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Abstract—Enabling large-scale energy-efficient Internet-of-
things (IoT) connectivity is an essential step towards real-
ization of networked society. While legacy wide-area wireless
systems are highly dependent on network-side coordination,
the level of consumed energy in signaling, as well as the
expected increase in the number of IoT devices, makes such
centralized approaches infeasible in future. Here, we address
this problem by self-coordination for IoT networks through
learning from past communications. To this end, we first study
low-complexity distributed learning approaches applicable in
IoT communications. Then, we present a learning solution to
adapt communication parameters of devices to the environ-
ment for maximizing energy efficiency and reliability in data
transmissions. Furthermore, leveraging tools from stochastic
geometry, we evaluate the performance of proposed distributed
learning solution against the centralized coordination. Finally,
we analyze the interplay amongst energy efficiency, reliability
of communications against noise and interference over data
channel, and reliability against adversarial interference over
data and feedback channels. The simulation results indicate
that compared to the state of the art approaches, both energy
efficiency and reliability in IoT communications could be
significantly improved using the proposed learning approach.
These promising results, which are achieved using lightweight
learning, make our solution favorable in many low-cost low-
power IoT applications.

Index Terms—Coexistence, IoT, Reliability, Battery life-
time, Low-power wide-area network.

I. Introduction
From the first to the fourth generation (4G) of wireless

networks, a majority of resources in telecommunications
have been dedicated to optimize communication systems
with respect to the physical channel constraints, such
as noise and interference [1]. Thanks to the large com-
munication bandwidth and advanced hardware/software
used in both 4G base stations and user devices, 4G
networks are able to offer high-speed, seamless, and
reliable connectivity to users. Compared to the previous
generations, the fifth-generation of wireless networks (5G)
has an increased focus on providing connectivity for
energy/complexity/cost constrained smart devices, i.e.
Internet-of-things (IoT) [2]. The long-term envision is to
provide low-cost, large-scale, and ultra-durable connectiv-
ity for everything which benefits from being connected.
Until now, the design and optimization of communica-
tion networks have been based on statistical models for
arriving traffic as well as physical constraints like noise
and interference. User devices, mostly smart-phones with
a daily charging routine, listen frequently (in the order of

sub-seconds) to their serving base stations (BSs), which
are responsible for managing the connections, sending
connection instructions, and scheduling radio resources.
As complexity, scale and heterogeneity of wireless net-
works, especially due to the IoT traffic, availability of
statistical models for arriving traffic in the network-side
and ability of energy-limited devices in frequent listening
to the access network become infeasible [3]. The state-
of-the-art wide area IoT enabling solutions could be
categorized as evolutionary and revolutionary solutions.
The former includes solutions that aim at accommodating
IoT traffic in existing cellular infrastructure, e.g. LTE
category 1 and M [4, 5]. The latter includes solutions
which aim at enabling IoT communications in a narrow
bandwidth with decreased signaling between devices and
the access network [6]. Examples of such solutions are
NB-IoT (inside 3GPP), and SigFox and LoRa (outside
3GPP).

SigFox and LoRa, the two dominant IoT solutions over
the unlicensed band, benefit from a simplified connec-
tivity procedure, called grant-free access, which removes
need for pairing, synchronization, and access reservation.
Thanks to the reduced signaling in grant-free access, these
solutions are able to offer ultra-long battery lifetimes
in IoT communications [7]. Beside solutions over the
unlicensed band, the grant-free access is expected to be
also included in future releases of the 3GPP LTE [8].
While energy consumption in the grant-free radio access
mode is extremely low thanks to the removal of signaling
procedures, the reliability of communications in this mode
is a bottleneck [9, 10]. For example, the ever-increasing
coexistence of communications technologies over the ISM
band, and lack of dynamic control over operation of
IoT devices using these radio resources, result in no
performance guarantee for IoT communications in this
band [9]. Fig. 2 represents interference measurements in
the European 868 MHz ISM band in Alborg, Denmark [9].
One sees in this figure that in use-cases like business park,
the ISM band suffers from a high level of interference
in some sub-bands, which on the other hand, means a
high probability of collision on them. On the other hand,
one sees that in case of smart transmission sub-channel
selection, there are sub-bands which suffer from sporadic
interference, and hence, probability of success over them
is much higher. Similar problem, but in the code-domain,
could be seen in spreading factor distribution of LoRa



