
Auton Agent Multi-Agent Syst (2014) 28:101–125

DOI 10.1007/s10458-012-9212-y

Self-organized task allocation to sequentially

interdependent tasks in swarm robotics

Arne Brutschy · Giovanni Pini · Carlo Pinciroli ·

Mauro Birattari · Marco Dorigo

Published online: 27 December 2012

© The Author(s) 2012

Abstract In this article we present a self-organized method for allocating the individuals

of a robot swarm to tasks that are sequentially interdependent. Tasks that are sequentially

interdependent are common in natural and artificial systems. The proposed method does nei-

ther rely on global knowledge nor centralized components. Moreover, it does not require the

robots to communicate. The method is based on the delay experienced by the robots working

on one subtask when waiting for input from another subtask. We explore the capabilities of

the method in different simulated environments. Additionally, we evaluate the method in a

proof-of-concept experiment using real robots. We show that the method allows a swarm to

reach a near-optimal allocation in the studied environments, can easily be transferred to a real

robot setting, and is adaptive to changes in the properties of the tasks such as their duration.

Finally, we show that the ideal setting of the parameters of the method does not depend on

the properties of the environment.

Keywords Swarm robotics · Foraging · Self-organization · Task allocation ·

Swarm intelligence · Multi-agent systems

1 Introduction

In this article we present a self-organized method for allocating the individuals of a robot

swarm to tasks that are sequentially interdependent. Tasks that are sequentially interdependent

are common—in real-world systems, tasks often exhibit interdependencies. For example,

many strategies of division of labor partition complex tasks into simpler subtasks that exhibit

dependencies between each other [4]. In nature, interdependent subtasks can be found in

social insects, which are known to have the ability of subdividing complex tasks into subtasks

[35]. The most common interdependency is sequential: subtasks must be completed one after

A. Brutschy (B) · G. Pini · C. Pinciroli · M. Birattari · M. Dorigo

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

e-mail: arne.brutschy@ulb.ac.be

123

102 Auton Agent Multi-Agent Syst (2014) 28:101–125

the other in order to complete the overall task once. An example of interdependent subtasks

can be found in the leaf-cutter ant Atta sextens, which forages for leaves by first cutting the

leaves from the tree, and second transporting the leaves previously cut to the nest [18]. The

sequential dependency resides in the fact that the cutting of the leaves must be performed

before they can be transported. Interdependent subtasks present a task allocation problem

for the swarm: how should the individuals of the swarm allocate to the different subtasks in

order to maximize the performance? Social insects employ self-organized strategies in order

to tackle task allocation problems of this kind (see [35] for examples of such strategies).

Despite the common occurrence of interdependent tasks, task allocation strategies

employed in artificial systems rarely consider tasks that exhibit interdependencies, much

less a sequential interdependency. Most of the task allocation algorithms proposed in the

swarm robotics literature assume independent tasks and do not take group dynamics between

subtasks into consideration [11], with the notable exception of the work published by Nouyan

et al. [30].

We propose a novel method for allocating robots to sequentially interdependent tasks.

The method is proposed in the context of swarm robotics, and therefore relies only on the

local interactions and perceptions of the individual robots. Additionally, the method does not

require the robots to communicate. In contrast to most traditional, market-based approaches

to distributed task allocation problems [13], the proposed method does not employ complex

coordination schemes to allocate robots to tasks. Instead, the allocation is the result of a self-

organized process that originate from the local decisions made by each robot of the swarm.

Self-organized task allocation has certain advantages over traditional methods, most notably

in terms of robustness to failures in communication [24].

The task we use as a testbed for this article is a foraging task that consists of two subtasks:

harvest and store. Each robot has to decide which of the two subtasks to perform, depending

on the performance of the swarm and on its perception of the environment. The foraging task

is illustrated in Fig. 1 using a snapshot of the video recording of the real robot experiment

presented in this article.

The rationale behind the method proposed in this article is that the maximum performance

of a sequence of interdependent subtasks can be reached when the allocation of robots to

subtasks is optimal. Therefore, robots should assess the current allocation and switch between

subtasks in order to reach the optimal allocation. Robots using the proposed method base

their decision to switch between subtasks on the delay they experience when waiting for

Fig. 1 Snapshot of the video recording of the real robot experiment. The overall task of the robots is to harvest

objects from the source (left) and store them in the nest (right). This overall task consists of two subtasks:

harvest and store. In the area located in the center, the robots working on the harvest subtask can transfer

objects to the robots working on the store subtask. In this artice, we consider the problem of finding the optimal

allocation of robots to such a sequence of subtasks. Objects are represented by robots marked by a white circle

on top

123

Auton Agent Multi-Agent Syst (2014) 28:101–125 103

robots working on another subtask. We evaluate the performance of a swarm using the

proposed method in extensive simulation experiments. Additionally, we evaluate the method

in a proof-of-concept experiment using real robots.

The article is structured as follows. In Sect. 2, we review related work and existing studies

in the domain of task allocation. In Sect. 3, we describe the problem of task allocation

with sequentially interdependent tasks and the method that we propose for tackling this

problem in a self-organized manner. In Sect. 4, we present the experimental framework we

use to evaluate the proposed method: the chosen problem instance, a foraging task, and the

robots. In Sects. 5 and 6, we report the results of the simulation and real robot experiments,

respectively. In Sect. 7, we conclude the article and discuss some possible future research

directions.

2 Related work

Task allocation is inherently considered in many robotics and artificial intelligence applica-

tions. Thus, it is not surprising that the definitions of what task allocation actually is are as

diverse as the research directions present in the literature. For the purpose of this article we

will make the following distinction: works using orchestrated task allocation and works using

self-organized task allocation. In the following, we briefly discuss the differences between

these two classes of approaches.

Classical robotics and artificial intelligence traditionally regard task allocation as an opti-

mization problem. Usually, one or more robots assess the problem at hand and derive a plan

for allocating robots to tasks, using either centralized or decentralized methods. This plan is

subsequently communicated to all robots and executed, either once at the beginning of the

mission or incrementally during the course of the mission [19]. An example are market-based

methods which employ auctions to allocate robots to tasks [13,21]. We refer to this type of

task allocation as orchestrated task allocation.1 As such methods are based on active nego-

tiation among robots, they usually have strong communication requirements. A thorough

discussion of the work on orchestrated task allocation is outside the scope of this article.

The interested reader can find a taxonomy that covers orchestrated task allocation methods

in [20].

Task allocation methods proposed in the context of swarm intelligence, on the contrary,

usually do not rely on hierarchies, preassigned roles, or explicit communication. Instead,

allocations at the level of the swarm result from local, stochastic decisions of the individual

robots. We refer to this kind of methods as self-organized task allocation methods. The amount

of works in self-organized task allocation is considerably lower when compared to works in

orchestrated task allocation, and, to the best of our knowledge, most works in self-organized

task allocation tackle simple problems without task interdependencies [11].

Most works that study self-organized task allocation employ threshold-based methods,

taking inspiration from models initially proposed to describe the behavior of insect societies

[6]. While simple methods use fixed thresholds for triggering different behaviors (see, for

example, Krieger and Billeter [25]), most works employ methods in which thresholds are

adapted over time. Examples of methods using adaptive thresholds can be found in Labella

et al. [26], Campo and Dorigo [8], and Liu et al. [27].

A common formalization of adaptive thresholds are the so-called reinforced response

threshold models, which have initially been proposed for modeling the behavior of insect

1 Also referred to as intentional approaches to task allocation [24].

123

104 Auton Agent Multi-Agent Syst (2014) 28:101–125

societies as well [37]. In robotics, methods based on these models have been proposed, among

others, by Ferreira et al. [17] and Ikemoto et al. [23]. Ferreira et al. [17] compare a reinforced

response threshold method to a token-based method in a RoboCup rescue scenario, while

Ikemoto et al. [23] use a reinforced response threshold method to obtain division of labor in

a foraging task.

Kalra and Martinoli [24] compare an orchestrated, auction-based approach to a self-

organized, threshold-based one. Their results indicate that the auction-based approach per-

forms better than the threshold-based one when the information available to the individuals of

the group about the tasks and the environment is accurate. On the other hand, when this infor-

mation is not accurate, the threshold-based approach performs as well as the auction-based

approach at a fraction of the expense in communication.

