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Abstract

The autonomic computing paradigm addresses the operational chal-
lenges presented by increasingly complex software systems by propos-
ing that they be composed of many autonomous components, each
responsible for the run-time reconfiguration of its own dedicated hard-
ware and software components. Consequently, regulation of the whole
software system becomes an emergent property of local adaptation and
learning carried out by these autonomous system elements. Design-
ing appropriate local adaptation policies for the components of such
systems remains a major challenge. This is particularly true where
the system’s scale and dynamism compromise the efficiency of a cen-
tral executive and/or prevent components from pooling information
to achieve a shared, accurate evidence base for their negotiations and
decisions.

In this paper, we investigate how a self-regulatory system response
may arise spontaneously from local interactions between autonomic
system elements tasked with adaptively consuming/providing compu-
tational resources or services when the demand for such resources is
continually changing. We demonstrate that system performance is not
maximised when all system components are able to freely share in-
formation with one another. Rather, maximum efficiency is achieved
when individual components have only limited knowledge of their peers.
Under these conditions, the system self-organises into appropriate com-
munity structures. By maintaining information flow at the level of
communities, the system is able to remain stable enough to efficiently
satisfy service demand in resource-limited environments, and thus min-
imise any unnecessary reconfiguration whilst remaining sufficiently adap-
tive to be able to reconfigure when service demand changes.

Keywords: Autonomic computing, networks, self-organisation, commu-
nity structure, decentralised control, emergence.
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1 Introduction

Modern software systems are among the most complex human artefacts that
have been developed to date (Bullock and Cliff, 2004; Gershenson and Hey-
lighen, 2005). Contemporary information systems depend on an increasing
number of software modules, processing platforms, data sources, network
connections, and input/output devices, to the extent that it is becoming
impossible to predict or control their interactions. Both the scale and inter-
connectivity of IT systems are increasing as a consequence of their evolution,
from stand-alone machines to systems of systems (comprising huge numbers
of distributed and interacting components) working to provide resources on
demand to a large number of users (Tanenbaum and Renesse, 1985; For-
rest et al., 2005). Although modular architectures offer opportunities to
tackle increasing system complexity by decomposing the overall system into
specialised components, they also present challenges in terms of the main-
tenance of reliable and predictable operation when system objectives and
structure are subject to exogenous and unpredictable change.

Consequently, it is not surprising that, several years ago, IBM released
a manifesto1 arguing that the main obstacle to further progress in the IT
industry was a looming complexity crisis that would prevent reliable and
cost-effective human administration of large-scale IT systems. In response,
an autonomic computing approach was proposed, where IT systems would be
capable of automatically regulating their own function (Kephart and Chess,
2003). Large-scale autonomic computing systems were expected to comprise
myriads of computational elements, each acting, learning or evolving au-
tonomously in response to interactions with other components in their local
environment (Zambonelli and Parunak, 2001). System-level self-regulation
would then arise as a product of these local adaptations and interactions be-
tween system elements, thereby reducing the need for manual management
and control.

While the autonomic computing paradigm offered an alternative perspec-
tive on large-scale computational systems, it also presented novel challenges
in understanding and managing their performance. Large-scale IT systems
can easily become too complex to be managed through a ‘divide and rule’
analysis (Bonabeau, 2002). When a system’s global behaviour results from
highly non-linear interactions between many system components, the rela-
tionship between the actions of individual autonomous agents and the sys-
tem level consequences of those actions can become opaque and extremely

1http://www.research.ibm.com/autonomic/manifesto/autonomic computing.pdf
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sensitive (Heylighen, 1991; Hogg and Huberman, 2002; Zambonelli et al.,
2002). In addition to the issue of scale, autonomic systems are necessarily
open, in that they are free to gain and lose components over time in an en-
vironment that is dynamic and unpredictable in terms of user demand, and
where few a priori assumptions can be made (De Roure, 2003; Estrin et al.,
2002; Keil and Goldin, 2004). In general, managing such systems is perhaps
more akin to regulating financial markets or managing a firm, rather than
supervising a local area network or traditional computer cluster.

In this paper we address the central real-world problem confronted by
the autonomic computing paradigm: ensuring that large numbers of compu-
tational resources are efficiently configured and allocated in order to satisfy
user demand that varies in both kind and quantity. We do so by building
and exploring an agent-based model at a reasonably large scale (hundreds
of interacting agents). We respect some key physical realities, e.g., inter-
actions between components take real time and any information available
to system components must be gathered, stored, and processed explicitly.
However, we choose not to model a specific real-world case or application.
Rather we present a relatively simple, generic model encapsulating a range
of properties shared across information-driven autonomic systems consisting
of a large number of autonomous and locally communicating elements. In
doing so we focus on the role of information flows in maintaining efficient
performance. As such, the model is intended to have heuristic value for
the science and engineering of large-scale complex IT systems. In taking
this approach we are adopting a well-established and explicitly recognised
scientific modelling strategy in which realism is sacrificed to some extent in
return for a combination of generality and precision (Levins, 1966).

More specifically, we investigate how an autonomic system’s regulatory
response can arise from local interactions between its elements. We present
a decentralised multi-agent system in which provider agents are tasked with
adaptively configuring the services that they offer, and efficiently allocating
these services to the consumer agents that require them. The co-adaptive in-
teraction between these two groups of agents is governed by simple threshold
reinforcement mechanisms and localised exchange of information between
each agent and its local peers. An evaluation of this approach demonstrates
that when peer neighbourhoods are an appropriate size, they may exhibit
self-organising behaviour resulting in the emergence of spontaneous com-
munity structures that support the requirements of their members. What
distinguishes this regime is not just the extent to which information flows
amongst system components, but the underlying organisation of these com-
ponents and their interactions. This organisation can be described in terms
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of an emergent and dynamic topology of interaction that regulates and con-
strains the flow of information but is simultaneously brought about by this
flow. Our main contribution is to show that it is only when the right topol-
ogy is achieved and maintained (perhaps requiring continuous or periodic
reorganisation) that system elements exert appropriate constraints on infor-
mation flow such that efficient, ongoing system performance can be achieved.

The paper is organised as follows: a description of the related work on
autonomic computing, multi-agent systems and self-organising systems is
presented in Section 2, which also provides the motivation and inspiration for
the design of the resultant model (Section 3). The model is then evaluated
in Section 4, and the strengths, limitations and implications of this model
are discussed. The paper concludes in Section 5.

2 Related Work

2.1 Autonomic Computing

Autonomic systems are dynamic and complex; not only may their work-
flow characteristics undergo change, but the business processes that they
support will be continually evolving. Such systems require administration
at multiple levels and on a continual basis in order to preserve their cor-
rect operation. At a low level, dynamically changing user demand must
be met through continual allocation and reallocation of computational re-
sources. At a higher level, reconfiguration of workflows, business processes,
and hardware facilities is also required. For this reason, the reconfiguration
of system components and their functions is unavoidable and requires a flex-
ible approach that maintains system efficiency despite dynamic conditions.
As suggested by IBM in their manifesto, as these systems increase in scale,
managing them through skilled human administration becomes impractical
and autonomic solutions are required.

Much of the current research in the area of autonomic computing has ad-
dressed the problem of preserving the interoperation of existing IT systems’
software modules, often encapsulating their functions in terms of autonomic
managers. Techniques such as reinforcement learning (Kephart et al., 2007;
Tesauro, 2007), optimal control theory (Wang et al., 2007), and maximisa-
tion of expected utility (Kephart and Das, 2007) are then exploited in order
to balance power-performance trade-offs, i.e., to achieve efficient allocations
of requested jobs at the same time as optimising the power consumption of
unused servers.

Two kinds of control architecture tend to be employed: centralised and
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distributed ; both of which are illustrated schematically in Figure 1. Cen-
tralised schemes rely on a central executive to co-allocate services, schedule
and plan system behaviour, etc. In contrast, distributed control schemes
employ distributed protocols and focus on the design of intelligent paral-
lel algorithms for coordinating the behaviour of agents. One example of a
centralised system can be found in work by Tesauro (2007). Here, each appli-
cation manager was responsible for the performance throttling of a managed
server, and they shared expected utility information with a central resource
arbiter. This central node then computed an optimal allocation of servers
to the applications. A more distributed approach was adopted by Kephart
et al. (2007) where both performance and power managers conducted their
decisions based on full information about the state of parameters that define
the actual functioning of individual servers.

Whilst these mechanisms are somewhat decentralised, they generally
assume that up-to-date information is freely available. Thus, in order to
converge on an optimal solution, such schemes require each agent to possess
or have immediate access to a substantial amount of accurate and up-to-
date global system information, resulting in the need for a large number of
interactions in order to maintain awareness of peer goals, actions, etc. For
example, although in Kephart et al. (2007) all resource allocating agents
computed the optimal allocation (thus avoiding a single arbiter), they all
had access to shared state information and the same environment variables
indicating current system demand.

