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Abstract

Inhomogeneous magnetic field gives rise to interesting properties of plasmas which are

degenerate in homogeneous (or zero) magnetic fields. Magnetospheric plasmas, as observed

commonly in the Universe, are the most simple, natural realization of strongly inhomogeneous

structures created spontaneously in the vicinity of magnetic dipoles. The RT-1 device produces

a ‘laboratory magnetosphere’ by which stable confinement (particle and energy confinement

times ∼0.5 s) of high-β (local electron β ∼ 0.7; electron temperature �10 keV) plasma is

achieved. By producing a pure-electron plasma, we obtain clear-cut evidence of inward (or

up-hill) diffusion of particles. A statistical mechanical model reveals the ‘distortion’ of phase

space, induced by the inhomogeneity of the ambient magnetic field, on which the plasma

relaxes into an equilibrium with inhomogeneous density while it maximizes the entropy.

(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetospheres are self-organized structures found com-

monly in the Universe. The strong inhomogeneity of a dipole

magnetic field gives rise to interesting properties of plasmas

which are degenerate in homogeneous (or zero) magnetic

fields. We observe spontaneous creation of a steep density

gradient toward the higher-magnetic field core region. This

naturally produced confinement may be applied to various tech-

nologies such as advanced fusion [1] and antimatter physics

[2]. Apart from these practical purposes, understanding the

mechanism that operates beneath this interesting phenomenon

is a challenging problem of physics study, which possibly pro-

vides us with a new perspective of describing the physics of

plasmas.

The aim of this paper is to present an interim summary

of the experimental observations and theoretical modeling

of the self-organized magnetospheric plasmas. We have

constructed a ‘laboratory magnetosphere,’ the RT-1 device [3]

by which we have demonstrated stable confinement (particle

and energy confinement times ∼0.5 s) of very high-β plasma

(local electron beta ∼0.7) [4, 5] (the reader is referred to

[6, 7] for experiments of similar geometry). Using RT-1,

we can also produce a pure-electron non-neutral plasma by

injecting electrons from an electron gun placed at the periphery

of the confinement region that is bounded by a magnetic

separatrix (the dipole confinement of non-neutral plasma [8, 9]

is compared with other toroidal systems such as a helical

field confinement [10] or a toroidal field confinement [11]).

Probing the internal electric field, we have found clear-cut

evidence of up-hill diffusion of electrons [12, 13]. Based on

these experiments, we postulate that the self-organization is

a spontaneous process to vanish a ‘free energy’ of collective

motion by relaxing into an equilibrium state on a macroscopic

scale hierarchy. A theoretical explanation for the self-

organized confinement is given by constructing a distribution

function on such a macroscopic scale hierarchy.

This paper is organized as follows: In section 2, we

describe the main parameters of the RT-1 device and the

experimental observation of ‘spontaneous confinement.’ In

section 3, we present a theoretical model of the self-

organization.
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Figure 1. Schematic drawing of the RT-1 device. A dipole magnetic
field is produced by the levitating superconducting magnet. A
high-β plasma is produced and heated by electron cyclotron heating
(ECH) (8.2 and 2.45 GHz). A pure-electron non-neutral plasma is
also produced by injecting electrons from an electron gun placed at
the periphery of the confinement region (bounded by a magnetic
separatrix).

2. Laboratory magnetosphere produced in RT-1

The RT-1 device is a laboratory magnetosphere; levitating

a superconducting (Bi-2223 high-Tc superconductor) ring

magnet (0.25 MA) in a vacuum chamber (diameter ∼2 m), we

can produce a magnetospheric plasma (see figure 1). The

field strength in the confinement region varies from 0.5 to

0.01 T. The plasma is bounded by a magnetic separatrix that is

produced by the lifting magnetic field.

2.1. High-β plasma

High-temperature plasma is produced by electron cyclotron

heating (ECH) (8.2 GHz, 25 kW and 2.45 GHz, 20 kW).

Electrons consist of hot and cold components; the temperature

of the hot component is 10–50 keV, while that of the cold

component is typically ∼100 eV. The total electron density

is of order 1017 m−3. When the filling gas pressure is low

(�10−3 Pa), the cold component is less than 30% of the total

electrons [5]. Because of low density and high electron

temperature, ions are left cold (�10 eV); direct ion heating

by ion cyclotron heating is the main subject of the on-going

Phase-II project [14].