wide area networks (LoRaWAN), as discussed in [11].
In recent years, there is an ever increasing interest in
leveraging machine learning tools for characterizing large-
scale networks, where there is no statistical model for
describing their behaviors, as well as for operation control
of independent nodes which have limited information
about their environments and get information only from
interactions with their environments [12]. In [13], network-
side reinforcement learning has been proposed for overload
control in LTE systems serving massive IoT traffic. In [14],
self-organized clustering and clustered-access for massive
IoT deployments have been investigated. In [15], use
of multi-arm bandit (MAB) for IoT networks has been
proposed, where devices learn how to avoid sub-channels
suffering from a high level of static interference. To realize
self-organized IoT networks able to adapt themselves to
the environment, here we investigate communication in
coexistence scenarios, in which the choice of commu-
nications parameters, including data rate, sub-channel,
transmit power, and number of repetitions, affects both
capacity and battery lifetime of the network. Our aim is to
enable low-cost IoT devices to increase reliability of their
communications, while keeping their energy consumptions
as low as possible. In order to investigate application
of the derived results in practice, we further present a
distributed learning approach for operation control in
LoRa technology, and compare the results against the
analytical results from solving the equivalent centralized
optimization problem. The performance evaluation results
indicate significant decrease in energy consumption and
increase in probability of success in communications. The
main contributions of this work include:

• Present a lightweight learning approach designed
based on internal and external regret for increasing
energy efficiency and reliability of IoT communica-
tions, respectively, with reduced network interven-
tion.

• Develop an analytical model for performance evalua-
tion of the distributed learning solutions by leverag-
ing tools from stochastic geometry.

• Present distributed learning for operation control
of IoT devices utilizing LoRa technology. Evaluate
reliability and energy efficiency of communications
utilizing the proposed and benchmark solutions.
Highlight tradeoffs between reliability of communica-
tions against unintended/adversarial interference and
energy efficiency.

The remainder of this paper has been structured as
follows. System model is investigated in the next section.
The proposed learning approaches are presented in section
III. In section IV, distributed learning is employed for
operation control of LoRa devices, and its performance
is compared against the centralized optimized solution.
Simulation results are presented in section V. Concluding
remarks are given in section VI.

Fig. 1: Interference measurement in the ISM band [9]. Left:
business park, Right: hospital complex. (©2017 IEEE)

II. System Model and Problem Formulation
A multitude of IoT devices, denoted by set Φ, have been

distributed in a wide service area. Different IoT devices
differ in radio resource usage pattern, i.e. in average
reporting period, signal bandwidth, transmit power, and
data rate (packet transmission time). A frequency band-
width of W is shared for communications, on which the
power spectral density of noise is denoted by N . We aim
at collecting data from a subset of IoT devices1, Φs ⊂ Φ,
and treat traffic from other devices as interference.

The problem to be tackled is operation control for
devices of interest, i.e. members of Φs, by considering
operations of all other devices into account. Assume at
time t, the ith device from Φs has data to transmit. Then,
the operation control problem could be written as follows:

max
pi,ci,hi,mi

F (Reli,EEi)

s.t: pi ∈ P, ci ∈ C, hi ∈ H,mi ∈ M, (1)

in which F (·) represents the objective function in terms of
reliability (Rel) and energy-efficiency (EE) of communi-
cations. Regarding different QoS requirements of different
IoT applications, definition of F (·) may differ from one
IoT application to the others. Here, we focus on a weighted
sum of objectives, i.e. F (Reli,EEi) = (1−β)Reli+βEEi,
where 0 ≤ β ≤ 1 offers a tradeoff between reliability
and energy efficiency. Also, pi, ci, hi, and mi represent
the selected transmit power, code2, sub-channel, and
number of transmitted replicas per packet3. Furthermore,
X represents the set of available values for Xi. In the
sequel, we aim at solving this optimization problem.