Although acting on shared global information allows autonomous system
elements to make well-informed decisions in principle, it has been shown that
in some cases it may lead to inefficiency and loss of stability. The El Farol
Bar problem (Arthur, 1994) demonstrates that instability can emerge when
independent, rational agents all have access to the same, global information.
Arthur introduced the El Farol Bar problem as a game-theoretic example
of the challenge facing rational agents that wish to organise themselves effi-
ciently on the basis of shared information. In this game, every player wants
to visit a specific bar only if less than 60% of the population also wish to
visit the same bar — and they must make their decision without collabora-
tion or negotiation. A rational agent that weighs up all of the evidence and
decides, on balance, to visit the bar would also reasonably conclude that
all other players will reach the same conclusion, since every other player is
also a rational agent with access to the same information. In this case, the
player should reverse its decision, as it does not want to attend a bar that is
crowded with every other player. However, it should also reason that every
other rational player would rationalise the same reversal, and so on.
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Note that this problem can be refined in many ways and many differ-
ent “solutions” to it can be sought (Challet and Zhang, 1997; Savit et al.,
1999). Here we are not interested in solving the El Farol Bar problem, but
rather using it as a reminder that shared information does not necessarily
improve the co-ordination of decentralised decision making. In fact, the El
Farol quandary rests on two symmetries: (i) every agent employs the same
decision-making mechanism; and (ii) every agent reasons on the basis of
the same information. Both these symmetries are typically true of the col-
laborative, decentralised agent systems used to explore coalition formation
(Shehory and Kraus, 1998), group problem solving (Stone and Veloso, 2000)
and teamwork (Pynadath and Tambe, 2002).

Collecting and processing the up-to-date information required by cen-
tralised or distributed control can also become a significant problem in
large-scale deployments due to the time-delays associated with obtaining
large amounts of distributed information. As a consequence, systems rely-
ing on either centralised or distributed control schemes (Figures 1a and 1b)
are often vulnerable to increasing system scale and/or dynamism (Durfee,
2001).

[Figure 1 about here.]

2.2 Biological Analogies

While it is commonplace within multi-agent systems research to take an
economic perspective on agent interactions, deriving “optimal” behavioural
policies from game-theoretic considerations of strategic interaction between
autonomous agents that suffer conflicts of interest, IBM’s autonomic com-
puting manifesto instead made reference to examples of natural homeostatic
control that have evolved to maintain system equilibrium in biological organ-
isations. Many impressive natural systems—for example, ecosystems (Kay,
1984), insect societies (Seeley, 2002) and biological organisms (Mesarovic
et al., 2004)—have developed internal control mechanisms that allow them
to organise and adapt to environmental change by relying on local interac-
tions between the decentralised elements, rather than a more familiar control
hierarchy culminating in some authoritative central executive.

For example, it is not the complex decision-making of individuals that
preserves robust organisation of ant, wasp or bee colonies (Robinson, 1992;
Gordon, 2002), but rather their ability to stimulate each individual’s be-
haviour appropriately through local interactions (Ladley and Bullock, 2004,
2005; Bullock et al., in press). These, if effectively organised, facilitate flexi-
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ble task allocation between colony members that is robust to environmental
perturbations (Théraulaz et al., 1998). An example of such a process can be
observed in an ant colony, where a potentially homogeneous population of
ants, each capable of handling the same range of tasks, is differentiated into
a number of distinct but organised collectives or castes (Bonabeau et al.,
1997). Each such collective specialises in carrying out a specific task, such as
food foraging, nest building, brood feeding, nest defence, etc. The survival
of the colony thus depends on both the efficient handling of each system
task and the adaptive division of resources (ants) into a number of such
collectives responsible for these different tasks. One of the most striking
aspects of such a regulatory response is its plasticity, a property achieved
through the workers’ behavioural flexibility: the ratios of workers perform-
ing the different tasks that maintain the colony’s viability and reproductive
success can vary (i.e., workers switch tasks) in response to internal pertur-
bations or external challenges (Bonabeau et al., 1997). Understanding how
this flexibility is implemented at the level of individual workers which cer-
tainly do not possess any global representation of the colony’s needs has
been addressed to some extent (Théraulaz et al., 1998; Bonabeau et al.,
1997; Merkle and Middendorf, 2004). Self-regulatory colony properties ap-
pear to stem from simple threshold-based behaviours where specialisation of
system elements to handle particular tasks arises as a result of reinforcement
processes (Théraulaz et al., 1998).

Taking inspiration from these biological studies is attractive for several
reasons. By contrast with the economic models that typically drive multi-
agent systems, they foreground the ecological rationality of the agents within
real-world systems (Bullock and Todd, 1999). Such agents are embedded in
an environment that demands decisions be made locally, under pressure of
limited time, limited computational resource, and on the basis of subjective
information. These constraints place significant emphasis on the system’s
ability to adapt and cope rather than to achieve and maintain optimal per-
formance, i.e., to “satisfice” (Simon, 1956) rather than to optimise.

Biologically inspired approaches also recognise the potential for system
components to experience coincident, as well as conflicting, interests. For
instance, like components of a data centre, cells in an organism, neurons
in a brain, and termites in a colony share a common interest in achieving
global system efficiency rather than conflicting interests in profit making at
each others’ expense. Moreover, they highlight the ability of a decentralised
system composed of agents with only local knowledge to organise itself into
useful structures, rather than idealising the same system in terms of a well-
mixed, population of rational, fully informed agents that adapt to their
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environment en masse.
Despite the advances made in understanding such biologically inspired

control mechanisms, one of the key issues involved in engineering models
that exploit them remains the difficulty of encouraging the ‘right’ local in-
teractions and discouraging those that may frustrate and destabilise the
system (Seeley, 2002).

2.3 Decentralised Control

A small number of studies has explored how this can be achieved in truly
decentralised control schemes, without assuming that agents have access to
global information (Sen et al., 1996; Hogg and Huberman, 1991; Brueckner
and Parunak, 2003a; Babaoglu et al., 2002; Saffre and Shackleton, 2008;
Saffre et al., 2009). In these systems, agents use decision algorithms that
operate on local information. The specific problem of resource allocation
(as opposed to service provision2) in decentralised multi-agent systems has
been discussed by Sen et al. (1996), who consider a system of self-interested
agents allocating resources on the basis of limited knowledge about the global
system state. In this context, they investigated the effects of limiting the
agents’ access to both knowledge about the state of system resources, and
the resulting outcome on system resource utilisation. Hogg and Huberman
(1991, 2002) examined the effects of local decision making on resource util-
isation within a computational ecosystem, represented by a population of
resource allocating agents. In their work, the authors demonstrated how
imperfect information about resource state can lead to chaotic system be-
haviour, and how this can be suppressed through the use of appropriate
local decision-making mechanisms.

Brueckner and Parunak (2003a) present a further strategy relying on lo-
cal learning mechanisms designed to establish and maintain energy-minimising
resource-allocation strategies within mobile ad-hoc networks. In achieving
localised strategies that reconfigure the allocation of resources in a manner
that minimises power consumption, Brueckner and Parunak drew their in-
spiration from the self-organising properties of natural systems. One of the
distinguishing features of this approach is an explicit appeal to emergent
system properties where simple and local decisions conducted by system el-
ements gave rise to system level behaviours that were not pre-programmed.

2By service provision, we refer to the problem faced by consumer agents in selecting
amongst provider agents that offer services (Stein et al., 2008). By contrast, resource

allocation also includes the complementary problem faced by provider agents in deciding
which service(s) to offer.
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Moreover, rather than consider these emergent properties to be problem-
atic, here they are often expected to play key roles in achieving system-level
objectives.

An analogous bottom-up approach underlies work presented by Babaoglu
et al. (2002) where a self-organising approach is proposed to P2P system con-
sisting of multiple and locally interacting nodes that are tasked to effectively
provision requested resources (e.g., searched content in P2P system). A sim-
ilar architecture is proposed by Saffre and colleagues (Saffre and Shackleton,
2008; Saffre et al., 2009). Here, an overlay network with self-* properties
is introduced within which the nodes organise themselves to establish sym-
biotic relations that minimise the time and costs associated with service
provisioning.

2.4 Contribution

The current paper focuses on achieving fully decentralised regulation of re-
source allocation in a model autonomic system by relying only on local inter-
actions between components. More specifically, we present a decentralised
multi-agent system in which provider agents are tasked with adaptively con-
figuring the services that they offer, and consumer agents must choose from
amongst these provider agents in order to efficiently secure computational
resources necessary to carry out jobs.

Two aspects of this work are particularly novel. First, the problem to be
solved is two-sided in that both provider and consumer agents must adap-
tively reconfigure their behaviour in ways that are complementary. Second,
this adaptation takes place in a dynamic environment where changes in the
demand for different system services may require continuous reconfiguration
at the level of individual system components.

A further distinguishing feature of our work is the attempt to identify and
explain the mechanism of self-organisation that underpins the relationship
between the behaviour of individual agents and the effect they have in terms
of system performance. We achieve this by relating the information capacity
of the agents to the emergent topology of information flows between them,
which self-organises in the form of functional communities.

This approach is exemplified by the work of Guerin and Kunkle (2004)
in a different context: investigating the self-organising properties of an ar-
tificial swarming system represented by a simulated colony of food foraging
ants. Here, the propagation of information (in this case, pathways between
the ants’ nest and various food sources) is achieved through the deposition
of simulated pheromones within a simulated world. The studies found that
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agents (representing individual ants) were locked into pathologically tight
loops of behaviour when pheromone traces were too strong. As a conse-
quence, organised but circular foraging routes emerged that were inefficient
in transporting food back to the nest. In contrast, when pheromones were
too weak, the system was incapable of forming any foraging structures, since
information evaporated before it could be reinforced, leaving individual for-
agers to randomly explore the area. Between these extremes lies a regime of
effective self-organised behaviour; in this case, the establishment and main-
tenance of efficient foraging trails. Understanding how to regulate this type
of information exchange so that an autonomic computing system is main-
tained between both extremes, and achieving this regulation through local
decision-making strategies is the main motivation for our work.