Agassounon and Martinoli [1] study the problem of allocating robots to tasks that require

close cooperation. In their “stick-pulling” experiment, two robots are required to cooperate

closely in order to complete a task. The task allocation method proposed in their work is

also based on thresholds, which are continuously adapted by the robots on the basis of their

perception of their own performance.

Dahl et al. [11] presented a work that focuses on the group dynamics of task allocation. In

their work, the authors propose a method inspired by vacancy chain scheduling, a resource

distribution processes commonly found in real-world systems. The authors model the group

dynamics of a swarm both at the microscopic and at the macroscopic level, and argue that by

using these two levels, their method can reason about the global performance of the group

as well as make decisions at the individual level.

A work that employs a purely macroscopic model to form coalitions has been presented

by Berman et al. [5]. In their work, robots of a swarm are allocated to multiple surveillance

tasks. However, the proposed method is not strictly decentralized, as it employs a central

controller to regularly broadcast information about task transitions to all robots.

Few works in the literature tackle the problem of allocation to tasks with sequential

interdependencies in self-organized systems. Scheidler et al. [36] study a two-task partitioning

problem in an organic computing setup, conceptually similar to the problem presented in this

article. They also use a threshold-based method to decide on the allocation of reconfigurable

computing units.

Dasgupta [12] studies a system in which robots can only partially complete tasks that are

available in the environment. If a robot has completed his share of a task, it communicates

the location and the progress of the task to other robots in the group, which then continue to

work on the task until it is completed. Thus, robots have to collaborate to perform tasks, and

this type of collaboration is sequential in nature, similar to the “stick-pulling” presented by

Agassounon and Martinoli [1].

Pini et al. [33] present a work that focuses on the impact of interference on swarm per-

formance and allocation in a setting similar to the one studied in this article; however, the

focus of the work was not on task allocation methods. In a closely related work, Pini et al.

[34] study the problem of collectively deciding in which cases it is advantageous to partition

a task into sequentially dependent subtasks.

3 Problem statement and proposed method

In this section, we describe in detail the problem of task allocation in sequentially interde-

pendent tasks that we consider in this paper and the method that we propose for tackling it

in a self-organized and decentralized way.

123

Auton Agent Multi-Agent Syst (2014) 28:101–125 105

3.1 Problem statement

We assume that a task T is composed of two subtasks τ1 and τ2. The whole task T is completed

if both subtasks have been completed. We call these subtasks sequentially interdependent

if one subtask must be completed before the start of the other. In this case, we refer to the

whole task T as a task sequence. We define a subtask τ1 to be the predecessor of τ2 if τ1

must be executed before τ2. Analogously, τ2 is the successor of τ1. The ordering relation

between the two subtasks is represented with τ1 ≻ τ2. We refer to these subtasks as being

adjacent. Two adjacent subtasks share a task interface, where robots working on different

subtasks exchange task-related information or objects and where they can decide whether to

change type of subtask on which to work. We refer to the robots working on a subtask τi as

group gi , with |g1| + |g2| = N1 + N2 = N being the numbers of robots working in each

group gi and in the swarm, respectively. Each robot works on one of the two subtasks, that

is, there are no idle robots.

As an example, let us consider a foraging swarm. A foraging swarm typically searches for

objects (e.g., food items or building material) present in the environment. Subsequently, the

swarm transports the objects to the nest, where they are stored. We can consider the task of

foraging to be composed of two subtasks, harvesting and storing. The two subtasks exhibit

a sequential interdependency: robots working on the storing subtask depend on the robots

working on the predecessor subtask, harvesting, because objects need to be harvested before

they can be stored.

Figure 2 illustrates such a foraging task that consists of two subtasks. The foraging task

can be tackled in two different ways. One way is to let the robots work as a single group (see

Fig. 2, top). In this case, when a robot gets to the interface it necessarily switches to the other

subtask. The second way is to tackle the foraging task by employing two different groups

of robots, each group taking care of one of the two subtasks (see Fig. 2, center and bottom).

When robots arrive at the task interface, they have to decide whether to continue to work on

the same subtask, or to switch to the other one. If they decide to continue to work on the

same subtask, they must transfer the carried object to a robot performing the other subtask.

Fig. 2 Possible ways of tackling a foraging task with a group of four robots. Top tackling the task in its

monolithic form using a single group of robots (i.e., robots always perform both subtasks by switching

immediately between them); middle tackling the two subtasks separately by using different groups of robots

for each subtask with direct transfer of objects at the task interface; bottom tackling the two subtasks separately,

with indirect transfer of objects at the task interface by using a cache site. In this article, we consider the case

in which objects are transferred directly

123

106 Auton Agent Multi-Agent Syst (2014) 28:101–125

Objects can be transferred between robots by direct transfer from robot to robot, or indi-

rectly, by using a cache site. In this paper we consider the first case.

The performance of the swarm depends on the number of robots in each group gi working

on the two subtasks τi , i ∈ {1, 2}. We refer to the assignment of the N robots of the swarm

to the two groups gi as allocation. Different allocations yield different performances at the

swarm level. There exists an allocation of robots to subtasks such that the overall performance

of the swarm is maximized. We refer to this allocation as optimal allocation. The optimal

allocation depends on the nature of the subtasks and of the environment. In dynamically

changing conditions, it can vary in time. Our problem is how to let the robots allocate to tasks

in an optimal or near-optimal way.

Robots switching between subtasks must pay a task switching cost cs . The task switching

cost depends on the environment and on the nature of the task interface. The task switching

cost is commonly a time-cost, even though other types of costs have been studied in the

literature (see Cicirello and Smith [10] for an example of a system with monetary costs).

Please note that robots always have to pay the task switching cost regardless of whether they

tackle the subtask as a single group or as two groups. Common examples of task switching

costs in real systems are costs due to tool changes, spatially dispersed subtasks, or inherent

costs due to specialization in a subtask (or the lack thereof).

Whether it is more efficient to perform the task using a single group of robots or splitting

it over two groups depends on the value of cs . Pini et al. [34] have proposed a method to let

the robots choose between the two alternatives.

In this article, we assume a task switching cost sufficiently high so that tackling the task

with two groups of robots is the best choice, and we focus on the problem of how to allocate

the robots to the two groups.

3.2 Proposed method

In the following we describe the method proposed in this article. We first present a high-level

description of the method, followed by a detailed description of its implementation.

3.2.1 High-level description

The goal of the method is to determine an allocation of robots to subtasks that maximizes

the performance of the swarm in terms of number of objects retrieved per time unit. The

method we propose does not require the robots to have global knowledge of the task or of the

environment. Additionally, the robots do not need to communicate explicitly. The proposed

method does not rely on a central controller; each robot autonomously decides whether

and when to switch between subtasks using the information available locally. As a result,

the global allocation results from the behavior of the individual robots in a self-organized

manner.

The rationale behind the proposed method is that the overall performance for the task

sequence T is optimal when the swarm uses an allocation of robots to subtasks that is

optimal. In order to reach the optimal allocation, the robots of the swarm should assess the

current allocation and switch between subtasks if necessary.

As mentioned earlier, we consider the case in which object transfer at the task interface

is direct. A robot that arrives at the task interface has to wait for a transfer partner before

it can return to work on its current subtask. The time the robot has to wait depends on

the number of robots working on the other subtask. The optimal allocation is such that in

123

Auton Agent Multi-Agent Syst (2014) 28:101–125 107

neither subtask there is an accumulation of robots waiting for the robots working on the

other subtask. In other words, robots working on the two subtasks have to arrive at the task

interface at an approximately equal rate to maximize the overall performance. Therefore, the

method proposed in this article relies on equalizing the arrival rates of the robots at the task

interface.

The robots estimate the arrival rates at the task interface by measuring the waiting time

at the task interface for both subtasks. We refer to the waiting time as the interface delay

di j , which is defined as the delay a robot working on subtask τi experiences when waiting at

the task interface with the adjacent subtask τ j .
2 In a foraging task in which robots directly

transfer objects, the interface delay consists usually of the time spent waiting for a transfer

partner.

