been used. For
instance, scale-free and small-world structures emerge as a
consequence of STDP between the neurons [105]. In addition,
Hebbian plasticity can generate small-world networks [151].

Another prominent form of network structures are
hierarchical modular networks (HMN) that can sustain critical
regime for a broader range of control parameters [77, 101, 152].
Unlike a conventional critical point where control parameter at a
single value leads to scale-free avalanches, in HMNs power-law
scaling emerges for a wide range of parameters. This extended
critical-like region can correspond to a Griffits phase in statistical
mechanics [152]. Different rewiring algorithms have been
proposed to generate HMN from an initially randomly
connected [77] or a fully connected modular network [101, 152].

Experimental observations in developing neural cultures
suggest that connections between neurons grow in a way such
that the dynamics of the network eventually self-organizes to a
critical point (i.e., observation of scale-free avalanches) [18, 19].
Motivated by this observation, different models have been
developed to explain how neural networks can grow
connections to achieve and maintain such critical dynamics
using homeostatic structural plasticity [19, 153–158] (for a
review see [159]). In addition to homeostatic plasticity, other
rewiring rules inspired by Hebbian learning were also proposed to
bring the network dynamics toward criticality [160–162].
However, implementation of such network reorganizations
seems to be less biologically plausible.

In most of the models with homeostatic structural plasticity,
the growth of neuronal axons and dendrites is modeled as an
expanding (or shrinking) circular neurite field. The growth of the

neurite field for each neuron is defined based on the neuron’s
firing rate (or internal Ca2+ concentration). A firing rate below
the homeostatic target rate (ftarget) expands the neurite field, and a
firing rate above the homeostatic target rate shrinks it. In
addition, when neurite fields of two neurons overlap a
connection between them will be created with a strength
proportional to the overlapped area. Kalle Kossio et al. [156]
showed analytically that if the homeostatic target rate is
significantly larger than the spontaneous firing rate of the
network, such growth mechanism would bring the network
dynamics to a critical point with scale-free avalanches
(Figure 7). However, for a small target rate subcritical
dynamics will arise.

Tetzlaff et al. [19] proposed a slightly different mechanism
where two neurites fields are assigned separately for axonal
growth and dendritic growth to each neuron. While changes
in the size of dendritic neurite fields follows the same rule as
explained above, neurite fields of axons follow an exact opposite
rule. The model simulations start with all excitatoryry neurons,
but in the middle phase 20% of the neurons are changed into
inhibitory ones. This switch is motivated by the transformation of
GABA neurotransmitters from excitatory to inhibitory during
development [163]. They showed that when the network
dynamics converge to a steady-state regime, avalanche-size
distributions follow a power-law.

HYBRID MECHANISMS OF LEARNING AND
TASK PERFORMANCE

In living neural networks, multiple plasticity mechanisms occur
simultaneously. The joint contribution of diverse mechanisms
has been studied in the context of criticality in a set of models [75,
164, 165]. A combination with homeostatic-like regulation is
typically necessary to stabilize Hebbian or spike-timing-
dependent plasticity (STDP), e.g., learning binary tasks such as
an XOR rule with Hebbian plasticity [75] or sequence learning

FIGURE 5 | Homeostatic plasticity regulation can create different types of dynamics in the network depending on input strength h, target firing rate r* and recurrent

interactions. (top) example spiking activity traces. (bottom) full-sampled (circles) and subsampled (triangles) avalanche size distributions averaged over 12 independent

simulations. From left to right: network generates supercritical bursting (m> 1, h/r* ≤10− 3, purple-red), fluctuating (m ≈ 0.99, h/r* ≈ 10− 2 and m ≈ 0.9, h/r* ≈ 10− 1,

orange-yellow) and irregular (m ≈ 0, h/r* � 1, green) activity. Solid lines show the critical branching process avalanche-size distribution P(s)∝ s−3/2 [130] and

dashed line is the analytical avalanche-size distribution of a Poisson process [47] (reproduced from [14] by permission).
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with STDP [166–170]. These classic plasticity rules have been
paired with regulatory normalization of synaptic weights to avoid
a self-amplified destabilization [119–121]. Additionally, short-
term synaptic depression stabilizes the critical regime, and if it is
augmented with meta-plasticity [164] the stability interval is
increased even further, possibly allowing for stable learning.