3 A Decentralised Resource Allocation Model

In this section, we propose a framework for a bottom-up resource allocation
mechanism, whereby the adaptation of agents (in response to changes in the
environment) is based on stimulus-response reinforcement mechanisms in-
spired by behaviours that encourage self-organisation within insect societies
(Bonabeau et al., 1997; Théraulaz et al., 1998). In the absence of centralised
controllers, the system elements need to preserve a certain degree of auton-
omy, allowing for local adaptation to occur given perceived changes in the
environment. This architectural flexibility is provided through the use of a
decentralised multi-agent system architecture. The challenge of resource al-
location can be viewed as a market-based, service allocation problem, where
there is a (continually changing) demand for services of a given type, and
thus the market responds3 by changing its supply of such services to sat-
isfy the demand. As stated earlier, a multi-agent system is analogous to
an autonomic system, which can be thought of as a collection of computing
resources tied together to perform a specific set of functions (Kephart and
Chess, 2003). These resources may be hosted in a distributed fashion by a
number of servers deployed over networked machines, which provide services
to each other. The framework is therefore modelled as a multi-agent system
comprising a number of provider agents (providers) who offer services of
a specific type, and consumer agents (consumers) who request and utilise
the available services to achieve some task. We assume that both service

3In this context, we refer to the market as a decentralised collection of service providers,
that each respond individually, based on their perception of changing service demand,
rather than a single, atomic, coordinating entity.

11



providers and service consumers are agents running on constrained hardware
components. Depending on the characteristics of the system, interaction be-
tween these agents may be limited by power consumption, bandwidth con-
sumption, or time-delayed response, all of which may have associated costs if
service execution is to take place “on-demand”, quickly or by some deadline.
In the system presented below, one aspect of such hardware limitations is
represented in the form of service capacity, such that each agent may only
satisfy service requests for a restricted set of service types, provided to a
limited number of consumers simultaneously.

We assume an agent is capable of reconfiguring the service type it pro-
vides at run-time. This involves a significant cost in the form of down time
during which various administrative tasks may be performed, such as: com-
pleting existing service commitments; removing security-compromising data
from the machine state; resetting the execution stack; or loading new soft-
ware modules representing the new service types. We also consider that
providers increase their utility by successfully allocating service requests,
and that consumers increase their utility by successfully executing services.
Thus, to maximise utility, provider agents try to avoid offering services for
which there is little demand (thus minimising idle time), and consumer
agents try to allocate service requests efficiently by locating providers that
are available and configured to offer the appropriate service. A decentralised
service discovery model is assumed, whereby each agent maintains a limited
registry of details regarding service providers in its environment. Consumers
can discover new providers through regular dialogue with known providers
that continually update and share their awareness of local service availability
(see Figure 2).

[Figure 2 about here.]

The evolution of the system is therefore driven by a continually recon-
figuring network of peers, as illustrated in Figure 3. Both consumer and
provider agents co-adapt to each other by exchanging information, and re-
configuring their interactions; i.e., by changing what services are offered
(in response to observed changes in service demand), or by changing what
providers should be contacted (based on observations of the availability of
different services). These local responses are driven by the decision-making
mechanisms (detailed in Sections 3.1, 3.2 and 3.3, and summarised below)
and the information that is propagated throughout the topology of agents
as a result of their activities.

[Figure 3 about here.]
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As providers have no global information regarding service demand, they
utilise their own experience (based on the frequency and type of queries
they receive from consumers), as well as information on service availability
garnered from those consumers they interact with, to determine whether
to continue offering a given service type or to switch to providing another
service type. Consumers discover new providers through a process of social
learning, where new information is acquired through “gossiping”. When a
consumer and provider interact, the consumer may provide details of other
providers that it has interacted with. In return, the provider agent informs
the consumer of other providers it is aware of (obtained through interactions
with other consumers).

Thus, service management and provisioning strategies should emerge
from local co-adaptations of individual agents based on observations of pre-
vious transactions. Whilst this naturally involves sharing some knowledge,
the agents independently modify their individual models of the local en-
vironment. Since service availability can fluctuate as a result of several
factors—including current demand, contention for services, and demand for
other service types (resulting in a reconfiguration of service offerings)—it
is necessary that agents maintain an accurate model of the environment by
maintaining a continuous flow of pertinent information with their peers.

This notion of sharing information may initially appear counter intu-
itive, raising the question “why would a provider supply information on
potential rival providers to its users, thus possibly reducing demand on its
own services?”. One answer is that all provider and consumer agents within
the system might be operated by a single firm, F , that owns the compu-
tational infrastructure upon which they run. Each provider agent might
represent a computational resource owned by F , or owned by clients of F
that employ F ’s infrastructure to deliver their services to their customers.
In either case F ’s provider agents have an interest in collaborating with
each other to achieve global efficiency and fairness rather than competing
with each other to maximise ‘market share’ for any one client. Similarly,
F ’s consumer agents might act as brokers securing computational resource
for real-world customers. Again, such consumer agents might be happy to
share (suitably anonymised) information with each other in order to max-
imise system throughput or mean quality of service for F ’s customers, even
if these real-world customers are competitors. Such a scenario is analogous
to that faced by a colony of social insects where the reproductive success
of each insect is channelled through a single queen, guaranteeing that they
have a shared interest in colony success and are motivated to honestly and
freely share information.

13



However, it may also be possible to demonstrate that honest exchange
of information makes sense even in competitive scenarios where different
provider agents directly represent self-interested firms that are in compe-
tition with one another. We will not explore such scenarios here, but the
literature on natural communication offers many illustrative suggestions as
to the conditions that promote and support honest communication amongst
agents with conflicting interests (Noble et al., 2001).

In general, honest information exchange provides a mutually beneficial
mechanism whereby consumers can acquire a timely and accurate model of
services in the local community, and providers can determine a realistic esti-
mate of the service demand in the same community, and thus (if necessary)
switch to improve their own utility. The neighbourhood that emerges is
dependent on the size of the model that consumers retain of their peers.
In addition, the stability of the neighbourhood is also dependent on this
model size; the larger the model, the greater the chance of instability, as
more providers may switch the type of services they offer in response to
the perceived change in demand (as illustrated by the El Farol Bar problem
described earlier).

The framework presented here makes the assumption that the tendency
for information to be passed between agents will be influenced by the degree
of stress that the consumers experience. This consumer stress (described
more formally in Section 3.1) reflects the difficulty in locating available
providers for a given service, and hence provides an indication as to whether
the service supply can sufficiently meet current service demand. Whilst there
is, perhaps, the opportunity for deceit in such a system, since the supply
of (and demand for) services can fluctuate, maintaining an accurate model
of the environment in each agent involves maintaining a continuous flow of
information between agents. This issue is discussed further in Section 4.4.

By relaxing the constraints limiting the amount of knowledge held by
each agent, the same model can explore scenarios in which agents have com-
plete awareness of the current service demand. This is also equivalent to
assuming the presence of a single Matchmaker (Sycara et al., 1997) which
maintains a registry of all available service providers within a multi-agent
system, and could in theory support the task of load-balancing. By pro-
viding global knowledge to both providers and consumers, the behaviour
arising from using a centralised service registry would be simulated, as ev-
ery consumer would rapidly acquire complete and identical models of the
service landscape. Likewise, every provider would be aware of all requests
from all consumers, and thus would have the same information as every
other (rational) provider. Thus, the framework can be used to explore lo-
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calised community behaviour by varying the size of retained knowledge, and
compared to complete, global knowledge.

In summary, then, the design goals of our autonomic resource manage-
ment system are threefold:

1. dynamically reconfigure service providers in order to meet the current
demand for different service types;

2. dynamically maintain the awareness of each consumer such that the
system maximises throughput by minimising the amount of time wasted
by consumers during job allocation; and

3. dynamically reconfigure such that the system is robust to changes in
supply and demand for each service type.

The remainder of this section describes service consumers (Section 3.1),
service providers (Section 3.2), and knowledge exchange, i.e., “gossiping”
(Section 3.3).

3.1 Service Consumers

In general, a single agent may be capable of both offering and consuming
services. However, for the purposes of this paper, we consider the model for
each behaviour as separate. Consumers are agents that request and consume
services provided by provider agents. A consumer monitors the behaviour
of known service providers locally, and uses this knowledge both to direct its
own service requests, and to share with other agents, thereby establishing
community knowledge. A consumer, c, maintains a local registry, Rc con-
taining tuples corresponding to providers/services that the agent is aware
of. Each tuple is defined as follows:

rp = 〈αp, type, bias〉,

where αp corresponds to the identity of a provider agent that has provided
the service type at some point in the past, and bias ∈ [0, 1] corresponds to a
score or preference for using provider αp to provide the same service in the
future. As consumers will not possess complete knowledge about whether a
provider is currently available, or even if it is still configured to provide the
same service type, it employs a local learning mechanism to update its bias
estimate. This estimate is updated based on information obtained from the
different providers that it interacts with (Section 3.3).
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This registry is also consulted by the consumer when it attempts to
allocate a service request to a provider; the consumer ranks all the tuples in
its registry that are related to the desired service type in decreasing order
of bias, and then submits requests to providers in turn (starting with the
tuple associated with the highest bias value), until a provider is found which
can satisfy the request. Each request takes some finite time (Tq), and the
provider will respond either to confirm that it will satisfy the request (i.e.,
that it is available to provide the desired service type), or to reject the query;
either because it currently does not provide that service type, or because it
is currently too busy (i.e., it does not have sufficient resource to honour the
new request without compromising current commitments).

[Figure 4 about here.]