1For example, one may consider coexistence of LoRa and SigFox
in an environment, where LoRa receiver treats SigFox signal as
interference.

2The transmit code also determines the data rate [16].
3In the NB-IoT and SigFox, several replicas are transmitted per

data packet for range extension and resilience against interference,
respectively [6].



III. Self Organization as a Solution

A centralized solution to the problem in (1) is very
complex4, and not applicable to low-power IoT devices
which require less frequent signaling with the access
network in order to save energy. Thus, instead of solv-
ing the problem in a centralized manner, we leverage
distributed online learning. In online learning, each de-
vice, also called hereafter agent, aims at maximizing
its objective function F (Reli,EEi) by choosing the best
actions Ai = {pi, ci, hi,mi} ∈ A, given the rewards
(ACK/NACK) of its previous actions. After choosing the
action at time t, i.e. Ai(t), agent receives the reward,
denoted by ξ(t) ∈ {1, 0}, where 1 and 0 represent
acknowledgment and no acknowledgment respectively.
This type of learning is commonly described as multi-
agent multi-arm bandit (MAB) in the literature [17]. In
MAB learning, an agent chooses one of the K arms at
each time to play, and receives a reward afterwards. The
agent’s aim is to maximize its self-accumulative return
or equivalently, minimize its self-accumulative regret5.
The MAB problem offers a tradeoff between exploration
and exploitation, where the former indicates decision
epochs in which agent tries different actions even if their
previously observed rewards are less than the others,
and the latter indicates decision epochs at which agent
acts greedy based on the previous rewards. Due to its
widespread applications in gambling, robotics, and etc.,
MAB learning has been well investigated in literature, and
efficient solutions have been proposed to minimize agent’s
regret. In the sequel, we investigate solutions to the
IoT-device’s operation control problem in environments
dealing with stochastic interference over the data channels
and no interference over the feedback channel (modeled
by stochastic MAB), as well as environments dealing
with stochastic interference over the data channels and
adversary interference over the feedback channel (modeled
by adversary MAB).

A. Learning for Stochastic MAB
For stochastic MAB, the MAB in which each arm’s

rewards are drawn from a probability density function
(PDF), upper confidence bound (UCB) index policies
perform close to optimally [17]. The aim of UCB index
policies is to select the arm with the largest upper
confidence bound for the expected return. Then, each
agent maintains an index function for each arm, which
is a function of the past rewards of this arm, and in each
decision epoch, selects the arm with the maximal index.
Among UCB algorithms, the UCB1 algorithm [18], attains
a regret growing at O(log n) in the stochastic MAB, where
n is the number of rounds [19].

4In section IV, we investigate this optimization problem analyti-
cally to get insight on complexity order of the centralized solution.

5Regret indicates difference between reward of a non-optimal and
the optimal action.

Algorithm 1: Pseudo-code of UUCB1.
1 Initialization: Zk(1)=0, Tk(1)=1, ∀k ∈ A;
2 for t = 1, 2, · · · do

- Update index:
bk(t) = Zk(t) +

√

α log(t)/Tk(t);
- Take action: argmaxk∈A bk(t) → A(t);
- Receive reward: ξ(t) ∈ {0, 1};
- Update reward: Zk(t+1)=Zk(t), ∀k ∈ A\A(t);

ZA(t)(t+1)=ZA(t)(t)+ẑ(t);
- Update counter: TA(t)(t+1)=TA(t)(t)+1;

Tk(t+1)=Tk(t), ∀j ∈ A\A(t);
- return A(t);

Algorithm 2: Pseudo-code of UEXP3.
1 Initialization: Wk(1) = 1, ∀k ∈ A;
2 for t = 1, 2, · · · do