By matching solutions of the Grad–Shafranov equation

with data from 4-channel flux loops and 14-channel magnetic

pickups (as well as an inserted magnetic probe scanning the

total range of radius in relatively low-temperature benchmark

plasma), we estimate the pressure profile in the plasma; see

figure 2. The local β is a strong function of the pressure

profile; giving the lowest-possible estimate, we evaluate the

local β ∼ 0.7 and the volume average β ∼ 0.07. The

high-β confinement is achieved simultaneously with high

electron temperature (�10 keV) and long confinement time

(particle and energy confinement times ∼0.5 s, which are

estimated by the free-decay times after stopping the ECH). The

plasma pressure (β) is consistent with the electron temperature

and density (�1017 m−3) [4, 5]. The confinement times can

be accounted for by classical atomic processes: the ion

confinement time is of the same order of the charge-exchange

time of ions (�0.1 s). While hot electrons are decoupled

with ions, they couple with the cold electrons with energy

equilibration time (∼1 s), and cold electrons are lost with ions

by the ambipolar mechanism.

The radial profile of the electron density ne(r) (measured

by 75 GHz microwave interferometry) is highly peaked (giving

an indirect proof of the inward diffusion of particles [15, 16];

in section 2.2, we give a clear-cut evidence of inward diffusion

in a pure-electron non-neutral plasma; the reader is also

referred to similar observation in a different experiment [17], as

well as discussions on astronomical magnetospheres [18, 19]).

Fitting the data by a function ne(r) = n0r
−α , we estimate

α = 2.8 ± 0.4 for a wide range of operating parameters

[5]. Multiplying ne by
∮

dℓ/B (dℓ is the parallel unit length

along the magnetic surface), magnetic-flux tube; see figure 3.

While ne(r) is an increasing function toward the center of

the dipole magnetic field, Ne(r) is a decreasing function,

hence interchange modes are stable. Note that the simple

kinetic model predicts a flat distribution of Ne [15, 16]. The

reason why Ne(r) decreases toward the center is explained

by the thermodynamic equilibrium model to be described in

section 3.

2.2. Pure-electron plasma

RT-1 can also produce a pure-electron plasma by injecting

electrons from an electron gun placed at the periphery of

the confinement region. A rotating electron cloud (confining

typically 10−8 C of electrons) sustains stably for more than

300 s [12, 13].

A single-species (non-neutral) plasma has a strong internal

electric field. Confinement is possible only if the electric

field (E) is balanced by an induction (v × B) generated by

a vortical motion (v) in the magnetic field (B). The flow

and the electromagnetic field achieve stable coupling by self-

organizing a vortex. The non-triviality of confinement in

the dipole magnetic field may be highlighted by comparing

its formation process with that of conventional traps; the

most popular method is to inject particles along a straight

homogeneous magnetic field and then plug the entrance to the

magnetic bottle by applying an electric field. The injected

particles form an axisymmetric rigidly rotating column

[20, 21]. Magnetospheric non-neutral plasma is produced

through an entirely different process. We simply emit electrons

from an electron gun placed in a peripheral region of a static

dipole magnetic field; we do not need to control the electric

or magnetic field. Particles penetrate into the magnetosphere

automatically and self-organize a stable vortical structure.
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Figure 2. Left: high-β equilibrium reconstructed by a solution of the Grad–Schafranov equation fitting diamagnetic signals. Right: soft-x
ray image of the plasma (by auxiliary lines, we show the geometric relation between two plots, but they are from different plasma shots).

Figure 3. The radial profiles of the electron density ne, and the
electron number Ne per unit flux-tube volume

∮

dℓ/B (for the
original data, see figure 8 of [5]).

The self-organization process is driven by the Kelvin–

Helmholtz (or, diocotron) instability, and continues until the

plasma establishes a rigidly rotating vortex in which the

instability quenches [12]. As shown in figure 4, such a structure

is only possible if electrons diffuse inward, climbing up the

potential hill—the internal electric potential is higher than

the initial kinetic energy (acceleration voltage of the gun) of

injected electrons.