Each provider can simultaneously satisfy up to capacity Ctype service re-
quests; therefore provided that fewer than Ctype services are being provided,
a new request (of the right type) can be honoured. If a provider is capable
of honouring the request, the service is executed, taking some finite time
Te, consuming a single service allocation resource. This resource is released
once the service execution ceases. Figure 4 illustrates many of the different
states that both consumer and provider agents may occupy.

Typically, once a service request has been satisfied (or if no requester
could be found), the agent exchanges local knowledge with known providers
(described in Section 3.3) before becoming inactive for some randomly de-
termined period. The knowledge exchange is assumed to take some finite
time, Ti (irrespective of the number of providers involved), and corresponds
to the process of sharing information about local service demand (and avail-
ability), and thus evolving a localised community structure. The inactive
period corresponds to those periods in other scenarios (or frameworks) where
agents may be performing other tasks, or interacting with a user; however,
for the purposes of our framework, the agent simply becomes inactive. This
period is drawn from a uniform distribution [0, ω] after which the allocation
process begins again.

Consumer stress (cs) is a measure of local consumer dissatisfaction, and
reflects the difficulty an agent may experience when trying to provision a
given service type. The agent maintains an upper limit, fmax of request
attempts for each task. The motivation is that by the time the agent has
queried all relevant entries within its registry, previously unavailable pro-
viders may have become available. As the consumer may therefore traverse
a registry several times whilst attempting to provision a service, an upper
request limit is used to terminate the provision after fmax failed requests.
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Algorithm 1 Consumer task allocation algorithm

Require: a consumer αc with a need for service type of capacity capacity,
and the set P, which contains all the known providers that appear in its
registry, Rc

Ensure: αc identifies what it judges to be the best provider of service type
type, and Rc is updated through the exchange of information

1: sort (Rc) ordered by bias descending
2: for (q := 0 to fmax) do

3: fq := 0
4: rp := Rc[q modulo |Rc|]
5: if typeOfTuple (rp) = type then

6: αp := providerOfTuple (rp)
7: response := sendRequest (αp, 〈αc, type, capacity, cs〉)
8: if response = accept then

9: Rc := (Rc/rp) ∪ 〈αp, type, bias + δbias〉 {Update bias of rp}
10: break

11: else if response = reject then

12: Rc := (Rc/rp) ∪ 〈αp, type, bias − δbias〉 {Update bias of rp}
13: increment (fq)
14: end if

15: end if

16: end for

17:

18: ft−1 := ft ; ft := min
(

1,
2fq

fmax

)

19: cs :=
(

ft−1+ft

2

)2

{Update consumer stress}
20:

21: for all rp ∈ Rc do

22: Rc := (Rc/rp) ∪ 〈αp, type, bias × δdecay〉 {Update bias of rp}
23: end for

24:

25: for all αp ∈ Pc do

26: R′
c := exchangeRegistryWithProvider (Rc, αp)

27: Rc := mergeRegistry (Rc,R
′
c)

28: end for

29: sleep ()
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[Figure 5 about here.]

During each attempt, t, to provision a service, the agent maintains a
failure quotient, ft, based on the number of requests to provider agents that
have failed so far, fq, where 0 ≤ fq ≤ fmax and

ft = min

(

1,
2fq

fmax

)

.

The intuition here is that the failure quotient should approach unity as
the number of failed queries reaches fmax

2
, despite the fact that it can still

continue to issue requests before reaching fmax. The stress parameter, cs ∈
[0, 1], is generated by calculating the square of the average failure quotient
for the current and previous provision (illustrated in Figure 5), as follows:

cs =

(

ft−1 + ft

2

)2

.

The consumer periodically updates the ordered set Rc to reflect its ex-
perience in provisioning services, and to minimise the number of future
rejected queries. If the request was successfully satisfied, then the tuple rp

corresponding to the provider αp which provided the service type is modi-
fied, such that bias is incremented by δbias; otherwise it is decremented by
this amount4. To ensure that this model of provider availability does not
become stale, a decay function is used to adjust the bias parameter for all
tuples in Rc, by applying a decay coefficient5. After each update, the set
Rc is then ordered with respect to bias, such that tuples with greater bias
are placed nearer the top of the list.

The algorithm used by a consumer agent is represented in Algorithm 1.
In line 1, the registry is ordered such that the highest ranked providers
(according to their bias value) are at the top. The consumer then traverses
this list, searching for providers that can satisfy its service request, until one
is found (lines 2-16). If a provider is found that can offer the service, that
provider’s rating is incremented (line 9), otherwise it is penalised (line 12),
and the failure count is incremented. Once the service has been satisfied
(or the service request failed after fmax attempts), the consumer stress is
updated (lines 18-19). The ratings of all the providers are decremented

4The value δbias = 0.1 was found empirically. The modified bias parameter is limited
such that it does not extend beyond its defined range: bias ∈ [0, 1]

5The decay coefficient used in this model has the value δdecay = 0.9; this value was
determined empirically.
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using the decay coefficient (lines 21-23), before information is exchanged
with them (lines 25-28). Finally, the agent sleeps until the next service
invocation (line 29). Figure 6 (left) illustrates a schematic representation
of the internal state of a consumer, indicating the current level of stress
(given by the thermometer icon) whilst attempting to provision service of
type circle from an internal registry of service providers.

[Figure 6 about here.]

3.2 Service Providers

Providers “model” the local demand for services to determine what services
they should offer. Providers may only offer a single type of service at any
time, despite possessing the capability to offer several types of services; due
to limitations in physical resources (e.g., memory size, processor capacity,
etc.), or based on security issues. Business sectors (such as the e-business
sector) also limit the number of software modules that servers can provide
at any time to avoid information leak. The suspension of availability of one
service type and introduction of another can have an implicit cost, as this
reconfiguration typically takes some time during which the agent cannot
perform any further service execution, and thus will not obtain any utility
increase. We therefore assume that each provider agent αp can only offer
one service type at any time, but has the capability of offering several other
service types (subject to reconfiguration). The set:

Capability =
⋃

∀αp∈MAS

Capabilityαp

contains the union of all service types available from all service providers
in the multi-agent system (MAS), whereas Capabilityαp corresponds to the
set of services that αp is capable of offering.6 Thus, to determine which
service type αp should offer, it maintains a model S of current, local service
demand, and determines which services to offer from that model. To achieve
this, the provider maintains a number of registries corresponding to provider
ratings for different service types, i.e., Stype for each registry of type type,
as provided by consumers during information exchange.

Providers receive requests from consumers in the following form:

reqi = 〈αc, type, capacity, cs〉

6In the results reported here ∀αp, Capabilityαp
= Capability.

19



where αc corresponds to the consumer which submitted the request, type ∈
Capability corresponds to the type of service the consumer requested, the
size (in terms of capacity) of the task required, and the consumer’s current
stress, cs (defined in Section 3.1). When a new request is received that
can be satisfied, the provider’s registry is also updated. Each request is
augmented with a bias rating, and stored as the tuple rc, which is in a form
that can also be used when exchanging information with consumers; i.e.,

rc = 〈αc, type, capacity, cs, bias〉

If the registry already contains a tuple for the consumer and service type,
then the tuple in Stype is updated with the new capacity, and the bias is
modified, based on the product of the consumer’s stress, cs and the update
coefficient7, as follows:

bias = min(1, bias + δupdatecs)

This adjustment reflects an increase in perceived demand for the service
type. If no previous request exists from the requesting consumer for this
service, then a new tuple is added to Stype, with an initial bias = δupdatecs.
The union of all the sets, S, is then ordered8 with respect to bias.

The provider periodically consults the ordered set S to determine whether
or not to reconfigure its offered service. As there is no global view of cur-
rent service demand, the providers have to infer this based on local demand
observed from previously received requests, which can then be used as ev-
idence for the decision to reconfigure its service offerings. If the type of
service in the first tuple corresponds to the service that is currently being
offered, then no action is taken. Otherwise, the provider performs a switch
operation, whereby the provider changes the type of service it can provide.
Whilst this switching process has no explicit economic cost, it has an im-
plicit cost as the process takes a finite time (Ts = 2s), during which no other
service can be provided. To ensure that the model maintained for current
service demand does not become stale, a decay function is used to adjust
the bias parameter for all tuples in the sets Stype for each type, using the
decay coefficient δdecay.

The algorithm used by a provider agent is represented in Algorithm 2.
On receiving a service request (line 1), the provider verifies that it is cur-
rently able to provide the service (in terms of both service type and capacity)

7The update coefficient used in this model has the value δupdate = 0.1; this value was
determined empirically.

8The order of equally biased tuples is arbitrary, and thus may vary whenever the set
is inspected.
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Algorithm 2 Provider service provisioning algorithm

Require: a provider αp currently offering service type typep with available
capacity capacityp, and a set of service types that it may offer, S.

Ensure: αp offers what it perceives to be the most demanded service type
and S is updated through the exchange of information.