- Define Dist.:
pk(t)=(1-ρ) Wk(t)

∑|A|
j=1 Wj(t)

+ ρ
|A| , ∀k ∈ A;

- Take action: A(t) ∼ {p1(t), · · · , p|A|(t)};
- Receive reward: ξ(t) ∈ {0, 1};
- Update weight: Wk(t+1)=Wk(t), ∀k ∈ A\A(t);

WA(t)(t+1)=WA(t)(t) exp(
ρξ̂(t)

|A|pA(t)(t)
);

- return A(t);

B. Learning for Non-stochastic MAB
Having insights on optimized learning in stochastic

MAB, we can investigate learning in non-stochastic
MABs, where arms’ rewards are not drawn from a specific
PDF. An example of non-stochastic MAB is the adver-
sarial environment, in which, an adversary can interrupt
the rewards (the feedback messages). Furthermore, in
IoT solutions over the unlicensed spectrum, the feedback
channel is also affected by the interference from coexisting
technologies, and hence, the rewards might be interrupted.
Efficient learning approaches for adversary settings have
been proposed in literature, among them, the exponential-
weight algorithm for exploration and exploitation (EXP3)
is a promising approach [20]. On each decision epoch t,
EXP3 chooses an action, out of A, according to a set of
respective distributions, i.e. Ai(t) ∼ {p1(t), · · · , p|A|(t)}.
EXP3 assigns each action a probability mass function
based on mixing the estimated cumulative reward and
the uniform distribution, where the former incurs the
exploitation mode, and the latter incurs the exploration
mode. EXP3 attains a regret growing as O(

√
n) in the

adversarial MAB [19].

C. Light-weight Learning for Low-power IoT Networks
Recall the optimization problem in (1), in which the

aim is to maximize the reliability and energy efficiency
of devices. As a distributed solution to this problem,
here we incorporate both reliability and energy efficiency



in the learning process for stochastic and non-stochastic
settings. Let’s start with the stochastic setting, where
at the end of each successful transmission, the device
receives an acknowledgment. Once the acknowledgment
is received, the accumulated reward of the respective
action is incremented by one in UCB1 algorithm [18].
Now, denote by Ei and Emin, the consumed energy in
packet transmission using action i, and the minimum
consumed energy amongst actions achieved a successful
packet transmission respectively. In our proposed learning
solution, we modify the reward achieved by choosing
action k as:

ξ̂(t) = ξ(t)(1-β) + ξ(t)βEk/Emin, ∀k ∈ A, (2)

in which ξ(t) ∈ {0, 1} represents the acknowledgment, β is
a design parameter offering tradeoff between reliability an
energy efficiency, and t represents the time index. Based
on this updated reward function, we present the updated
UCB1 (UUCB1) algorithm in Algorithm 1. Following the
same approach, and by updating the reward function
in EXP3 [20], we present the updated EXP3 (UEXP3)
algorithm in Algorithm 2. In these algorithms, α and ρ
are the design parameters, which offer tradeoff between
exploration and exploitation in the UUCB1 and EXP3
respectively. Furthermore, the device index, i.e. i in
the underscript, has been dropped. Mapping (2) to the
objective function in (1), one sees that F (Reli,EEi) in
(1) has been modeled by the modified reward function,
i.e. ξ̂(t) = F (Reli,EEi). Furthermore, the first term in
(2) represents the external regret, while the second term
represents the internal regret. In the following section, we
employ the proposed learning scheme in operation control
of IoT devices connected through LoRa technology, and
compare the results against the results of a centralized
optimized solution.