In a series of studies, Scarpetta and colleagues investigated how
sequences can be memorized by STDP, while criticality is
maintained [166–168]. By controlling the excitability of the
neurons, they achieved a balance between partial replays and
noise resulting in power-law distributed avalanche sizes and
durations [166]. They later reformulated the model and used
the average connection strength as a control parameter, obtaining
similar results [167, 168]. Whereas STDP fosters the formation of
sequence memory, Hebbian plasticity is known to form
assemblies (associations), and in the Hopfield network enables
memory completion and recall [171]. A number of studies

showed that the formation of such Hebbian ensembles is also
possible while maintaining critical dynamics [84, 168, 172]. These
studies show that critical dynamics can be maintained in
networks, which are learning classical tasks.

The critical network can support not only memory but also
real computations such as performing logical operations (OR,
AND or even XOR) [75, 83]. To achieve this, the authors build
upon the model with Hebbian-like plasticity that previously
shown to bring the network to a critical point [81]. They
added the central learning signal [173], resembling
dopaminergic neuromodulation. Authors demonstrated both
with [75] and without [83] short-term plasticity that the
network can be trained to solve XOR-gate task.

These examples lead to the natural question of whether
criticality is always optimal for learning. The criticality
hypothesis attracted much attention, precisely because models
at criticality show properties supporting optimal task

FIGURE 6 | Homeostatic regulations in visual cortex of rats tune the network dynamics to near criticality. (A) (top) Firing rate of excitatory neurons during 7 days of

recording exhibit a biphasic response to monocular deprivation (MD). After 37 h following MD firing rates were maximally suppressed (blue arrow) but came back to

baseline by 84 h (orange arrow). Rates are normalized to 24 h of baseline recordings before MD. (bottom) Measuring the distance to criticality coefficient (DCC) in the

same recordings. Themean DCCwas significantly increased (blue arrow) uponMD, but was restored to baseline levels (near-critical regime) at 48 h (orange arrow).

(B) An example of estimation of DDC (right) using the power-law exponents from the avalanche-size distribution (left) and the avalanche-duration distribution (middle).

Solid gray traces show avalanche distributions in shuffled data. DCC is defined as the difference between the empirical scaling (dashed gray line) and the theoretical value

(solid gray line) predicted from the exponents for a critical system as the displayed formula [59]. (C) Avalanche-size distributions and DCCs computed from 4 h of single-

unit data in three example animals show the diversity of experimental observations (reproduced from the bioRxiv version of [139] under CC-BY-NC-ND 4.0 international

license).
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performance. A core properties of criticality is a maximization of
the dynamic range [174, 175], the sensitivity to input, and
diverging spatial and temporal correlation lengths [176, 177].
In recurrent network models and experiments, such boost of
input sensitivity and memory have been demonstrated by tuning
networks systematically toward and away from criticality [174,
178–182].

When not explicitly incorporating a mechanism that drives
the network to criticality, learning networks can be pushed away
from criticality to a subcritical regime [15, 16, 170, 183, 184]. This
is in line with the results above that networks with homeostatic
mechanisms become subcritical under increasing network input
(Figure 5). Subcritical dynamics might indeed be favorable when
reliable task performance is required, as the inherent variability of
critical systems may corroborate performance variability [52,
185–190].

Recently, the optimal working points of recurrent neural
networks on a neuromorphic chip were demonstrated to
depend on task complexity [15, 16]. The neuromorphic chip
implements spiking integrate-and-fire neurons with STDP-like
depressive plasticity and slow homeostatic recovery of synaptic
strength. It was found that complex tasks, which require
integration of information over long time-windows, indeed
profit from critical dynamics, whereas for simple tasks the
optimal working point of the recurrent network was in the
subcritical regime [15, 16]. Criticality thus seems to be optimal
particularly when a task makes use of this large variability, or
explicitly requires the long-range correlation in time or space, e.g.,
for active memory storage.