3. Theoretical model of dipole confinement

In this section, we describe the self-organized confinement

of the dipole configuration as a thermodynamic equilibrium

in an effective phase space of magnetized particles which

is ‘distorted’ by the inhomogeneous magnetic field; the

maximum entropy equipartition state has an inhomogeneous

density when it is immersed in the laboratory flat space.

3.1. Effective Hamiltonian of magnetized particles

We start by reviewing the effective Hamiltonian of a

magnetized particle. The Hamiltonian of a charged particle

Figure 4. The radial profile of the space potentials inside an
electron plasma measure by a high-impedance Langmuir probe (for
the original data, see figure 9 of [13]). The solid line shows the
space potential profile that corresponds to rigid-rotor E × B

rotation with the observed angular frequency ω = 1.9 × 105 rad s−1.
The electron gun was located at r = 80 cm and operated with
acceleration voltage 500 V. The chain line is the potential profile
calculated from the measured electron density.

is H = mv2/2 + qφ, where v := (P − qA)/m is the velocity,

P is the canonical momentum, (φ, A) is the electromagnetic

4-potential, m (q) is the particle mass (charge). Denoted by

v‖ and v⊥ the parallel and perpendicular (with respect to the

local magnetic field) components of the velocity, respectively

we may write

H =
m

2
v2

⊥ +
m

2
v2

‖ + qφ. (1)

The velocities are related to the mechanical momentum as

p := mv, p‖ := mv‖, and p⊥ := mv⊥. In a strong

magnetic field, v⊥ can be decomposed into a small-scale

cyclotron motion vc and a macroscopic guiding-center drift

motion vd. The periodic cyclotron motion vc can be quantized

to write mv2
c /2 = µωc(x) in terms of the magnetic moment

µ and the cyclotron frequency ωc(x); the adiabatic invariant

µ and the gyration phase ϑc := ωct constitute an action-angle
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pair. For an axisymmetric dipole system with a poloidal (but

no toroidal) magnetic field, we define a magnetic coordinate

system (ψ, ζ, θ) such that B = ∇ψ × ∇θ = B∇ζ (θ is the

toroidal angle). The macroscopic part of the perpendicular

kinetic energy is expressed as mv2
d/2 = (Pθ − qψ)2/(2mr2),

where Pθ is the angular momentum in the θ direction and r is

the radius from the geometric axis. In terms of the canonical-

variable set z = (ϑc, µ, ζ, p‖, θ, Pθ ) the effective Hamiltonian

becomes

Hc = µωc +
1

2m
p2

‖ +
1

2m

(Pθ − qψ)2

r2
+ qφ. (2)

The energy of the cyclotron motion has been quantized in terms

of the frequency ωc(x) and the action µ; the gyro-phase ϑc has

been coarse grained (integrated to yield 2π ).

The standard Boltzmann distribution function is derived

if we assume that d3v d3x is an invariant measure and the

Hamiltonian H is the unique determinant of the ensemble.

Maximizing the entropy S = −
∫

f log f d3vd3x with

constraining the total energy E =
∫

Hf d3vd3x and the total

particle number N =
∫

f d3vd3x, we obtain

f (x, v) = Z−1e−βH , (3)

where Z is the normalization factor. The corresponding

configuration-space density

ρ(x) =
∫

f d3v ∝ e−βqφ, (4)

becomes constant for a charge neutral system (φ = 0).

Needless to say that the Boltzmann distribution or

the corresponding configuration-space density, with an

appropriate Jacobian multiplication, is independent of the

choice of phase-space coordinates. Moreover, the density is

invariant no matter whether we quantize the cyclotron morion

or not. We confirm this fact by a direct calculation. For the

Boltzmann distribution of the ‘guiding-center plasma’

f (µ, vd, v‖; x) = Z−1e−βHc , (5)

the density is given by

ρ(x) =
∫

f d3v =
∫

f
2πωc

m
dµdvddv‖ ∝ e−βqφ, (6)

exactly reproducing (4).

3.2. Effective phase space and distorted metric

What makes the distribution function fundamentally different

is the ‘constraints’ on the phase space which limits the actual

domain where the particles can occupy; the adiabatic invariants

pose such constraints.