1: reqi := receiveRequest() {where reqi = 〈αc, type, capacity, cs〉}
2: if (typep 6= type ∧ (capacityp < capacity) then

3: sendResponse(αc, reqi,REJECT )
4: else

5: sendResponse(αc, reqi,ACCEPT )
6: executeService(reqi)
7:

8: rc := 〈αc, type, capacity, cs, 〉 {based on reqi; no bias value asserted}
9: if Stype ⊆ S then

10: S ′
type := Stype

11: if req′i ∈ S ′
type then

12: r′c := 〈αc, type, capacity, cs, min(1, bias + δupdatecs)〉
13: S ′

type := (S ′
type/rc) ∪ r′c {Update bias of rc}

14: else

15: S ′
type := S ′

type ∪ 〈αc, type, capacity, cs, δupdatecs〉
16: end if

17: else

18: S ′
type := {〈αc, type, capacity, cs, δupdatecs〉}

19: end if

20: S := (S/Stype) ∪ S ′
type {Update the Registry S}

21:

22: sort (S) ordered by bias descending
23: if head(S) 6= typep then

24: PerformSwitch(head(S))
25: end if

26: end if
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before going on to execute the service9. Once the service has been success-
fully completed, the provider updates its internal registry, by creating a
tuple, rc, based on the request (line 8). If a set of records for the requested
type exists (i.e., Stype ⊆ S in line 9), then either the new tuple is added to
the set (line 15), or if an appropriate tuple exists, it is updated (line 13).
Otherwise, a new set Stype is created with the new tuple as its only element
(line 18). The provider then sorts all its sets of tuples S into descending
order, to determine if it should change the type of service it currently offers
(lines 22-25). In the example depicted in Figure 6 (right), provider E is
most likely to continue to offer services of type square, but might conceiv-
ably switch to offering services of type hexagon in the near future, since this
is also associated with moderately high demand.

3.3 Information Exchange

To facilitate the migration of knowledge regarding the availability of services
and current service demand, both providers and consumers share knowledge
before revising their respective models. This process is initiated by con-
sumers, and occurs each time a consumer completes a transaction with a
provider.

3.3.1 Sharing knowledge with Providers

Each consumer shares all of the tuples contained in its local registry, Rc and
its current stress level, cs, with each of the providers that are listed in the
registry. Each provider then uses an integration policy to incorporate this
knowledge into its own local registries (i.e., Stype for each of the service types
the provider knows about). This integration policy limits the number of
tuples merged from the consumer’s knowledge for each given type (i.e., tuples
from Stype) with its own knowledge, based on cs. This stress level indirectly
represents the quality of knowledge the consumer possesses; low cs values
suggest that the tuples provide an accurate representation of the current
availability of services, whereas high cs values suggest that the knowledge is
poor or that the supply of that particular service type is low, thus leading to
difficulties in provisioning services. The maximum number of information
tuples the provider is willing to substitute (tn ∈ Z) for each service type

9If the provider is in the process of reconfiguring or switching, all requests are re-
jected until any currently executed services have been completed, and the provider has
successfully changed its current service offering.
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type is defined as follows:

tn = (1 − cs) ∗ mc

where mc is the size of the set of tuples provided by the consumer for a given
service type. The provider selects the highest ranking tn tuples (ordered by
each tuple’s bias parameter) for integration into its registry. Each provider
maintains a limit (mp) on the number of tuples it stores, which determines
which of the consumer’s tuples are retained.

3.3.2 Tuple Integration

There are three possible ways that each new tuple may be integrated into the
provider’s registries, based on whether the provider has existing information
on αp (specified by the tuple), namely: add, substitute or update. If none
of the tuples in Stype refer to this provider, then the tuple is added or
substituted, using the following policy: if |Stype| < mp then the new tuple
is simply added to Stype. Otherwise, a tuple for some other provider is
potentially removed to allow the new tuple to be stored. The way this
is done is based on the bias value; the provider inspects those tuples for
which the bias is less than that in the new tuple, and randomly selects one
of these to be substituted. If none are found, then the new tuple is not
introduced. This mechanism guarantees that only knowledge that has an
equal (or higher) bias than that existing within a provider’s memory will be
introduced.

The third integration mechanism, update, modifies an existing tuple
maintained by the provider. As this new tuple represents an additional,
subjective evaluation of provider αp, the new bias is calculated by averaging
the new and previous tuple.

3.3.3 Sharing knowledge with Consumers

Providers maintain bias rankings for other provider agents that they may
be aware of (through exchanging information with consumers), and organise
these with respect to service type (as illustrated in the schematic represen-
tation in Figure 6 (right)). Thus, a provider may appear within more than
one set of tuples Stype, depending on the knowledge that was acquired from
different consumers during the last information sharing phase (e.g., in Fig-
ure 6, provider E believes that provider B offers services of type hexagon and
circle). Providers can therefore deal with incoming information in a manner
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that is sensitive to the type of service required by the consumer they are in-
teracting with. If provider E interacts with a consumer attempting to secure
service type pentagon and, during this interaction, learns that the consumer
associates provider G with a high bias estimate, this new information will
be used to update E ’s bias estimate for provider G as a provider of service
type pentagon.

Hence, each provider shares all the knowledge it possesses about other
providers (i.e., S), based on its aggregated knowledge shared by different
consumers. As consumers will have existing (if somewhat limited) knowl-
edge of different service types, each consumer organises its knowledge, S,
into two distinct subsets: Sact and Sinact, prior to sharing with different
providers. The set Sact contains all the tuples rp ∈ S where the type of rp

corresponds to that known by the consumer (i.e., type appears in Rc, and
thus is considered active information). The remaining tuples are consid-
ered inactive information, shared (indirectly) between different consumers
through common providers.

The proportion of data retained from each of these new sets is determined
by the current stress of the consumer, such that the higher the value of cs,
the greater proportion of tuples from Sinact will be retained. The consumer
orders each set (based on bias), and then selects max(0, |Sact| − 2cs) tuples
from Sact, and min(2cs, |S

inact|) tuples from Sinact for retention. The top
ranking tn tuples are then integrated into the consumer’s local registry,
Rc using the same mechanism as that described in Section 3.3.2. The only
difference is that the bias value is not aggregated, but rather is calculated by
averaging the new and previous tuple. In addition, the bias of all rc ∈ Sinact

are simply replaced by bias = 1.
This process facilitates the discovery of new services from a group of

providers that may not offer a desired service type, but through consecutive
interactions, may reconfigure to satisfy new consumers. Thus, consumers
are willing to retain a small number of tuples pertaining to these providers
(i.e., those that appear in the set Sinact) within their local memory only
when their allocative stress is high. As this, from a global system point
of view, may indicate change in the demand occurring within the system,
this mechanism allows providers to ‘migrate’ to a community with increased
service demand. However, introduction of information into the consumer’s
registry does not guarantee that the provider will change its current service
offering.
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4 Experimental Evaluation

In this paper we explore two hypotheses that underlie the design of the
model presented in Section 3; namely:

Hypothesis 1 A stimulus-response mechanism that facilitates the propa-
gation of limited knowledge regarding resource availability results in
the formation of stable communities, whereby roles are well established
and correspond to the needs of the community.

Hypothesis 2 When information flow between peers is limited, this mech-
anism can deal with significant fluctuation in the demand for different
resources by smoothly reorganising agent communities.

[Table 1 about here.]

In Section 4.2, the performance of the decentralised resource allocation
model is compared to that of a system employing centralised control and
analysis of the system’s capacity to form local communities for a variety of
service scenarios is conducted. The registries managed by each agent are
examined to visualise the network of connectivity between different agents
and to verify the formation and structure of communities corresponding to
homogeneous service usage (thus supporting Hypothesis 1). This is followed,
in Section 4.3, by an investigation of the stability of the emergent communi-
ties when service demand is dynamic. The results demonstrate that in the
cases where the size of the service registries is limited, providers provide a
stable supply of relevant services to the fluctuating market, whereas when
the service registry size is large or unlimited (thus simulating the case where
services can be discovered through a centralised registry, such as a match-
maker middle-agent (Sycara et al., 1997)), the supply of services degenerates
and becomes chaotic (thus supporting Hypothesis 2).

The following experiments were carried out using a variety of model
configurations. Table 1 lists the default parameter values (introduced in
Section 3) used for each of the evaluations; in the case where a parameter
may be different, the new parameter values are explicitly defined. For exam-
ple, the empirical evaluation in Section 4.2 (Hypothesis 1) uses Ctype = 5,
whereas in Section 4.3 (Hypothesis 2), Ctype = 2. Note that all time mea-
surements are quoted as simulation time seconds, and do not relate to real
time. Each evaluation was performed 10 times, and the results were tested
for statistical significance.
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Before either of these studies is presented, in Section 4.1 we first intro-
duce an assortativity metric that will be used to evaluate the community
structure exhibited by a population of software agents.

4.1 Assortativity Metric

An assortativity metric has been defined to evaluate the structure of the
information flow between individual agents. This measure represents the
strength of the community structure in a population of consumers interested
in securing the same service type.

In order to calculate assortativity for a particular service type, we first
identify the set of consumers interested in securing that service, C. We then
determine the complete set of providers known to this set of consumers, P,
and populate a square matrix M of size |P| × |P|, where |P| corresponds to
the number of unique providers in P. Each element of M , Mi,j , corresponds
to the number of consumers in C that simultaneously know both provider i
and provider j. Note that some but perhaps not all of the members of P
will be configured to offer the service type sought by members of C.

We can interpret M as specifying a network of undirected connections
between members of P. In the simplest case, we might determine that
an edge (i, j) exists only where Mi,j > e. If most network edges connect
providers that offer the same type of service then consumer agents are aware
of appropriate providers and share a consistent collective memory.

The assortativity metric, H, can be defined as follows:

H =
1

n

n
∑

i

di

where i is one of the n ≤ |P| providers in P that have at least one network
neighbour, and di is the proportion of these neighbours that offer the same
service type as i.

In a random system, the proportion of network edges connecting pro-
viders offering the same service will converge to 1

T
, where T is the number

of service types. The baseline assortativity, H, of communities in such a
disorganised system will therefore also tend to be 1

T
.