DISCUSSION

We summarized how different types of plasticity contribute to the
convergence and maintenance of the critical state in neuronal
models. The short-term plasticity rules were generally leading to
hovering around the critical point, which extended the critical-
like dynamics for an extensive range of parameters. The long-
term homeostatic network growth and homeostatic plasticity, for
some settings, could create a global attractor at the critical state.
Long-term plasticity associated with learning sequences, patterns
or tasks required additional mechanisms (i.e., homeostasis) to
maintain criticality.

The first problem with finding the best recipe for criticality in
the brain is our inability to identify the brain’s state from the
observations we can make. We are slowly learning how to deal
with strong subsampling (under-observation) of the brain
network [17, 20, 56, 191–193]. However, even if we obtained a
perfectly resolved observation of all activity in the brain, we
would face the problem of constant input and spontaneous
activation that renders it impossible to find natural pauses
between avalanches, and hence makes avalanche-based
analyses ambiguous [52]. Hence, multiple avalanche-
independent options were proposed as alternative assessments
of criticality in the brain: 1) detrended fluctuation analysis [60]
allows to capture the scale-free behavior in long-range temporal
correlations of EEG/MEG data, 2) critical slowing down [194]
suggests a closeness to a bifurcation point, 3) divergence of
susceptibility in the maximal entropy model fitted to the
neural data [195], divergence of Fisher information [196], or

FIGURE 7 |Growing connections based on the homeostatic structural plasticity in a network model leads to SOC. (A) Size of neurite fields (top) and spiking activity

(bottom) change during the network growth process (from 25 sample neurons). From left to right: initial state (red), state with average growth (blue), stationary state

reaching the homeostatic target rate (green). (B)Corresponding scaled total overlaps of 25 sample neurons (gray) and the population average (black) to the three different

time points in (A). (C) Avalanche-size (top) and avalanche-duration (bottom) distributions. If the homeostatic target rate (ftarget � 2 HZ) is significantly larger than

the spontaneous rate (f0 � 0.01 HZ) both distributions follow a power-law (black: simulation, orange: analytic). Small homeostatic target rate (ftarget � 0.04 HZ) leads to

subcritical dynamics (gray: simulation, pink: analytic) (reproduced from [156] with permission).
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the renormalization group approach [197] indicates a closeness to
criticality in the sense of thermodynamic phase-transitions, and
4) estimating the branching parameter directly became feasible
even from a small set of neurons; this estimate returns a
quantification of the distance to criticality [17, 39]. It was
recently pointed out that the results from fitting the maximal
entropy models [198, 199] and coarse-graining [200, 201] based
on empirical correlations should be interpreted with caution.
Finding the best way to unite these definitions, and select the most
suitable ones for a given experiment remains largely an open
problem.

Investigating the criticality hypothesis for brain dynamics
has strongly evolved in the past decades, but is far from being
concluded. On the experimental side, sampling limits our
access to collective neural dynamics [20, 202], and hence it
is not perfectly clear yet how close to a critical point different
brain areas operate. For cortex in awake animals, evidence
points to a close-to-critical, but slightly subcritical state [30,
139, 140]. The precise working point might well depend on the
specific brain area, cognitive state and task requirement [15,
16, 32, 35, 36, 179, 188, 190, 203–206]. Thus instead of self-
organizing precisely to criticality, the brain could make use of
the divergence of processing capabilities around the critical
point. Thereby, each brain area might optimize its
computational properties by tuning itself toward and away
from criticality in a flexible, adaptive manner [188]. In the past
decades, the community has revealed the local plasticity rules
that would enable such a tuning and adaption of the working
point. Unlike classical physics systems, which are constrained
by conservation laws, the brain and the propagation of neural
activity is more flexible and hence can adhere in principle a
large repertoire of working points - depending on task
requirements.

Criticality has been very inspiring to understand brain
dynamics and function. We assume that being perfectly

critical is not an optimal solution for many brain areas, during
different task epochs. However, studying and modeling brain
dynamics from a criticality point of view allows to make sense of
the high-dimensional neural data, its large variability, and to
formulate meaningful hypothesis about dynamics and
computation, many of which still wait to be tested.
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