If robots of the two groups arrive at an equal rate at the task interface, the interface delays

experienced by the two groups of robots working on the two subtasks are approximately

equal. If this is not the case, the interface delays of the two groups can be equalized by

transferring part of the workforce from the group that experiences higher interface delay

to the other group. To this end, a robot working in group gi should switch to the adjacent

group g j if the interface delay experienced by robots in gi is higher than the one experienced

by robots in g j . Hence, in the proposed method, robots decide whether to switch from one

subtask to the other as a function of the interface delays experienced in the two subtasks.

To implement the task switching behavior, each robot maintains an average of the interface

delays it experienced in both subtasks. The average interface delay of a robot working on

subtask τi that is waiting for the robots of subtask τ j is denoted by d̂i j , while the average for

the other subtask is denoted by d̂ j i . The average interface delays give the robots an estimate

about arrival rate of their own group at the task interface relative to the arrival rate of the

other group. The proposed method is characterized by the cumulative distribution Pi j (di j).

This cumulative distribution Pi j (di j) is the probability that a robots switches from subtask τi

to subtask τ j before waiting di j seconds at the task interface (analogously for P j i). In other

words, 1 − Pi j (di j) is the probability that a robot is waiting di j seconds at the task interface.

Pi j (di j) is a parametric function of the current interface delay di j . The parameters are the

average interface delays d̂i j and d̂ j i . Formally, Pi j (di j) = Pi j (di j ; d̂i j , d̂ j i). In the following,

for the sake of brevity, we will simply write Pi j (di j).

Figure 3a shows Pi j (di j) for several situations in which the average interface delays of

the two groups are equal.3 The plot shows that the method adapts Pi j (di j) so that the robots

switch at low interface delays if the average interface delay are low as well (see Fig. 3a,

d̂i j = d̂ j i = 50 s). On the other hand, in situations in which the average interface delays are

high, robots switch at higher interface delays di j (see Fig. 3a, d̂i j = d̂ j i = 100 s). As the

proposed method is independent of the absolute values of the subtask durations and delays,

it can be applied to problem instances that exhibit different task durations or swarm sizes

without the necessity of adaptation of the parameters.

In case the average interface delays of the two groups are not equal (see Fig. 3b for an

example), the method adapts the cumulative switching probability so that the robots with the

lower average interface delay are less likely to switch than the robots with the higher average

interface delay, at a given interface delay di j . This asymmetry causes more robots to switch

2 In biology, the interface delay is commonly referred to as “queuing delay” (cf. [2,3]). We do not use the

term “queue” as it implies an order in the arrival of robots at the task interface, which is not present in the

stochastic system that we consider.

3 Differences in average interface delays can be caused by differences in the properties of the problem such

as subtask duration or swarm size.

123

108 Auton Agent Multi-Agent Syst (2014) 28:101–125

(a) (b)

Fig. 3 The cumulative distribution of the switching probability Pi j (d̂i j) for a robot working on subtask τi ,

evaluated using 10,000 Monte-Carlo experiments for a rising interface delay di j . a The switching probability

is a function of the average interface delays d̂i j and d̂ j i . b The robots use a different switching probability

depending on the average interface delays they experienced in the two subtasks: in case the average interface

delay experienced by the robots working on subtask τi is higher than the one in the adjacent subtask, the robots

are more likely to switch to subtask τ j (values obtained using Eq. 2 with m = 10 and k = 1)

from the group with the higher average interface delay to the group with the lower average

interface delay, thereby equalizing the arrival rates of both groups.

3.2.2 Implementation

In the following, we assume that τi is the current subtask of the robot. The robots used in

this article make decisions at discrete points in time. The frequency with which decisions

are made is the frequency ν of the control cycle of the robots. For a robot, time is discrete:

d = d/ν, with d being an integer that counts the number of control cycles that the robot has

spent waiting at the task interface. At each control cycle, a robot switches from subtask τi to

subtask τ j with a probability pi j . In the following, we refer to pi j as switching probability.

The relationship between Pi j and pi j is as follows:

Pi j (di j ; d̂i j , d̂ j i) = 1 −

di j
∏

q=1

(

1 − pi j (q; d̂i j , d̂ j i)

)

(1)

In words, Pi j is one minus the probability that the robot does not switch subtask the first di j

control cycles. In our implementation, pi j is defined by the following sigmoid function:

pi j (di j ; d̂i j , d̂ j i) =
1

1 + e−θ(di j ;d̂i j ,d̂ j i)
· γ (2)

where γ is a parameter that is specified in the next section. The function θ is defined as:

θ(di j ; d̂i j , d̂ j i) =
1

k

(

di j

r(d̂i j , d̂ j i)
− m

)

(3)

where r(d̂i j , d̂ j i) is a function of the average interface delays, which is explained in the

following. Analogously to Pi j , for the sake of brevity we use pi j (di j) and θ(di j) to refer to

pi j (di j ; d̂i j , d̂ j i) and θ(di j ; d̂i j , d̂ j i), respectively.

123

Auton Agent Multi-Agent Syst (2014) 28:101–125 109

(a) (b)

Fig. 4 The switching probability pi j is a function of the discrete interface delay di j as defined by Eq. 2. a

Resulting probability pi j for different values for the parameters m and k, with d̂i j = d̂i j = 50 s. b Behavior

of the function r for different average interface delays d̂i j , with d̂ j i = 50 s

The average interface delays are computed as a weighted average with a fixed weight

factor, d̂i j = 0.2 · d̂i j + 0.8 · di j . The average interface delays are updated whenever a robot

completes a subtask. Due to the stochastic nature of the decision process, robots regularly

switch between subtasks and update their estimates of the average interface delays. The

average interface delays are initialized with values drawn from a random distribution that is

specified in Sect. 5.1.

The two parameters m and k of Eq. 3 are used to adjust the switching behavior of the robot.

The shift parameter m influences how quickly the robot reacts to an increasing interface delay

di j . The higher the value of m, the more the S-shaped curve is shifted to the right. The steepness

parameter k controls if the increase in switching probability pi j for an increasing interface

delay di j is gradual or immediate. The lower the value of k, the steeper the slope of the

function pi j . See Fig. 4a for a visual representation of the influence of the parameters m and

k on the switching probability pi j .

The function r used in Eq. 3 relates the two average interface delays to each other:

r(d̂i j , d̂ j i) =
d̂i j · max(d̂i j , d̂ j i)

d̂ j i

(4)

=

{

d̂ 2
i j/d̂ j i if d̂i j > d̂ j i

d̂i j if d̂i j ≤ d̂ j i

(5)

The function r implements the asymmetry mentioned earlier: In case the group g j has

a lower average interface delay than gi , that is d̂i j > d̂ j i , r increases quadratically. This

reinforces smaller differences in the average interface delays and causes robots to switch

already at small interface delays di j . In the case of d̂i j ≤ d̂ j i , on the other hand, r increases

linearly, which causes robots to switch at higher interface delays. This mechanism ensures

that more robots switch from the group with the higher arrival rate at the task interface to

the group with the lower arrival rate than the other way around. Figure 4b gives a visual

representation of the behavior of function r for different average interface delays d̂i j .

Returning to the example of foraging, consider the case in which the group storing objects

in the nest has a higher arrival rate at the task interface than the group harvesting objects from

the source. In this case, the group storing objects experiences, on average, a higher interface

123

110 Auton Agent Multi-Agent Syst (2014) 28:101–125

delay than the harvesting group. The function r amplifies this difference; the robots working

on storing, therefore, have a higher probability to switch to the harvesting subtask. On the

other hand, the harvesting group experiences, on average, a lower interface delay than the

storing group. The function r causes the robots of this group to have a low, although non-

zero, probability of switching to the storing subtask. Robots storing objects will therefore

be more likely to switch between subtasks than robots that are harvesting. This will cause

arrival rates of the two groups at the task interface to gradually equalize. Additionally, the

switching probabilities of the two groups will equalize such that both exhibit few switches

between subtasks.

4 Experimental framework

In the following, we introduce the experimental framework that we employ for validating the

method presented in Sect. 3.2. As mentioned before, we carry out two types of experiments:

simulation experiments and real robot experiments. In the following, we describe the problem

instance studied and the experimental setup common to both types of experiments. Then, we

discuss the metrics used to evaluate the proposed method, and we present the robot and its

controller. Finally, we describe the simulation framework used.