4.2 Demand variety

In this analysis, the system’s ability to form local communities was exam-
ined over a range of scenarios with differing numbers of service types. The

26



community structure was investigated, to explore the types of links that
emerge through sharing limited information between peers.

4.2.1 Scenario Configuration

To explore the effect that different combinations of service types may have
on demand, and hence on community organisation, the number of unique
service types demanded by consumer agents was varied, such that the de-
mand variety is defined as V = |Capability| ∈ [1, 6] (see Section 3.2). Each
consumer was configured to require exactly one type of service from the
pool of available service types, such that the demand for each service type
was equal. Thus, when V = 1, all consumers shared the same type of ser-
vice requirements, whereas for V = 2, the consumer population comprised
two equally-sized sub-populations that differed in the service they required.
Based on the perceived service demand, providers can choose to offer a single
service selected from the set Capability, as defined in Table 2.

[Table 2 about here.]

In each case, a provider is configured to offer no more than Ctype “units”
of the same service at any one time (i.e., Ctype is its service capacity). The
maximum number of tuples in each consumer’s memory is defined as mc =
10; i.e., each consumer will remember details of up to 10 providers after
each information exchange phase (Section 3.3). On initialisation, consumers
are given a random selection of information about the existence of different
providers. As the providers have no preference for providing any service,
the selection of services they provide is initially randomised. To facilitate
faster convergence on the creation of communities, only information residing
in the Sact set (Section 3.3.3) was used during the first 200s of simulation
time10.

4.2.2 Evaluation and Analysis

Before analysing the way in which the decentralised resource allocation
model operates, we first contrast its performance with that of an idealised
system reliant on centralised control, described below. This comparison is
performed over a range of scenarios that vary in terms of the demand variety,
V , exhibited by consumers.

10The value of 200s was found empirically for a range of experiments and values of mc.
Tests on unlimited memory or local registry size (i.e., mc = ∞) failed to converge, despite
a range of bootstrapping values tested.
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By contrast with the decentralised model, the centralised model utilises
a single centrally maintained ideal registry that is divided into sub-registries,
each of which corresponds to one of the service types demanded by consumer
agents. Upon initialisation, the tuple associated with each provider is allo-
cated to the sub-registry associated with the service that it is configured to
provide.

Every simulated second, each sub-registry is updated instantaneously
with truthful information about the state of all providers currently config-
ured to offer the associated service. Should a provider switch which service
it provides, its associated tuple will switch to the appropriate sub-registry.
Each of these sub-registries is sorted in order of the currently available spare
capacity offered by each provider such that providers with most spare ca-
pacity are at the head of the list. Consumers no longer make use of any local
memory, but instead rely on the central registry, consulting the contents of
the sub-registry associated with the service that they require and querying
providers in order of their spare capacity.

Under realistic conditions, centrally maintaining information on pro-
viders would require interactions between the centralised registry and every
provider agent, each of which would consume time and computational re-
source. Here, we do not explicitly model these costs, but simply impose a
one second latency between consecutive instantaneous updates.

For the centralised model, Figure 7 shows that system performance (or
throughput, calculated as the ratio of successful service allocations to overall
service requests) is low across all scenarios and lowest for scenarios where
consumers exhibit low demand variety. This is a consequence of the con-
gestion created by herding which is maximised where all consumers demand
the same service and have access to the same information on providers, and
minimised to the extent that consumers are divided into many groups with
different service requirements. In the limit where each consumer requires a
unique type of service provided by a unique provider, near optimal through-
put could be achieved by the centralised model.

By contrast, the system performance of the decentralised model is not
unduly affected by varying demand variety, remaining close to the optimum.
For the case where V = 1, all consumers issue requests for the same service
type (i.e., type A), encouraging all providers to switch to offer this type of
service. Once this has been achieved, there is no pressure for any provider
to switch, and the only service allocation failures that may occur are due
to requests being sent to providers that are busy. Those consumers stressed
by such failures are more likely to update their registries. Thus, the only
type of organisation occurring within the environment is due to consumers
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replacing knowledge of over-committed providers. Since there is sufficient
aggregate supply to meet consumer demand and consumers have different
assessments of provider utility, eventually a stable assignment of consumers
to providers is able to form.

[Figure 7 about here.]

The task of achieving a stable supply of services becomes more chal-
lenging for cases where V > 1, since providers may choose to switch the
service that they offer on the basis of the (local) consumer demand that
they experience. However, the performance of the decentralised model was
near-optimal for all scenarios where V ∈ [2, 3, 4, 5, 6], reflecting the fact that
the organisation of information across the agent communities was effective,
allowing consumers to establish and interact with an appropriate set of pro-
viders (with respect to the desired service type), and thus allowing providers
to stabilise their selection of offered services, without the need to continually
switch. Since each agent is capable of utilising only a subset of the locally
available information due to the limited size of their local service registries,
this stability emerges from the efficient organisation of shared information
that evolves across the different agent communities.

[Figure 8 about here.]

[Figure 9 about here.]

This efficient organisation is captured by the assortativity metric de-
scribed in Section 4.1 which summarises the way in which the contents of
agent registries correlated with their service demands. This metric distills
information on which providers are known (and utilised) by which consumers
into a measure of the coherence of a system’s communities. Low values sug-
gest a lack of any community structure, whereas high values reflect distinct
communities with very few links between each community.

Strongly assortative community structure was achieved by the decen-
tralised model independent of the number of different service types required
by the consumer community. Figure 8 illustrates that this level of assor-
tativity is achieved rapidly in the decentralised model and at a rate that
is independent of demand variety, V . Hence, unlike the centralised model,
decentralised system performance scales well with demand variety.

The resulting network topologies are illustrated in Figure 9(a) for the
scenario V = 3. In this topology, nodes represent providers, and edges
represent the case where both providers are known by at least one consumer,
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and the weight of this edge represents the cardinality of the set of consumers
that know the two providers. At t = 20s there is little evidence of any
community structure, and the links between providers offering different types
of services suggests that there is little organisation in the information being
shared by the consumer population. This is supported by the fact that the
edges between providers are generally weak, suggesting that provider pairs
are known by comparatively few consumers.

However, the rapid increase in community strength over time in Figure 8
demonstrates that this initial system instability recedes due to the forma-
tion of strong local communities which are homogeneous with respect to
service type. By t = 80s, the scenarios generally converge to stable configu-
rations, where providers rarely switch to other service types, and consumers
resolve any request conflicts by identifying those providers that are in less
demand within the community. The corresponding network topology at time
t = 250s is also illustrated in Figure 9(b), where three distinct and highly
connected communities have formed. The strongest edges (corresponding
to cardinalities approaching 40 pairs of providers) within the network are
those between providers that offer the same service type (typically found
within a local community), whereas the weakest connections mainly exist
between communities. In the absence of external perturbation (e.g., changes
in consumer demand, or removal of providers) community structure remains
stable, i.e., communities do not change in size, providers do not reconfigure,
and consumers interact with the appropriate community.

[Figure 10 about here.]

The rapid community convergence observed for those scenarios where V
was high (Figure 8) suggest that there may be processes that catalyse the
efficient organisation of interactions between consumers and providers, such
that the allocation of services to the most appropriate providers emerges to
be both stable and efficient at the global level. To explore this, an analysis of
community strength was conducted for both consumer and provider service
registries for the scenario where V = 5. The network topology for consumers
is presented in Figure 10(a), where five separate communities (corresponding
to the five available service types) are clearly visible, with strong edges
within the communities (where the providers have a mean assortativity value
of 0.94), and weak edges between communities.

Providers organise their information corresponding to service type (see
Section 3.2), which can result in information corresponding to those service
types not currently offered by a stable provider becoming stale. This is

30



due to the fact that providers will rarely interact with consumers desiring
alternate service types. Thus, to analyse the providers’ registries (i.e., S),
the assortativity metric should be modified, so that only information that is
recent is considered by the modified metric. The resulting network topology
for providers is presented in Figure 10(b), which reveals the existence of five
distinct community structures (with mean strength equal to 0.83).

4.3 Dynamic Service Demand

The analysis in the previous section confirms the hypothesis that stable
community structures form such that the supply of services can organise
to satisfy service demand (provided that sufficient resources are available).
However, this assumes that the demand is static and fixed. In this section,
the validity of Hypothesis 2 is explored, whereby the stability of communities
that emerge from the stimulus-response behaviour of the model is explored in
a highly dynamic environment where service demand is continually changing.

4.3.1 Scenario Configuration

To investigate the performance of limiting the size (mc) of consumer service
registries (and hence information flow), and compare it to the case where
complete information is available, the scenario was modified to facilitate
changes in service demand over time. For all providers in this scenario,
Capability = {A,B}, and thus V = |Capability| = 2 for all providers in this
scenario. The service capacity for each provider is restricted to satisfying
two service requests at any time; i.e., CA = CB = 2 (Table 3).

[Table 3 about here.]

Consumer demand varies exogenously, with demand for service type A,
oscillating in anti-phase with the demand for service type B. This variation
is implemented by altering the average sleep period that consumers undergo
between successive service requests. Thus, when the average sleep period
for consumers requesting A is longer than that for consumers requesting B,
then the demand for providers of service type B will effectively be greater.
The sleep period is defined as:

sleeptype = rand + δtype

where rand is a random value drawn from the range [0, ω], and δtype is de-
rived from the sinusoidal function of time (illustrated in Figure 11). Thus,
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by varying δA and a corresponding δB which is 180◦ out of phase, a sym-
metrical change in demand can be achieved for the two services. To allow
the system to achieve a steady state, demand for both types of service is
equal and constant for the first 200s11.