IV. Distributed Learning for IoT Operation Control: A
LoRa Technology Example

A. Communication Using The LoRa Technology
LoRa, the physical layer of LoRaWAN, aims at en-

abling low-power low-rate long-distance communications.
Communication in LoRa occurs in 3 sub-channels in the
public ISM band; each with bandwidth (BW) of 125 KHz.
High resilience to noise and interference is the key to
operate efficiently in the ISM band. Towards this end, the
chirp spread spectrum (CSS) modulation has been used
in LoRa, which enables signals with different spreading
factors (SFs) to be distinguished and received simultane-
ously, even if they are transmitted at the same time on
the same channel. The spreading factors, ranging from 7
to 12, denote the number of chirps used to encode a bit,
and hence, determine the data rate: R(c) = c×BW×µ

2c , ∀c ∈
C = {7, · · · , 12}, where µ is the code-rate. Based on [16],
the required SNRs for correct detection of signals with
spreading factors {7, · · · , 12} are γthN = {-6,-9,-12,-15,-
17.5,-20}, respectively. Then, one sees that by increase

in the SF index, data rate decreases and resilience to
noise increases. Finally, LoRaWAN supports the following
transmit powers for communication: {2, 5, 8, 11, 14} dBm
[21].

B. Operation Control in LoRa
Consider a LoRa gateway in a 2D plane with multitude

of devices, distributed according to a Poisson point process
(PPP) with density λ in r ≤ R, where r is the distance
to the BS located at the origin and R is the boundary
of service area for the gateway. The IoT devices aim
at data transfer to the gateway on average each Trep
seconds. Recalling the operation control problem in (1) the
LoRa operation control consists in solving the following
problem:

max
pi,ci,hi

F (Reli,EEi) (3)

s.t: pi ∈ P = {2, 5, 8, 11, 14}dBm,

ci ∈ C = {7, 8, 9, 10, 11, 12}, hi ∈ H = {1, 2, 3}.

1) Distributed Learning for Operation Control: One
can directly apply the presented Algorithms 1 and 2 in
section III, in order to solve the optimization problem in
(3). In this case, the set of actions, i.e. A, includes 90 pairs
of actions, each including a transmit power, sub-channel,
and spreading factor.

2) Centralized Optimized Operation Control: In order
to save space, in this version we present the formulation
for |H|=|P|=1, i.e. we consider a single-channel single-
transmit power level LoRa network in which, we aim at
distributing spreading factors amongst devices. Further-
more, we assume interference is only coming from the
coexisting LoRa devices. Regarding the fact that by in-
crease in the SF index, data rate decreases, probability of
collision increases, and resilience to noise increases, nodes
located closer to the BS are expected to choose lower-
index SFs and vice versa [11]. Then, the SF allocation
problem is equivalent to finding the optimized density of
nodes, which are using different spreading factors in each
region of the service area. Let us divide the service area to
a set of rings, each with inner and outer radius of rj,1 and
rj,2 respectively, where in each of them, density of nodes
which are using each SF is assumed to be constant (j ∈ J).
By extending the results in [22, Section III.A], one can
derive6 the Laplace functional of interference from devices
distributed on the jth ring, denoted by Φj,c ⊂ Φ, with
transmit power Pt, reporting period Trep, packet length D,
spreading factor C, and transmission time T (c) = D/R(c),
as:

LΦj,c
(s)= exp

(

− 2π

∫ rj,2

rj,1

λj,cTc/Trep
1

sPtGr−δ +1
rdr

)

,

in which Gr−δ is the pathloss. Now, the Laplace functional
of received interference from all devices using spreading

6Details will be presented in the journal version.



factor c could be written as LΦc
(s) =

∏

j∈J
LΦj,c

(s). Let
N and IΦ denote the additive noise and interference from
set φ of devices at the receiver. Using the above derived
interference model, probability of success in packet trans-
mission for a device located at distance z to the BS, using
spreading factor c ∈ C, is derived as:

ps(c, z)=Pr(PthGz−δ ≥ γcN)Pr(PthGz−δ ≥ γthIIΦc
),

(4)
=LΦc

(s)
∣

∣

s= γc

PtGz−δ

LN (s)
∣

∣

s=
γthI

PtGz−δ

,

=
∏

j∈J

exp
(

∫ rj,2

rj,1

-2πλj,cTc/Trep

1+( r
z
)δ 1

γthI

rdr
)

exp
(

-Nγc(c)z
δ

PtG

)

,

=
∏

j∈J

exp
(

-λj,c

Tc

Trep
[Q(rj,2)-Q(rj,1)]

)

exp
(

-Nγcz
δ

PtG

)

,

where γc = γthN(c), and for δ = 4, we have7:

Q(x) = πatan( 1√
γthI

x2

z2
)/

1√
γthIz

2
.