4.1 Problem instance and experimental setup

As testbed we chose a foraging task in which the robots have to harvest objects from one

location, the source, and store them in another location, the nest. All experiments use the same

layout for the environment: the source is located on the left-hand side and the nest is located

on the right-hand side of a rectangular space (see Fig. 5). Different ground colors mark the

different locations in the environment. Additionally, a light source marks the location of the

nest. The robots can sense the direction of the light source and use it to determine the direction

of the nest. In order to study the influence of different subtask durations on the performance

of the proposed method, we run experiments using environments with different dimensions.

The environment is partitioned into two areas by the task interface. We refer to the two

areas as the harvest area, containing the source, and the store area, containing the nest. By

partitioning the environment in two areas, the overall foraging task T is also partitioned

Fig. 5 Schematic representation of the environment used for the experiments. The environment is partitioned

into two areas by the task interface. We refer to the two areas as the harvest area, containing the source, and

the store area, containing the nest. Each area corresponds to one of the subtasks. The light source, used by the

robots for navigation, is marked with “L”

123

Auton Agent Multi-Agent Syst (2014) 28:101–125 111

into two subtasks: the harvest subtask τh and the store subtask τs . The harvest and the store

subtasks have a sequential interdependency as they have to be performed one after the other

in order to perform the overall task sequence T = τh ≻ τs once: transporting an object from

the source to the nest. Robots working on τh harvest objects in the source, transport them to

the task interface and transfer them to the robots working on τs . The robots working on τs

receive objects in the task interface and transport them to the nest, where they are stored. In

the following, we call robots working in the group gh on subtask τh harvesters, and we call

robots working in the group gs on subtask τs storers.

Since objects are transferred directly, a successful transfer requires both the passing and the

receiving robot in the task interface at the same time. As mentioned, this setting corresponds

to the second case shown in Fig. 2. Robots experience an interface delay di j when waiting

for a transfer partner in the task interface. Robots can switch between subtasks by crossing

the task interface. Upon switching, a robot has to wait for a given number of seconds cs ,

which corresponds to the task switching cost introduced in Sect. 3.1. In this article, the task

switching cost cs is a parameter of the experiment; its abstract representation allows us to

freely modify it and study its effect on the performance of a swarm using the proposed

method.

In order to evaluate the performance of the proposed task allocation method, the knowl-

edge of the optimal allocation of the swarm for each experimental setting is required a-priori.

The optimal ratio for each environment is determined experimentally in the first experi-

mental set described in Sect. 5.2. As stated in Sect. 3.1, the optimal allocation depends

on the average duration e of the two subtasks. The average duration ei of a subtask τi , in

turn, depends on many factors—in this problem instance, among others, the travel times of

the robots, the interface delays at the task interface, the time-costs of harvesting, storing

or transferring an object and the losses due to interference or navigation errors. Thus, by

modifying the position of the task interface in the environment, we can modify the ratio

between the durations of the two subtasks and therefore the optimal allocation for the given

experiment. In the following, we call arena ratio the ratio es/(es + eh), that is, the ratio

between the duration es of the store subtask τs and the total duration es + eh of the task

sequence.

4.2 Metrics

In this section, we describe the metrics that we use to evaluate the method presented. Besides

evaluating the performance obtained by a swarm using the proposed method for task alloca-

tion, we also evaluate other metrics such as the number of robots per subtask and the number

of times robots switch between subtasks.

The total number of objects collected by the robots, the number of storers Ns , and the

number of harvesters Nh is recorded every 5 s. The total number of objects collected by the

swarm at a given time is called the swarm performance P at that time. The swarm performance

is used to evaluate the quality of the allocation of the robots to subtasks: the higher the swarm

performance, the better the quality of the allocation.

We define PmaxN
to be the maximum number of objects that can be harvested by a swarm

of N robots. It indicates the maximum value that can be achieved when the task sequence T

is tackled by two separate groups of robots and it is determined experimentally in the first

experimental set described in Sect. 5.2.

We can express the swarm performance P relative to the maximal performance PmaxN
,

which allows us to compare performance values across different experimental conditions

123

112 Auton Agent Multi-Agent Syst (2014) 28:101–125

(e.g., different arena ratios and swarm sizes). We refer to this metric as the relative swarm

performance P/PmaxN
.

We measure the allocation of robots to subtasks in terms of the allocation ratio R, which

is computed as R = Ns/N , that is, R reports the fraction of robots working on the storing

subtask τs . In order to assess the quality of the allocation obtained using the proposed method,

we use the optimal ratio Ropt of robots as a reference value. The optimal ratio, defined as the

allocation ratio at which the swarm reaches PmaxN
, is determined experimentally in the first

experimental set described in Sect. 5.2. We qualify a given allocation ratio R by using the

mean absolute error MAE:

MAE =
1

M

M
∑

i=0

|Rt − Ropt |, (6)

with Rt being the ratio value sampled at time t, and M being the total number of samples

collected during the experiment. As the MAE is a cumulative error measure, smaller values

indicate a ratio that is closer to the optimal ratio Ropt .

We also evaluate the number of times the robots switch between subtasks. As switching

between subtasks might be costly, an efficient method should provide a stable allocation of

robots to subtasks, with few robots switching between subtasks. To this end, we record the

number of switches in a given time window. We denote this metric as S�t , with �t being the

length of the time window. The evolution of S�t over time allows us to evaluate the allocation

speed of the swarm: the sooner the robots cease to switch between subtasks, the faster the

swarm reaches a stable allocation. We refer to the total number of task switches during the

course of the whole experiment as Stot .

4.3 The robot and its controller

The robot used for the experiments presented in this article is the s-bot, a robotic platform

that has been developed within the Swarm-bots project4 [14,28]. Figure 6 shows the s-bot

and gives a description of its principal sensors and actuators. The robot is of round shape

with a diameter of 12 cm. It features a gripper that can be used to connect to other robots and

form assembled structures [9,16,22] or to transport objects [29]. The robot is equipped with

8 infra-red sensors, used to perceive obstacles up to a distance of 15 cm and the direction of a

light source up to a distance of 5.0 m. Ground sensors positioned underneath the robot can be

used for detecting ground color and holes. The robot features a transparent ring with 8 RGB

LEDs that can be used to convey visual information. An omni-directional camera allows the

robot to perceive objects and other robots up to a distance of about 60 cm. The s-bot can

move in the environment by means of a differential drive system that combines tracks and

wheels.

Each robot of the swarm is controlled by an instance of the same finite state machine

controller, which is depicted in Fig. 7. The controller consists of two primary behaviors,

each corresponding to one of the subtasks a robot can perform: either the harvest subtask τh

or the store subtask τs . The behavior of each robot is defined by the subtask it is currently

performing. Harvesters not carrying an object move towards the source, where they can

harvest one. After harvesting an object, harvesters move to the task interface and search for

an available storer. Upon the arrival of a storer, the harvester passes the object to it by direct

4 http://www.swarm-bots.org/

123

http://www.swarm-bots.org/

Auton Agent Multi-Agent Syst (2014) 28:101–125 113

Fig. 6 The robot used in the experiments, the s-bot, shown with its principal sensors and actuators. Most

distinctive is the gripper, which allows the robot to connect to other robots

Fig. 7 Simplified state diagram of the controller of the robots. White states belong to the harvest subtask

τh , while gray states to the store subtask τs . The search in task interface state is present for both subtasks.

An obstacle avoidance state is present but has been omitted for clarity, as it is reachable from all states. The

dashed arrows represent stochastic switches between subtasks (see Eq. 2)

transfer. Storers carrying an object move towards the nest, where they can store the object.

Storers not carrying an object move to the task interface and search for a harvester ready to

transfer an object. Robots can detect the location of objects and other robots by using their

omni-directional camera, and the direction of the nest by using their infrared sensors. While

moving, each robot avoids obstacles (walls, objects, and other robots).