Within each evaluation, several simulation runs were performed with
different service registry, or memory sizes, mc, to evaluate the model with
limited information retention, and these results were contrasted with a global
information model.

[Figure 11 about here.]

[Figure 12 about here.]

4.3.2 Evaluation and Analysis

Figure 12 illustrates the mean performance of the model with respect to
mc. The graphs are normalised with respect to the optimal system perfor-
mance experienced by the system in equilibrium during steady state (i.e.,
when service-demand is satisfied by supply such than no reconfiguration of
providers is necessary). An analysis of the model’s efficiency in successfully
satisfying service requests for different sizes of memory (Figure 12) reveals
that the system efficiently satisfies service requests only for certain cases
where 4 < mc < 12. In addition, the level of information flow between
consumers is low under such conditions, suggesting that the distribution of
knowledge across different consumers regarding local providers is relatively
stable. However, for memory sizes outside this range, performance falls to
a level below that achieved if global knowledge was available (mc = ∞),
where the flow of information between consumers is maximised.

Three general types of behaviour can be observed, based on the way in
which the model responds to changing conditions for different memory sizes.
These are captured in Figure 13, which illustrates the behaviour emerging
from three representative cases (i.e., mc ∈ {2, 5, 20}). When mc = 2 (Fig-
ure 13 empty rectangles), the performance degrades as a result of the con-
sumers’ inability to resolve service request conflicts in a timely manner. As
a result, the stress level grows within an increasing number of unsatisfied
consumers. This catalyses the re-organisation and sharing of the consumers

11Whilst this scenario is relatively simple compared to real patterns of demand, the
intent is to evaluate the behaviour of the system (and resulting communities) whilst main-
taining full control of the demand dynamics. More complex scenarios (and real-world case
studies) could be explored in future work.
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local knowledge, resulting in the acquisition of knowledge about new pro-
viders which are likely to be more suitable to the consumer’s tasks. However,
given the high volume of shared information from stressed consumers, pro-
viders become selective regarding the information they retain. Since the
number of retained types is so small, information loss occurs, resulting in
the formation of isolated groups of agents aware of only small groups of
providers, which are unable to propagate this information to other, similar
groups.

[Figure 13 about here.]

[Figure 14 about here.]

The model for mc = 5 exemplifies a scenario in which efficient perfor-
mance is exhibited (Figure 13 solid rectangles). In this case, the model
responds smoothly to changes in demand, due to the fact that the con-
sumers’ service registries are large enough to retain some information about
local consumers despite the change in demand, but small enough that little
of the new information exchanged is retained, and hence does not compro-
mise future service provision. As a consequence, there are comparatively
few consumers that experience stress high enough to necessitate a continual
reorganisation of the local service registry (as in the case when mc = 2),
and thus require new information (less than 10%). This also limits the
number of providers that observe large changes in service demand, and thus
reduces the number of providers that subsequently switch services. The way
in which providers switch services in response to the changes in demand is
illustrated in Figure 14. During the initial 200s, local communities start to
form corresponding to the two service types, with roughly equal numbers of
providers supporting each community. However, as the demand for one ser-
vice type increases, the level of reorganisation experienced by the consumer
population is limited, and thus the number of providers that switch matches
the resulting demand, yielding a stable, but dynamic environment.

As the number of known providers increases (e.g., in the case where
mc = 20), the performance becomes degenerate (empty circles in Figure 13).
In this case, as consumers become stressed due to increases in service de-
mand, they exchange and retain larger quantities of information regarding
new providers. This compromises their ability to successfully locate service
providers, as there will be greater competition for the highest ranking ones.
This leads to an increase in the stress of the consumers, which in turn ex-
erts unnecessary pressure on providers to switch due to a continuous and
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elevated exchange of information. Thus the equilibrium destabilises, as pro-
viders fail to respond to changes in the service demand (as illustrated by
the empty rectangles in Figure 14), and the community structure is lost.

[Figure 15 about here.]

The case where mc = ∞ corresponds to that where global information
is available to all agents (solid circles on Figure 13). In this case, herding
occurs, where a large number of consumers ends up crowding for the most
attractive providers. As the number of requests that can simultaneously be
satisfied is small (Ctype = 2 for these experiments), a substantial number
of requests are rejected, resulting in large numbers of new queries being
issued. This results in an increase in stress experienced by a large number of
consumers, which increases the pressure on providers to continually switch,
thus further destabilising any community structure. The resulting behaviour
of providers (which offer services of a given type) varies in a similar way to
that observed when mc = 20 (empty rectangles in Figure 14).

A system that effectively manages service provision can be characterised
by a community structure that is stable enough to sustain internal reorgan-
isation. Therefore, to better understand the relationship between the model
performance and the manner in which agents share local information, an
analysis of the community strength (using the assortativity metric defined
in Section 4.1), was used. Figure 15 plots the assortativity strength of con-
sumers against time for two different scenarios; where mc = 5 (Figure 15(a))
and mc = 20 (Figure 15(b)).

As the consumers experience increased stress due to rising demand for a
given service type, they exert increasing pressure on the providers to satisfy
this demand, which in turn strengthens the community structure. In the
scenario explored within Figure 15(a), the community strength approached
0.9 as the demand for a service type reached its peak; reflecting the fact that
the majority of knowledge retained by the consumers was correctly identi-
fying relevant providers. Correspondingly, as the service demand falls, the
strength of the community decreases accordingly. Figure 15(b) illustrates
the pathological case, whereby larger memory size (mc = 20) causes pro-
viders to switch far too frequently, compromising the ability of consumers
to effectively locate relevant providers. In this case, the community strength
becomes erratic, and no longer varies in phase with changes in service de-
mand.

These results suggest that the formation of strong and adaptive commu-
nities (i.e., those that exhibit high assortativity) is accompanied by good
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system performance and a robust response to varying demand. Recall that
service provision depends on the co-adaptive stability between agents re-
sponding to locally perceived changes. The formation of a strong commu-
nity by agents interested in a particular service type yields an exchange of
information that is constrained. If a community is strong, knowledge passed
to consumers can be exploited to induce a small subset of providers to switch
service types, minimising the risk of destabilising the availability of services
to other consumers in other local communities. This raises the question of
how strong should a community be in order to support this process opti-
mally? A tightly linked community (where community strength approaches
one) could prevent reorganisation when there are changes in demand. How-
ever, if the community is too weak, then the availability of services will
be destabilised. A second question thus arises: under what conditions is
such a system capable of forming strong communities? As demonstrated
in this paper, simply varying the amount of information available to agents
is sufficient to bring about changes in system behaviour: from being too
disconnected, to effectively evolving self-organising communities, and even-
tually to a configuration where agents regress into a chaotic flux.

[Figure 16 about here.]

Figure 16 plots the community strength as a function of memory size.
In those cases where the size is too small or too big, degenerate behaviour
results, similar to that illustrated in Figure 15(b). For those cases where
mc ∈ {2, 3}, consumers retain insufficient knowledge to successfully facilitate
a useful flow of information as the environment changes. In contrast, when
the memory size is large (i.e., mc > 15), consumers retain more informa-
tion about the environment, and consequently can better stimulate change
in the provider population. As levels of stress increase, there is a greater
chance that larger numbers of consumers will compete for the most favoured
providers, resulting in a feedback loop that escalates stress levels, which in-
creases the pressure on providers to change, yielding further destabilisation.
It is only within the intermediate range of cases (i.e., 4 ≤ mc < 15) that the
community strength increases. Here, each agent is able to adapt to changes
in the environment effectively, without necessarily being able to identify the
globally optimal providers. The close agreement between Figures 16 and 12
demonstrates that it is the strength of the communities formed through in-
formation flowing through the system that directly underpins and accounts
for system performance.
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4.4 Discussion

When first confronted by the problem of configuring computational resources
and allocating them in response to varying consumer need, it seems likely
that smart enough agents employing probabilistic and possibly collaborative
reasoning of some kind might be able to circumvent the “herding” problem.
This may indeed be the case, but instead it may be that, as Hogg and Hu-
berman (1991) concluded, the smarter the agents, the more likely they are to
suffer from some kind of co-ordination problem. Our approach here has been
to explore whether these potentially intractable co-ordination problems can
be avoided by employing much simpler agents and relying on asymmetries
in their knowledge state that arise naturally under conditions of only local
information flow.

A critical factor in achieving the efficient performance is the organisa-
tion of knowledge across the consumer and provider populations. A system
where consumers successfully organise their local knowledge supports ongo-
ing interaction between providers that can supply the services that the cor-
responding consumers require. Moreover, such an organisation also has the
ability to smoothly reconfigure the supply of services in response to changes
in demand. By contrast, operating on the wrong information will result
in degraded performance due to high numbers of rejected queries and time
spent on needlessly reconfiguring service providers. Populations of agents
that possess only incomplete local knowledge must therefore rely on the ap-
propriate flow of information in order to keep this knowledge up to date,
and coherent enough to be of use. This must be achieved in the absence
of any global flow-facilitating mechanisms that determine what information
should flow to which agent.