Now, the optimization problem in (3) reduces to:

max
λj,c

∑

j∈J

∑

c∈C

λj,c

λ

[

(1− β)

∫ rj,2

rj,1

ps(c, z)dz + β
Tc

T1

]

, (5)

s.t:
∑

c∈C
λj,c = λ.

By solving this problem, the density of usage of each SF
is identified as a function of distance to the BS. From
(5), one sees that solving the centralized optimization
problem, even in the simplified form where we assumed
a 2D PPP distribution with a single-level transmit power
and a single-channel LoRa network without external inter-
ferer, is highly complicated. In the following, we compare
performance of the centralized optimized solution against
the distributed learning approach.

3) Comparison of Solutions: Fig. 2 compares prob-
ability of success in transmission for Algorithm 1 and
the result of centralized optimized strategy for the case:
C = {7, 10}, γthN={-6,-15} dB, Pt=14 dBm, Nd = 1000,
Trep = 200 sec, and D= 100 bytes. Other parameters
could be found in Table I. The x-axis represents index of
transmitted packets. Here, each node decides to send data
over SF 7 or 10, i.e. |A| = 2. One sees that after a few num-
ber of transmissions, the learning’s results become close
to the centralized solution. These results also promise
a valuable improvement in the battery lifetime due to
the fact that without need for listening to the BS and
signaling, we have configured communication parameters
of IoT devices in a distributed form. Detailed energy and
reliability performance evaluations are presented in the
following section.

7Similar expressions could be found using table of integrals for
other pathloss exponent values.
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Fig. 2: Learning for SF selection control: comparison of
Alg1 and the centralized optimized solution.

TABLE I: Parameters for performance analysis [16].

Parameters Values

Service area Circle of radius 2 Km
Aggregated packet arrival rate:
σ = Nd/Trep

12.5 (Sc1), 2.5 (Sc2,3) per sec-
onds

Packet length: D 100 bytes (Sc1), 20 bytes
(Sc2,3)

Number of sub-channels 1 (Sc1,2), 3 (Sc3)
Bandwidth: W 125 KHz
Code rate: µ 4/5
Threshold SNR: γthN

{-6,-9,-12,-15,-17.5,-20} dB
Threshold SIR: γthI

6 dB
Power consumption: Pt, Pc, η {8,14} dBm, 10 dBm, 2
Learning parameters: α, β, ρ 0.1, 0.5, 0.4

V. Performance Evaluation

In this section, we present the simulation results in
the context of operation control for the LoRa technology.
We assume a massive number of LoRa nodes have been
distributed according to a PPP in a cell of radius 2
Km. Our aim is to distribute 6 spreading factors and
two transmit power levels amongst them. The simulation
parameters have been presented in Table I. In this table,
Sc1, Sc2, and Sc3 refer to three different scenarios in
which, simulations have been carried out. In the following
figures, Alg1 refers to the Algorithm 1, Alg2 refers to the
Algorithm 2, EqLoad refers to the centralized algorithm
proposed in [11], in which number of devices using a SF
is proportional to its data rate, and RandSel refers to
the algorithm in which SFs are selected randomly. The
aforementioned schemes differ in the way they choose the
SF, while all of them choose Pt = 14 dBm as the transmit
power. In contrast, Alg1(PC) refers to the Algorithm 1
in which, devices have freedom to choose their spreading
factors and transmit powers out of C and P, respectively.