The robots use the method introduced in Sect. 3.2 for deciding whether to switch from

one subtask to the other. A harvester carrying an object can stochastically decide to become

a storer, and a storer not carrying an object can stochastically decide to become a harvester

(see Eq. 2). A robot has to be in the task interface in order to switch subtask. The duration of

a control-cycle is 0.2 s in simulation, and 0.15 s on the real robot. The value of the parameter

γ of Eq. 2 is 0.01 and 0.013 for simulated and real robots, respectively. After switching, a

robot must wait for a certain time before it can continue to work on its new subtask. This

time represents the task switching cost cs .

123

114 Auton Agent Multi-Agent Syst (2014) 28:101–125

4.4 The simulation framework

The simulation framework used to carry out the simulation experiments presented in this

article is called ARGoS5 [31,32]. ARGoS was developed within the Swarmanoid project6

[15], and is an open-source simulation framework that was specifically designed to support

the real-time simulation of large swarms of heterogeneous robots. The simulator that is

part of the ARGoS framework is a discrete time, physics-based simulator, which allows the

user to choose the desired level of detail of the simulation. The simulation detail can range

from simple simulations with few details (e.g., two-dimensional environments governed

by kinematic rules) to highly detailed and complex simulations (e.g., three-dimensional

environments governed by dynamics). For the work presented in this article, we employ

a kinematics model of the robots simulated in a two-dimensional environment. A uniform

random noise of 10 % has been added to all sensor readings at each time-step.

While the logic related to working on and switching between subtasks is the same in simu-

lation and real robot experiments, there are some substantial differences between simulation

and real robots in the manner objects are represented. In simulation, objects are represented

in an abstracted manner and not as physical objects. That is, objects are not simulated as

embodied entities. Instead, the fact that a robot carries an object is stored internally in the

simulator. This abstracted simulation allows us to omit the simulation of complex physics

involved in gripping objects.

5 Simulation experiments

The goal of the simulation experiments is to evaluate the performance of the method proposed

in this article in different experimental environments. In the following, we describe the

experimental setup and the results obtained in the experiments.

5.1 Experimental setup

As mentioned in Sect. 4.1, all experiments are carried out in two rectangular environments.

In the simulation experiments, we use the following parameters for the two environments.

The dimensions of the environments are 4.5 m by 2.0 m. The nest and the source are each

0.3 m wide, while the task interface is 0.5 m wide. These locations are marked with a different

ground color: the nest and the source are gray, the task interface is black, the harvest area

is white, and the store area is light gray. The two environments differ for what concerns the

position of the task interface. The first environment is partitioned by the task interface into

two areas of equal size (2.25 m by 2.0 m), which results in an arena ratio of 0.5. We refer to

this environment as the symmetric environment. The second environment is partitioned into

two areas of different size (3.0 m by 2.0 m for the harvest area and 1.5 m by 2.0 m for the store

area), which results in an arena ratio of 0.67. We refer to this environment as the asymmetric

environment.

In all the experiments, we measure the time t in minutes unless specified otherwise. The

robots of the swarm are randomly positioned in the nest area at time t = 0. The estimates of

the average interface delays d̂hs and d̂sh are initialized with a random value uniformly sampled

from the interval (0 s, 10 s]. The experiments run for ttot = 60 min. For each experimental

5 http://iridia.ulb.ac.be/argos/

6 http://www.swarmanoid.org/

123

http://iridia.ulb.ac.be/argos/
http://www.swarmanoid.org/

Auton Agent Multi-Agent Syst (2014) 28:101–125 115

condition, we run 100 repetitions, each with a different seed for the pseudo random number

generator.

5.2 Results and discussion

In this section, we present and discuss the results of the simulation experiments. We first

determine the optimal allocation Ropt for each of environments. We then study the effect of

the task switching cost cs on the performance of the proposed method. Next, we study the

parameters m and k of the method and their influence on the performance. Last, we study the

scalability and adaptability of the method.

As the underlying distributions of the different metrics introduced in Sect. 4.2 are not

known, we report each metric using a non-parametric approach. We report the quantiles of the

distribution as follows. In the text, we represent the median (50 % quantile) and the 25–75 %

quantile in the format 25/50/75 %. In the plots, we represent the 25–75 % quantile by a dark

gray area, with the median represented as a black line inside the gray area. Where necessary,

we additionally report the 1 and 99 % quantiles, represented in the format 1/25/50/75/99 %

in the text and by a light gray area in the plots.

In the following, we report the results obtained in the asymmetric environment. This is

because in most cases analogous conclusions can be drawn from the results obtained in the

symmetric environment. When this is not the case, we report the results for both environments.

The complete results are included in the supplementary on-line material [7].

5.2.1 Optimal allocation

The first set of experiments is dedicated to determine the optimal allocation Ropt by conduct-

ing an exhaustive search over all possible allocations for a given swarm size and for each

environment. More specifically, we run experiments for different numbers of storers Ns and

of swarm sizes N in each environment, and evaluate each resulting configuration (N ∈ [4,30]

and Ns ∈ [1, N − 1], both by steps of 1). The allocation ratio R = Ns/N remains fixed

during a single experimental run; that is, the robots of the swarm cannot switch between

subtasks.

Figure 8 reports the results for all tested configurations. We can observe that the best

allocation ratio R for each of the tested swarm sizes N is approximately the same as the arena

ratio. Nevertheless, we can observe exceptions to this behavior: for a large number of robots

N, the swarm tends to assume an allocation ratio that is slightly higher than the arena ratio.

For convenience, we use a swarm size of N = 18 in the following experimental sets as this

swarm size allows the robots to allocate in a ratio that matches the arena ratio of the two

environments studied.

The experiments allowed us to determine, for each environment, the optimal allocation

ratio Ropt and the maximal performance PmaxN
for all tested N . Table 1 reports the numeric

values for Ropt and Pmax18 , which are used in conjunction with the metrics presented in

Sect. 4.2 to evaluate the proposed method.

5.2.2 Task switching cost

In the second set of experiments, we study the influence of the task switching cost cs on

the performance of the swarm. In this study, the task switching cost cs is the time taken by

robots to switch from one subtask to the other. We run experiments with different values for

cs , taken from the interval [0 s, 50 s] by steps of 2 s. We use two different swarms: one, in

123

116 Auton Agent Multi-Agent Syst (2014) 28:101–125

Fig. 8 The relative swarm performance P/PmaxN
of the swarm for different allocation ratios R and number

of robots N. Robots were not allowed to switch, that is, the allocation remained fixed during the course of

an experiment. Top results for the symmetric environment, bottom results for the asymmetric environment.

The white horizontal line indicates the arena ratio for the given environment (0.5 and 0.66, respectively). The

median of P/PmaxN
over 100 experimental runs is reported. Darker segments indicate better performance

Table 1 The optimal allocation ratios Ropt and the maximal swarm performance Pmax18 as determined

empirically for each environment

Environment Ropt Pmax18

Symmetric 0.43/0.50/0.50/0.56/0.60 234.6/383.5/397.0/404.0/415.0

Asymmetric 0.52/0.62/0.67/0.67/0.72 191.7/366.0/386.0/394.5/414.0

Values are given as 1/25/50/75/99 % quantiles of the distribution

which there is a single group of robots that performs the two subtasks, and another one, in

which two separate groups of robots work on the two subtasks and robots use the proposed

method to decide when to switch between subtasks. In the first swarm, robots entering the

task interface experience a task switching cost. In the second swarm, two types of costs can

be experienced at the task interface: task switching costs or transfer costs. Transfer costs are

induced by the transfer of objects and are the sum of the interface delay and the time needed

to physically transfer the object from one robot to the other. A trade-off exists between task

switching costs and transfer costs which determines whether or not it is advantageous to use

separate groups of robots for the two subtasks. As shown in Fig. 9, the performance of a

swarm in which a single group of robots performs the two subtasks linearly decreases with

an increasing task switching cost, while the performance of a swarm composed of two groups

of robots that use the proposed method stays approximately constant. This shows that the

proposed method is advantageous in situations in which task switching costs are higher than

a given threshold. Additionally, the method yields a consistent performance over different

task switching costs. A swarm with a single group of robots outperforms a swarm composed

of two groups that use the proposed method only in cases in which the task switching cost

is lower than the transfer costs, which is the case at cs ≈ 22 s. In the following simulation

experiments, we use a task switching cost of cs = 30 s.