An analysis of the information flow that emerges from the evaluation
of our model can provide a number of insights into the dynamics of self-
organisation, and in particular, how self-organisation can emerge from lo-
calised decision-making within the context of resource management prob-
lems involving configuration of providers to offer services based on locally
perceived demand. Although results demonstrate that the size of the local
registry containing provider information is one of the critical factors influ-
encing the flow of information between agents in the neighbourhood, and
thus the cohesion and stability of the community as a whole, there are other
interdependent variables that play an important role in the process. Such
variables include: the frequency of information exchange, the quantity of in-
formation exchanged in a single exchange transaction, and thus the level of
influence an agent has on another agent’s decision making. These variables
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have been demonstrated to play a key role in achieving self-organisation
and adaptation for a number of other decentralised architectures (Guerin
and Kunkle, 2004; Brueckner and Parunak, 2003b; Packard, 1988). In the
model presented in this paper, the extent of exchanged information was dy-
namically affected by consumer stress (cs) which determined the amount of
information that both consumer and provider agents were willing to accept.
Likewise, the level of consumer stress was an important factor in determin-
ing the impact of the consumer, whilst querying the provider for a given
service type. Finally, this stress level was also significant in establishing the
demand for a scarce resource, and hence encouraging providers to switch
the type of service they currently provided. As all of these factors have an
impact on how agent interactions evolve, and thus how information flows
through the system, we plan to i) conduct a further investigation to ana-
lyze how these parameters affect each other in order to formally identify
the synergistic relationship between these parameters and their influence on
the dynamic stability of the system, and ii) to identify efficient techniques
for automatically self-regulating them in a decentralised manner based on
information available locally to each agent.

This research highlights functional substitutability, i.e., the ability of a
component to change its behaviour in response to changes in demand. This
is desirable with many scenarios where there is a risk of failure in one com-
ponent, such as within robotic rescue scenarios (Kitano, 2000) whereby a
robot may be able to perform several different tasks (e.g., sensing, moving,
performing actions etc), but only a few of these are needed for any given
scenario. However, changes in the environment may necessitate correspond-
ing changes in the roles (at run time) that those robots perform. Similar
behaviours have been observed within biological systems. In natural ant
colonies, it has been observed that within what is often ascribed as a homo-
geneous community of ants sharing the same behavioural repertoire, there
arise leaders that strongly stimulate the actions of other ants by their more
frequent activity (Dobrzanski and Dobrzanska, 1987). Such hyperactive ants
stimulate the workload of the colony in every aspect (food foraging, nest
building, brood feeding, etc.). Thus, leader and follower roles arise under
certain conditions (rather than being inherent, programmed behaviours).
However, a complete understanding of this social stimulation process is still
unclear.
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5 Conclusions

In this paper, we have investigated how a simple stimulus-response mecha-
nism inspired by a study of emergent behaviours within biological systems
can be used to facilitate the emergence of stable behaviour in a large multi-
agent system. We argue that this approach or something like it is necessary
to support collaborative behaviour of large-scale, decentralised IT systems,
such as in autonomic computing systems. The paper’s contribution is to
demonstrate that constrained information flow can enable simple agents to
solve a decentralised co-ordination problem through the self-organisation
of agent communities. These communities arise spontaneously as a conse-
quence of local gossiping. They reflect the nature of the pressure experienced
by the system, are stable, and are capable of smoothly reconfiguring to cope
with changes in consumer demand.

Future work will explore scenarios in which the demand for computa-
tional resource may outstrip supply (or vice versa), the challenge of combin-
ing power management considerations with performance targets in a single
autonomic scheme, and the robustness of decentralised behaviour to sys-
temic parameters and the types of system noise and error that characterise
real-world environments.
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Figure 1: Three classes of control organisation: a) centralised control, b) dis-
tributed control reliant on consensual, up-to-date, global information, and
c) fully decentralised control. Service providers and consumers are repre-
sented by small circles, central executives or central repositories by large cir-
cles. Agents may store information (lozenges) and/or execute co-allocation
algorithms (brains). Dotted lines connote information exchange, whereas
dashed lines connote the pairing of services and resources achieved by the
co-allocation process. Hybrid classes of control architecture may combine
elements of centralised, distributed and decentralised control.
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Figure 2: An overview of the resource management organisation process.
Consumers (U) impose a demand for different types of resources (service
requirements) on resource providers (small circles). The inefficient disor-
ganised configuration (left) represents the case in which providers have no
knowledge of what services are in demand, and consumers don’t know which
providers offer their desired services. The organised configuration (right)
represents the case in which service demand is satisfied by local supply.
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polygons labelled A to F ). Consumers 1 and 2 query providers A and B, re-
spectively, requesting the same type of service (i.e., type hexagon). Provider
B is not configured to offer this service type (it currently provides square
services), whereas provider A could satisfy the request, provided it is avail-
able and has spare capacity. Consumers 3 and 4 have provisioned tasks to
provider C. D is busy whilst reconfiguring to offer a different type of service.
Consumer 5 is exchanging information with provider E, whereas consumer
6 is “sleeping” between jobs. Finally, provider F is currently unoccupied,
but available to offer services of type circle.
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Figure 5: Relation between consumer stress and the failure ratio (f).
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Figure 6: Schematic representation of the internal state held by Consumer
5 (left) and Provider E (right). Consumer 5 experiences a current level of
stress, S, based on the number of failed queries whilst trying to provision
the previous two services (f1 and f2, respectively). Consumer 5 also retains
rankings (i.e., bias) for mc known providers (in this case, the providers
D, E and F, all of which are believed to provide services of type circle).
Between jobs, Consumer 5 sleeps for some random period drawn from the
uniform distribution [0, ω]. Provider E is currently configured to perform
service (square), and maintains estimates of the demand for all known service
types, plus bias estimates for all known service providers, organised by type
of service offered.
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Figure 7: Mean throughput of jobs as a proportion of optimal throughput
(horizontal line) for decentralised (D) and centralised (C) resource manage-
ment with differing levels of demand variety, V . For the centralised resource
management strategy, throughput declines with decreasing V as a conse-
quence of the increasing congestion created by herding. For decentralised
resource management, throughput is near optimal for V = 1 and remains
high where more than one variety of service is required by the consumer pop-
ulation. Each bar represents the mean throughput for the final 600 seconds
of 10 independent simulation runs. Error bars represent standard deviations
about the mean.
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Figure 8: Strongly assortative community structure is achieved rapidly. The
rate of convergence is independent of demand variety. Each curve represents
a single representative run: where V = 3 (dotted line), V = 4 (dashed line)
and V = 6 (solid line).
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(a) At t=20s, there is no convergence

(b) At t=250s, communities start to converge

Figure 9: Network representing the organisation of a model with V = 3
at different times in the simulation, illustrating the formation of communi-
ties. Links indicate relations between providers offering the following service
types: A (box), B (diamond), and C (triangle). Solid circles are singleton
nodes, i.e., each is a provider that is only known by one consumer.
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(a) Consumer Information Only

(b) Provider Information Only

Figure 10: Networks representing the organisation of a model with V = 5
at t = 250s, based on (a) the consumers’ service registries (Rc), and (b)
the provider’s registries (S). The links indicate relations between providers
offering the following service types: A (box), B (diamond), C (triangle), D
(solid box) and E (solid diamond). Solid circles are singleton nodes, i.e.,
each is a provider that is only known by one consumer.
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Figure 11: Variance of δtype parameter stimulating the change in demand of
services, for type A (dotted line) and B (continuous line).
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Figure 12: The mean system throughput for different memory retention sizes
(i.e., varying mc). The dotted line corresponds to the case where mc = ∞.
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Figure 13: The performance (i.e., system throughput) of four system con-
figurations with differing memory sizes: mc = 2 (empty rectangles), mc = 5
(solid rectangles), mc = 20 (empty circles), and mc = ∞ (solid circles).
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Figure 14: The number of resources currently offering service of type B with
respect to changing demand for B (dotted lines) for two system configura-
tions: solid rectangles (mc = 5) and empty rectangles (mc = 20).
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(a) Small memory model (mc = 5)
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(b) Large memory model (mc = 20)

Figure 15: The assortativity strength for communities providing service
types A and B over time. The triangles represents community strength
for service community A (where mc = 5), whereas the circles represent the
corresponding community strength for community B. The rectangles and
crosses denote the corresponding populations (for A and B) when (mc = 20).
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Figure 16: The mean community strength as a function of memory size.
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Parameter Value Description

Tq 50ms Time taken to query a provider
Ti 50ms Time taken to complete each knowledge ex-

change phase
Te 500ms Time taken to satisfy a service request
Ts 2s Time taken for a provider to perform a switch

operation
ω 50ms Typical upper bound for the sleep distribution

Ctype 2 or 5 Number of services that can simultaneously be
honoured

fmax 2 × mc maximum number of query attempts a con-
sumer will make when provisioning a service

ms mc Number of tuples retained by a provider for
each service type

δbias 0.1 The bias increment coefficient
δdecay 0.9 Decay coefficient is used to allow stale informa-

tion to decay
δupdate 0.1 Update coefficient, used to update provider bias

based on cs

Table 1: The parameters used to configure the evaluation (unless otherwise
stated).
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V Set of service types Number of Number of Service Capacity
(Capability) Consumers Providers Ctype

1 {A} 600 120 5
2 {A,B} 600 120 5
3 {A,B, C} 600 120 5
4 {A,B, C, D} 600 120 5
5 {A,B, C, D, E} 600 120 5
6 {A,B, C, D, E, F} 600 120 5

Table 2: A variety of different sets of service types for different demand
variety settings. Note that 600 consumers each requiring one service can, in
principle, be satisfied exactly by 120 providers each with a capacity 5.
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V Set of service types Number of Number of Service Capacity
(Capability) Consumers Providers Ctype

2 {A,B} 120 60 2

Table 3: Parameters used for the scenario when service demand is dynamic.
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