Fig. 3 represents reliability and energy efficiency per-
formance evaluations of different schemes versus index of
transmitted packets in a scenario in which there is no
external interference. One sees that Alg1 is converging



after a few transmissions and is able to have the superior
performance in success probability and energy efficiency,
even in comparison with the centralized solution proposed
in [11]. Fig. 4 represents how different SFs have been
allocated to devices in different regions of the cell by
following Alg1 (left) and the EqLoad scheme (right) [11].

Fig. 5 represents the reliability and energy consumption
performance evaluations in the same setup as for Fig.
3, with the only difference that here external stochastic
interference has been considered. The probability of oc-
curring interference on each SF differs from the others.
One sees that huge increase in probability of success and
decrease in energy consumption could be achieved by
using the proposed learning approaches. Furthermore, this
figure presents the tradeoff between reliability and energy
efficiency, which can be controlled by the design parame-
ter, β. In this regard, one sees that Alg1(PC) achieves an
acceptable success probability in data transmission with
an ultra-low energy consumption profile by using β = 0.5
(the solid green line). On the other hand, by decreasing
β to 0.01, one sees that probability of success has been
significantly improved while energy consumption has been
increased in comparison with the previous state. One must
note that the energy consumption results in this section
represent the energy consumption per packet transmission
trial, and hence, the ultimate decrease in energy consump-
tion of devices using our learning approaches will be much
higher due to the following facts. (i) The probability of
success achieved using the learning approaches is higher
than the other schemes, which on the other hand implies
less number of required retransmissions. (ii) The learning
approaches do not need frequent listening to the BS and
receiving control data from them, which on the other hand
implies significant reduction in energy consumption for
coordination.

Fig. 6 represents the energy consumption and reliability
results in an adversarial setting where, the adversary
affects 50% of the feedback messages sent by the BS.
In other words, with probability of 0.5, an ACK message
is substituted by a NACK message and vice versa. One
sees that in adversary environments, Alg2 outperforms the
others in reliability and energy consumption performance
measures. One must note that the energy consumption per
packet transmission for Alg1 is lower than Alg2. However,
due to the increased number of required retransmissions
in Alg1, the total energy consumption of Alg1 will be
higher than Alg2.

Fig. 7 represents the energy efficiency and reliability
results for the problem in which devices learn to send
data over sub-channels suffering from different levels
of stochastic interference. One sees that the Alg1(PC)
scheme is able to achieve more than 50% decrease in
energy consumption per data transfer, while increasing
the probability of success by 30% in comparison with the
benchmark schemes.
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Fig. 3: Learning for power and SF selection control
without external interference (Sc1).
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Fig. 4: The constellations of selected SFs for Alg1 (left)
and EqLoad Algorithm (right).

VI. Conclusion
Distributed learning for IoT communications with re-

duced network intervention has been investigated. Reduc-
ing signaling between IoT devices and the access network
results in decreasing energy consumption per data transfer
for IoT devices as well as decreasing control over radio
resource usage for the access network. In order to benefit
from the former, and suffer as low as possible from the
latter, here we have presented a light-weight distributed
learning approach, to be implemented in the device-side.
The presented approach leverages external and internal
regrets, for minimizing energy consumption and collision
probability, respectively, in data transmission over shared
wireless channels. The proposed approach has been subse-
quently employed in operation control of IoT devices using
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Fig. 5: Learning for power and SF selection control with
stochastic external interference (Sc2).
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Fig. 6: Learning for power and SF selection control in an
adversarial setting with stochastic external interference
(Sc2).

LoRa technology, where analytical as well as simulation
results have been derived to characterize performance
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Fig. 7: Learning for power and sub-channel selection
control with stochastic external interference (Sc3). All
devices are using SF 9.

of the proposed distributed learning approach versus
the centralized optimized approach. The analytical and
simulation results represent significant improvement in
probability of success in data transmission as well as
battery lifetime of devices by utilizing the proposed
learning approach, even in adversarial setups. These re-
sults confirm that equipping IoT devices with lightweight
learning enables them to adapt themselves effectively to
the environment, and hence, makes communications more
reliable and durable with reduced network intervention.
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