123

Auton Agent Multi-Agent Syst (2014) 28:101–125 117

0 10 20 30 40 50

Switching cost cs (seconds)

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

S
w

a
rm

 p
e

rf
o

rm
a

n
c
e

 P

single group swarm

two group swarm

Fig. 9 The effect of the switching cost cs on the swarm performance P in the asymmetric environment,

measured as the number of objects collected at the end of the experiment. We use two different swarms: in the

first a single group of robots performs both subtasks of the task sequence T ; in the second the robots work

in two separate groups and use the proposed method to decide when to switch between subtasks. The results

are collected over 100 experimental runs and are given as observation median (black line) and the 25–75 %

quantiles (gray area)

5.2.3 Parameter study

In the third set of experiments, we study the influence of the parameters m and k (see Eq. 3)

on the performance of a swarm that uses the proposed method. We explore the parameter

space as follows: the shift parameter m is taken from the interval [0,50] by steps of 5 while

the steepness parameter k is taken from the set {0.01, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}.

For each condition, we perform 100 experimental runs. Figure 10 shows the results of the

experiments for the symmetric environment (left column) and the asymmetric environment

(right column). We evaluate the system using the metrics defined in Sect. 4.2: Fig. 10a reports

the mean absolute error MAE, Fig. 10b the total number of task switches Stot , and Fig. 10c

the relative swarm performance P/Pmax18 . In the plots, a darker square indicates a better

value of the reported metric. The plots show that the system is mainly influenced by the shift

parameter m, while the steepness parameter k has a lower impact. Figure 10a shows that the

mean absolute error is low around a value of m ∈ [5, 15], as well as for small values of k.

Similarly, the number of task switches, reported in Fig. 10b, is constantly low for all larger

values of m. The relative swarm performance P/Pmax18 , reported in Fig. 10c, behaves similar

to the mean absolute error, with lower values of m giving better results. In case of Fig. 10a,

c, we can identify an interval of the parameter m ∈ [5, 15] at which the method exhibits

consistently good results with respect to the metric shown. In case of Fig. 10b, this can be

observed for values of m ≥ 5. These observations apply to both environments, indicating

that the behavior of the method is little dependent on the environment.

In the following, we focus on the effects that the shift parameter m has on the behavior of

the method. To this end, we set the steepness parameter k to 1. Figure 11 shows the influence of

m on the behavior of the method in the asymmetric environment for m ∈ {0, 8, 50} (Fig. 11a,

b, c, respectively).

The plots in the left column of Fig. 11 report the relative swarm performance P/Pmax18 .

Setting m = 0 or m = 50 results in a poor relative swarm performance P/Pmax18

(0.79/0.81/0.82 and 0.60/0.68/0.76, respectively). On the other hand, setting m = 8 results

in a near-optimal performance (0.91/0.95/0.97).

The plots in the middle column of Fig. 11 report the allocation ratio R of the swarm. Addi-

tionally, numerical results for the mean absolute error MAE are reported in the plot. Recall

123

118 Auton Agent Multi-Agent Syst (2014) 28:101–125

(a)

(b)

(c)

Fig. 10 The effect of the parameters of the method as evaluated by the metrics a mean absolute error MAE,

b total number of switches between subtasks Stot , and c relative swarm performance P/Pmax18 . Left column

results for the symmetric environment. Right column results for the asymmetric environment. The median of

the respective metric over 100 experimental runs is reported. Darker segments indicate better values

123

Auton Agent Multi-Agent Syst (2014) 28:101–125 119

Time (minutes)

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

P
P

m
a
x

1
8

m = 0

(a)

Time (minutes)

A
llo

c
a
ti
o
n
 r

a
ti
o
 R

MAE 0.103/0.109/0.118

Time (minutes)

N
u
m

b
e
r

o
f
sw

it
c
h
e
s
 S

2
 m

in

Time (minutes)

R
e
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

P
P

m
a
x

1
8

m = 8

(b)

Time (minutes)

A
llo

c
a
ti
o
n
 r

a
ti
o
 R

MAE 0.053/0.067/0.078

Time (minutes)

N
u
m

b
e
r

o
f
sw

it
c
h
e
s
 S

2
 m

in

Time (minutes)

R
e
la

ti
v
e

 p
e

rf
o

rm
a

n
c
e

P
P

m
a
x

1
8

m = 50

(c)

Time (minutes)

A
llo

c
a
ti
o
n
 r

a
ti
o
 R

MAE 0.179/0.222/0.276

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
1
5

3
0

4
5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
1
5

3
0

4
5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
1
5

3
0

4
5

Time (minutes)

N
u
m

b
e
r

o
f
sw

it
c
h
e
s
 S

2
 m

in

Fig. 11 Influence of the shift parameter m = {0, 8, 50} and k = 1 shown in the rows a, b, and c, respectively.

Results obtained in the asymmetric environment and evaluated using the following three metrics. Left column

relative swarm performance P/Pmax18 , given as observation median and the 1–99 % quantiles (gray areas).

Middle column allocation ratio R, given as observation median (black line) and the 1–99 % quantiles (gray

areas). The horizontal dotted line at Ropt = 0.67 indicates the optimal allocation for this environment. Right

column box plot that reports the number of switches between subtasks S2min for a time-window of 2 min (the

black horizontal line indicates the median, the box indicates the interquartile range (IQR) and the whiskers

indicate the lowest and highest datum within 1.5 IQR). The results are collected over 100 experimental runs

that the MAE measures the quality of the allocation: a low value indicates that the swarm

reaches an allocation that is close to the optimal allocation Ropt . This is the case when setting

m = 0 or m = 8, which results in an MAE of 0.103/0.109/0.118 and 0.053/0.067/0.078,

respectively. On the other hand, setting m = 50 leads to a higher MAE (0.179/0.222/0.276).

The plots in the right column of Fig. 11 report the number of task switches S2min observed

in a time-window of 2 min. Figure 11a shows that setting m = 0 leads to strong oscillations

in the allocation, as the robots tend to switch a lot between subtasks. On the other hand,

setting m = 0 or m = 50 results in few task switches.

We can conclude that, while setting m = 0 results in a good allocation (i.e., low MAE),

the performance of the method is degraded by the high cost of task switching. On the other

hand, setting m = 50 results in low task switching costs, but the swarm does not attain a

good allocation. Both cases yield a sub-optimal performance. We can conclude that only

the combination of the metrics MAE and S2min allows one to identify methods with the

123

120 Auton Agent Multi-Agent Syst (2014) 28:101–125

0
1
0
0

3
0
0

5
0
0

4 6 8 10 12 14 16 18 20 22 24 26 28 30

(a)

Number of robots N

S
w

a
rm

 p
e
rf

o
rm

a
n
c
e
 P

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

4 6 8 10 12 14 16 18 20 22 24 26 28 30

(b)

Number of robots N

In
d
iv

id
u
a
l
re

l.
 p

e
rf

.
P

(N
P

m
a

x
N
)

Fig. 12 Performance of the proposed method for different swarm sizes N in the asymmetric environment. a

Swarm performance P, measured as the number of objects collected at the end of the experiment. b Individual

relative performance P/(N PmaxN
). The results are collected over 100 experimental runs and are given as

observation median (black line) and the 25–75 % quantiles (gray areas). The vertical gray line at N = 18

indicates the swarm size used in the other experimental sets

desired behavior as shown in Fig. 11b: the performance of the swarm is near-optimal, as

robots allocate with a ratio close to the optimal allocation Ropt while exhibiting few switches

between subtasks.

On the basis of the results of this experimental set, we set the steepness parameter k to 1

and the shift parameter m to 8 in the following experiments.

5.2.4 Scalability

In the fourth set of experiments, we study the scalability of the proposed method. To this

end, we run experiments for different swarm sizes, with N taken from the interval [4,30] by

steps of 1. For each value of N we run 100 experiments. Figure 12 shows the results of the

scalability experiments in terms of swarm performance P and individual relative performance

P/(N PmaxN
), defined as the average performance of a single individual relative to the max-

imal performance of a swarm of N robots. Figure 12a shows that the swarm performance

increases sub-linearly for large swarm sizes and starts to decrease at the higher end of the

interval studied. This is due to physical interference among robots: as we keep the size of the

environment constant, the density of robots increases and therefore interference increases,

causing the degradation of the swarm performance P. The individual relative performance,

reported in Fig. 12b, confirms this phenomenon as its value decreases when the swarm size

increases. Additionally, small swarms exhibit a low individual performance as they have dif-

ficulties to attain the optimal allocation due to the small number of robots. These results are

consistent with what was observed in Fig. 8. For an in-depth study of the effect of physical

interference in a similar system refer to Pini et al. [33].