The constancy of the magnetic moment µ imposes the

strongest constraint. In addition, the action J‖ of the

bounce motion (parallel to magnetic field lines) is also an

adiabatic invariant that plays an essential role in the strongly

inhomogeneous dipole magnetic field. To find explicit

expressions for the parallel action-angle variables, we invoke

the Hamiltonian Hc of (2) in which the gyration action-angle

pair µ-ϑc is ‘quantized’ in a sense that ωc = ϑ̇c is given as

a function of x (configuration-space coordinate). Neglecting

the curvature effect and assuming charge neutrality (φ = 0),

the equation of the parallel motion reads as

m
d2

dt2
ζ = −µ∇‖ωc. (7)

In the vicinity of ζ = 0, where ωc has a minimum on

each magnetic surface, we may expand ωc = �c(ψ) +

�′′
c (ψ)ζ 2/2, where �c(ψ) is the minimum of ωc and

�′′
c (ψ) := d2ωc/dζ 2|ψ . In terms of the length L‖(ψ) :=

[2�c(ψ)/�′′
c (ψ)]1/2, which scales the variation of ωc along

ζ , (7) is integrated to identify the corresponding action-

angle variables: ζ = ℓ‖ sin ϑ‖, ϑ‖ = ωbt with the bounce

frequency ωb =
√

�′′
c (ψ)µ/m = v⊥/L‖(ψ). The bounce

amplitude ℓ‖ = [2E‖/(mω2
b)]

1/2 is evaluated in terms of the

parallel energy E‖ := (mv2
‖)/2|ζ=0 = J‖ωb. Assuming

E‖ ≈ E⊥ := µ�c, we estimate ℓ‖ ≈ L‖. The action

J‖ :=
∮

mv‖dζ/(2π) is related to E‖ = J‖ωb, and dv‖ =
(ωb/mv‖)dJ‖ = [ωb/(2mJ‖)]

1/2dJ‖; the latter, using the

relation ωb/(mv‖) = v⊥/(L‖mv‖) ≈ 1/(mL‖), becomes

dv‖ ≈ (1/mL‖)dJ‖.

The equilibrium distribution function is derived by

maximizing entropy S over a micro-canonical ensemble of

a given particle number N , an energy E, a total magnetic

moment Mc =
∫

µf d6z and a total bounce action Mb =
∫

J‖f d6z:

fα,γ = Z−1e−(βHc+αµ+γ J‖), (8)

where β, α, γ and log Z − 1 are, respectively, the Lagrange

multipliers on E, Mc, Mb, and N . Or, interpreting

this fα,γ as a distribution function of a grand-canonical

ensemble, β is the inverse temperature, α/β and γ /β are

the chemical potentials associated with the quasi-particles

carrying microscopic actions µ and J‖.

The corresponding coordinate-space density is

ρ =
∫

fα,γ

2πωcdµ

m

dJ‖

mL‖(ψ)
dvd

∝
ωc(x)

m2

∫ ∞

0

e−(βωc+α)µdµ

β
√

2ωcµ/m + γL‖(ψ)
. (9)

Note that the Jacobian weight ∝ ωc/L‖(ψ), representing the

distortion of the metric on the constrained effective phase

space, introduces a coordinate-space inhomogeneity; see

figure 5. As shown in figure 3, the electron density is strongly

peaked in the laboratory frame, but is hollow when multiplied

by the flux-tube volume
∮

dℓ/B ∝ L‖/ωc (x denotes the

orbit average of x)—the decrease in the core (high ωc) region,

avoiding the divergence in the limit of the flux-tube volume

→ 0, is due to the Boltzmann factor e−βωcµ with a finite

temperature β−1 (which was omitted in previous models).

4. Summary

We have obtained experimental proof of the self-organization

and inward diffusion in plasmas (both high-temperature,

quasi-neutral and pure electron, non-neutral) which are
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(a) (b)

Figure 5. (a) Distorted coordinate-space metric (equivalent to the reciprocal flux-tube volume) in a dipole magnetic field.
(b) Thermodynamic equilibrium on the constrained phase space; by immersing in the laboratory flat space, we obtain a heterogeneous
density distribution.

spontaneously confined in a dipole magnetic field. The

creation of a strongly localized density profile is explained

by distortion of the metric on the effective (or, macroscopic)

phase space; the maximum-entropy, equipartition distribution

on the distorted phase space has inhomogeneous density when

it is immersed in the laboratory flat space.
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