5.2.5 Adaptivity

In the last set of simulation experiments, we study the adaptivity of a swarm using the proposed

method to changing environmental settings. More specifically, we modify the position of the

task interface at time t = 30 min so that the symmetric environment is transformed into the

asymmetric environment. The results of these experiments are reported in Fig. 13. The swarm

quickly adapts to the change in the environment by reaching an allocation that matches the new

arena ratio of the environment. The relative swarm performance P/Pmax18 is near-optimal

(0.90/0.93/0.95). The results confirm that the proposed method adapts well to changing

environmental conditions.

123

Auton Agent Multi-Agent Syst (2014) 28:101–125 121

0 10 20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (minutes)

R
e

la
ti
v
e

 p
e

rf
o

rm
a

n
c
e

 P
P

m
a

x
1

8

0 10 20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (minutes)
A

llo
c
a

ti
o

n
 r

a
ti
o

 R

MAE 0.055/0.065/0.073 MAE 0.048/0.062/0.080

0 10 20 30 40 50 60

0
1
5

3
0

4
5

Time (minutes)

N
u

m
b
e

r
o

f
sw

it
c
h

e
s
 S

2
 m

in

Fig. 13 Adaptivity of the allocation of the swarm when the environment changes from the symmetric envi-

ronment to the asymmetric environment at t = 30 min (vertical dotted lines). Left relative swarm performance

P/Pmax18 , given as observation median and the 1–99 % quantiles (gray areas). Middle allocation ratio R,

given as observation median (black line) and the 1–99 % quantiles (gray areas). The horizontal dotted line

indicates the optimal allocation for each environment (at Ropt = 0.5 and 0.67, respectively). Left number of

switches between subtasks S2min for a time-window of 2 min (box plots as in Fig. 11). The results are collected

over 100 experimental runs

6 Real robot experiment

In this section, we present the experiment that we conducted using real robots. The goal of

this experiment is to validate the method proposed in this article in a realistic setting. The

results presented in this section serve as a proof of concept, showing that the method for task

allocation can be directly transferred to real robots. Therefore, we executed only a single

experimental run.

We use some of the available robots to act as objects. Given the size of the environment

and the number of s-bots available, we use a total of 8 robots, half of which are used to act as

objects. For simplicity, in the rest of the section, we will refer to the robots acting as objects

simply as objects.

The dimensions of the environment are 2.95 m by 1.25 m. The source, the nest and the

task interface are each 0.4 m wide. The ground color is white, except in the source, the nest

and the task interface, where the ground has been covered with a reflective material to ease

detection. The store side of the task interface is marked with a green stripe that is 0.1 m

wide. This helps the robots to sense in which area of the arena they are upon leaving the task

interface. The environment is delimited by black tape 0.05 m wide.

At the beginning of the experiment, 4 s-bots are randomly positioned in the harvest area.

Additionally, four objects are positioned in the source, close to the border of the environment.

Due to the low wheel-speed of the robots, the total duration of an experiment exceeds the

lifetime of the batteries of the robots by far. We were therefore forced to divide the experiment

in multiple segments. We divided the experiment in 18 segments of 5 min each,7 for a total

duration of ttot = 90 min. At the end of each segment, the experiment is stopped, the state of

each robot is saved, and the robots are recharged. At the beginning of the following segment,

the robots are placed at the same position they had at the end of the previous segment and the

internal state of each robot is restored. The values of the parameters used for the proposed

method are the same as determined in the simulation experiments, m = 8 and k = 1.

7 The short duration of the segments is due to two reasons. First, we used robots equipped with old and

non-replaceable batteries. Second, robots depleted their batteries in an inhomogeneous way—robots that

transported many objects depleted their battery at a much faster pace—and we had to stop the experiment as

soon as the first robot ran out of energy.

123

122 Auton Agent Multi-Agent Syst (2014) 28:101–125

(a) (b)

(c)

(e) (f)

(d)

Fig. 14 Snapshots of the video recording of the real robot experiment that show the evolution of the experiment

over time t. Objects are marked by a white circle on top. a All robots start in the harvest area of the arena,

that is, they are working on the harvest subtask; b the robots start transporting objects to the task interface; c

three robots switched to the store subtask: one is delivering an object to the nest, one is returning to the task

interface after storing an object in the nest, and one is waiting in the task interface to receive an object; d the

whole swarm switched to the store subtask; e robots start switching back to the harvest subtask in order to

equalize the performance across the two subtasks; f two robots work on each subtask, the swarm reached the

optimal allocation

Time (minutes)

S
w

a
rm

 p
e

rf
o

rm
a

n
c
e

P

0
1
0

2
0

3
0

4
0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 15 30 45 60 75 90 0 15 30 45 60 75 90

Time (minutes)

A
llo

c
a

ti
o

n
 r

a
ti
o

 R

Fig. 15 Results of the real robot experiment. Left swarm performance P, measured as the total number of

objects collected. Right allocation ratio R. The results are obtained in a single proof-of-concept experimental

run

The experiment has been recorded by an overhead camera. The resulting 18 segments have

been joined into a single video that can be accessed in the supplementary on-line material

[7]. Figure 14 shows the evolution of the experiment over time using snapshots taken from

the video.

123

Auton Agent Multi-Agent Syst (2014) 28:101–125 123

Figure 15 shows the result of the experiment using the same metrics we employed for

evaluating the results of the simulation experiments (see Sect. 4.2). Figure 15 shows that,

after an initial period of time in which switches between subtasks are frequent, the allocation

of the swarm stabilizes with two robots working as harvesters and two robots working as

storers. During the course of the 90 min of the experimental run, the robots harvested a total

of 40 objects.

7 Conclusions and future work

The self-organized method proposed in this article allows a swarm of robots to allocate to

subtasks that are sequentially interdependent. Being often a result of strategies that partition

complex tasks into smaller ones, such subtasks are common in natural and artificial systems.

We evaluated the method using a swarm of s-bot robots in simulation experiments as well as

in a proof-of-concept experiment with real robots.

From the results we can conclude that a swarm using the proposed method is able to

allocate its individuals to two sequentially interdependent subtasks in a near-optimal way.

The method relies only on the robots’ individual perception of the delays experienced when

waiting for robots working on the other subtask. The method does not require communication

capabilities and can therefore be employed in swarms of simple robots. Additionally, the

ability of the robots to allocate in a near-optimal way does not depend on the properties of

the problem at hand. More precisely, each robot’s decision to switch between subtasks does

not depend on an absolute measure of a property of the problem such as the duration of the

subtasks, but only on the interface delays experienced by the robots in one subtask relative

to the interface delays experienced in the other subtask. As a result, the method can be used

in different contexts without the need of parameter changes. We have shown that the method

is adaptive as the robots successfully re-allocate in case the environmental settings change.

Although we limited the study presented to a problem instance with two subtasks, we

believe that the method can directly be transferred to problems with more than two subtasks.

Preliminary studies on an agent-based model indicate that the method can indeed be applied

to such problems. We plan to conduct further experiments for an instance of such a problem,

using a new generation of robots.

A further direction of work concerns the way subtasks interface with each other. The

method presented in this article has been tested exclusively on a foraging task where the

task interface can be represented by a physical area that requires direct transfer of objects. A

possible extension of the work presented in this article concerns other ways of performing

object transfer, such as indirect transfer of objects by using a cache site.

Acknowledgments The research leading to the results presented in this paper has received funding from

the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-

2013)/ERC grant agreement no. 246939. Marco Dorigo, Mauro Birattari, and Arne Brutschy acknowledge

support from the Belgian F.R.S.–FNRS. Giovanni Pini acknowledges support from Université Libre de

Bruxelles through the “Fonds David & Alice Van Buuren”.

References

1. Agassounon, W., & Martinoli, A. (2002). Efficiency and robustness of threshold-based distributed allo-

cation algorithms in multi-agent systems. Proceedings of the first international joint conference on

autonomous agents and multi-agent systems (AAMAS-02) (pp. 1090–1097). New York: ACM Press.

123

124 Auton Agent Multi-Agent Syst (2014) 28:101–125

2. Anderson, C., & Ratnieks, F. L. W. (1999a). Task partitioning in insect societies. I: Effect of colony size

on queueing delay and colony ergonomic efficiency. The American Naturalist, 154(5), 521–535.

3. Anderson, C., & Ratnieks, F. L. W. (1999b). Task partitioning in insect societies. II: Use of queueing

delay information in recruitment. The American Naturalist, 154(5), 536–548.

4. Anderson, C., & Ratnieks, F. L. W. (2000). Task partitioning in insect societies: Novel situations. Insectes

Sociaux, 47(2), 198–199.

5. Berman, S., Halasz, A., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation

in swarms of robots. IEEE Transactions on Robotics, 25, 927–937.

6. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems.

New York: Oxford University Press.

7. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., & Dorigo, M. (2011). Self-organized task allocation

to sequentially interdependent tasks in swarm robotics—Online supplementary material. http://iridia.ulb.

ac.be/supp/IridiaSupp2011-002/.

8. Campo, A., & Dorigo, M. (2007). Efficient multi-foraging in swarm robotics. In M. Capcarrere, A. A.

Freitas, P. J. Bentley, C. G. Johnson, & J. Timmis (Eds.), Advances in artificial life: Proceedings of the

VIIIth European conference on artificial life (ECAL 2005) (Vol. 4648, pp. 696–705). Berlin: Springer.

9. Christensen, A. L., O’Grady, R., & Dorigo, M. (2007). Morphology control in a multirobot system. IEEE

Robotics and Automation Magazine, 11(6), 732–742.

10. Cicirello, V. A., & Smith, S. F. (2004). Wasp-like agents for distributed factory coordination. Autonomous

Agents and Multi-Agent Systems, 8(3), 237–266.

11. Dahl, T. S., Matarić, M. J., & Sukhat, G. S. (2009). Multi-robot task allocation through vacancy chain

scheduling. Robotics and Autonomous Systems, 57, 674–687.

12. Dasgupta, P. (2011). Multi-robot task allocation for performing cooperative foraging tasks in an initially

unknown environment. In L. C. Jain, E. V. Aidman, & C. Abeynayake (Eds.), Innovations in defence

support systems 2. Studies in computational intelligence (Vol. 338, pp. 5–20). Berlin: Springer.

13. Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: A survey

and analysis. Proceedings of the IEEE, 94, 1257–1270.

14. Dorigo, M. (2005). SWARM-BOT: An experiment in swarm robotics. In P. Arabshahi & A. Martinoli

(Eds.), 2005 IEEE swarm intelligence symposium (SIS-05) (pp. 192–200). Piscataway, NJ: IEEE Press.

15. Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swar-

manoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics and Automation

Magazine (in press).

16. Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G., et al. (2004). Evolving

self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2–3), 223–245.

17. Ferreira, P. R., Boffo, F. S., & Bazzan, A. L. C. (2008). Using Swarm-GAP for distributed task allocation

in complex scenarios. In N. Jamali, P. Scerri, & T. Sugawara (Eds.), Massively multi-agent technology.

LNCS (Vol. 5043, pp. 107–121). Berlin: Springer.

18. Fowler, H. H., & Robinson, S. W. (1979). Foraging by Atta sexdens (Formicidae: Attini): Seasonal patterns,

caste and efficiency. Ecological Entomology, 4(3), 239–247.

19. Gerkey, B. P., & Matarić, M. J. (2003). Multi-robot task allocation: Analyzing the complexity and optimal-

ity of key architectures. In Proceedings of the IEEE international conference on robotics and automation

(ICRA 2003) (pp. 3862–3867). Pitscataway, NJ: IEEE Press.

20. Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot

systems. The International Journal of Robotics Research, 23(9), 939–954.

21. Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S., & Stentz, A. (2003). Task allocation

using a distributed market-based planning mechanism. In Proceedings of the second international joint

conference on autonomous agents and multiagent systems (pp. 996–997). New York, NY: ACM Press.

22. Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006). Autonomous self-assembly in swarm-bots.

IEEE Transactions on Robotics, 22(6), 1115–1130.

23. Ikemoto, Y., Miura, T., & Asama, H. (2010). Adaptive division-of-labor control algorithm for multi-robot

systems. Journal of Robotics and Mechatronics, 22(4), 514–525.

24. Kalra, N., & Martinoli, A. (2006). A comparative study of market-based and threshold-based task allo-

cation. In Distributed autonomous robotic systems 7 (pp. 91–102). Berlin: Springer.

25. Krieger, M. J. B., & Billeter, J.-B. (2000). The call of duty: Self-organised task allocation in a population

of up to twelve mobile robots. Journal of Robotics and Autonomous Systems, 30, 65–84.

26. Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labor in a group of robots inspired

by ants’ foraging behavior. ACM Transactions on Autonomous and Adaptive Systems, 1(1), 4–25.

27. Liu, W., Winfield, A., Sa, J., Chen, J., & Dou, L. (2007). Towards energy optimization: Emergent task

allocation in a swarm of foraging robots. Adaptive Behavior, 15(3), 289–305.

123

http://iridia.ulb.ac.be/supp/IridiaSupp2011-002/
http://iridia.ulb.ac.be/supp/IridiaSupp2011-002/

Auton Agent Multi-Agent Syst (2014) 28:101–125 125

28. Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. V., Floreano, D., Deneubourg, J.-L., et al. (2004).

SWARM-BOT: A new distributed robotic concept. Autonomous Robots, 17(2–3), 193–221.

29. Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm. Self-organized strategies

to find your way home. Swarm Intelligence, 2(1), 1–23.

30. Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot

colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.

31. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2011a). ARGoS:

A modular, multi-engine simulator for heterogeneous swarm robotics. In Proceedings of the IEEE/RSJ

international conference on intelligent robots and systems (IROS 2011) (pp. 5027–5034). Los Alamitos,

CA: IEEE Computer Society Press.

32. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A

modular, parallel, multi-engine simulator for multi-robot systems. Swarm intelligence, 6(4), 271–295.

33. Pini, G., Brutschy, A., Birattari, M., & Dorigo, M. (2011a). Task partitioning in swarms of robots: Reducing

performance losses due to interference at shared resources. In J.-L. Ferrier & J. Filipe (Eds.), Informatics

in control, automation and robotics: Selected papers from the international conference on informatics in

control, automation and robotics 2009. LNEE (Vol. 85). Berlin: Springer.

34. Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., & Birattari, M. (2011b). Task partitioning in

swarms of robots: An adaptive method for strategy selection. Swarm Intelligence, 5(3–4), 283–304.

35. Ratnieks, F. L. W., & Anderson, C. (1999). Task partitioning in insect societies. Insectes Sociaux, 46(2),

95–108.

36. Scheidler, A., Merkle, D., & Middendorf, M. (2008). Stability and performance of ant queue inspired

task partitioning methods. Theory in Biosciences, 127(2), 149–161.

37. Theraulaz, G., Bonabeau, E., & Deneubourg, J.-L. (1998). Response threshold reinforcement and division

of labour in insect societies. Proceedings: Biological Sciences, 265(1393), 327–332.

123

	Self-organized task allocation to sequentially interdependent tasks in swarm robotics
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement and proposed method
	3.1 Problem statement
	3.2 Proposed method
	3.2.1 High-level description
	3.2.2 Implementation

	4 Experimental framework
	4.1 Problem instance and experimental setup
	4.2 Metrics
	4.3 The robot and its controller
	4.4 The simulation framework

	5 Simulation experiments
	5.1 Experimental setup
	5.2 Results and discussion
	5.2.1 Optimal allocation
	5.2.2 Task switching cost
	5.2.3 Parameter study
	5.2.4 Scalability
	5.2.5 Adaptivity

	6 Real robot experiment
	7 Conclusions and future work
	Acknowledgments
	References

