
In Proceedings of 5th IEEE/ACM International Workshop on Grid Computing (GRID 2004), in conjunction with
IEEE/ACM Supercomputing Conference (SC 2004), Pittsburgh, PA, USA, November 2004, pp. 388-395.

Self-Organizing Agents for Grid Load Balancing

Junwei Cao

C&C Research Laboratories, NEC Europe Ltd., Sankt Augustin, Germany
cao@ccrl-nece.de

Abstract

A computational grid is a wide-area computing

environment for cross-domain resource sharing and
service integration. Resource management and load
balancing are key concerns when implementing grid
middleware and improving resource utilization. Grid
resource management can be implemented as a multi-
agent system with resource advertisement and discovery
capabilities if job requests from users are associated
with explicit QoS requirements. In this work agent-based
self-organization is proposed to perform complementary
load balancing for batch jobs with no explicit execution
deadlines. In particular, an ant-like self-organizing
mechanism is introduced and proved to be powerful to
achieve overall grid load balancing through a collection
of very simple local interactions. A modeling and
simulation environment is developed to enable
performance of the ant algorithm to be investigated
quantitatively. Simulation results included in this work
illustrate the impact of different performance
optimization strategies on the overall system load
balancing level, speed and efficiency.

1. Introduction

The grid is proposed to be a new computing
infrastructure that provides uniform access to wide-area
distributed resources [9]. Related grid technologies are
layered as applications, tools, middleware and fabric [2].

Resource management and scheduling are important
services of grid middleware, which must efficiently map
grid-submitted jobs to available grid resources. An agent-
based methodology is considered to be flexible for grid
resource discovery, since agents control query processes
according to their own internal logic rather than relying
on a fixed function query engine [11].

In our previous work an agent-based methodology
was developed for building large-scale distributed
software systems with highly dynamic behaviors [4]. This
has been used in the implementation of an agent-based
resource management system (ARMS) for grid

computing [5]. While an ARMS system can achieve grid
load balancing as a result of trying to meet QoS
requirements specified explicitly by users [6], self-
organization is investigated in this work for agents to
perform load balancing automatically for batch queuing
jobs that are not explicitly associated with execution
deadlines.

As summarized in [17], social insect paradigm is one
of the major self-organizing mechanisms used in
nowadays applications. In this work, self-organization
among ARMS agents is implemented using ant-like [18]
local interactions so that load balancing can be achieved
as an emergent collective behavior of the system. A
modeling and simulation environment is developed to
enable the performance of the ant algorithm to be
investigated quantitatively. Several possible performance
optimization strategies are discussed. Simulation results
show that the choice of different strategies can have
different impact on the overall system load balancing
level, speed and efficiency. These information can be
provided to improve performance of an actual running
grid resource management system.

There are some existing work that focus on the use
of self-organization for distributed system management
[12, 13, 15, 19]. Motivations of these work and
corresponding approaches used are quite different from
each other. The following two are most related to the
work described in this paper.

• Condor. Condor is motivated by improving system
thoughput via cycle stealing [14]. Condor-G [10] is a
centralized agent for users to access multiple Condor
pools via Globus [8]. A recent work described in [3]
focuses on resource sharing across Condor pools
using a peer-to-peer flocking technique that is self-
organizing. In our work, a job scheduler, COSY [7],
is utilized for local grid management. While Condor
is mainly a batch computing system, COSY can
provide both batch queuing and advance reservation
supports. Compared with Condor-G, ARMS utilizes
a decentralized agent-based approach. The grid-level
self-organizing mechanism used in our work is also
different from [3].

• Messor. Messor [16] is a grid computing system
aimed at supporting the concurrent execution of
large-scale parallel computations. Messor is
implemented on top of the Anthill [1] framework
that is based on ideas such as multi-agent systems
and evolutionary programming. The ant algorithm
used in this work is very similar with that in the
kernel of Messor. More detailed investigation of the
algorithm performance against different
optimization strategies is carried out in this work.

The rest of the paper is organized as follows: Section
2 introduces the agent-based approach for grid resource
management; in Section 3, self-organizing mechanisms
for load balancing and related performance issues are
discussed; simulation results are included in Section 4
and the paper concludes in Section 5.

2. Agent-Based Resource Management

Grid resource management is usually implemented
at two layers. Traditional job schedulers for clusters and
supercomputers can be used for local grid management.
Management of grid resources at a higher level provides
the capability of deliver grid-submitted jobs to local
schedulers. This is illustrated below using an integration
of ARMS [5] and COSY [7].

COSY is an NEC lightweight implementation of a
job scheduler for PC clusters. The main feature of COSY
is that both batch queuing jobs and advance reservations
are supported. For batch jobs, COSY uses the first-come-
first-served policy together with aggressive backfilling to
maximize the system throughput. For jobs with explicit
QoS requirements, COSY can reserve nodes to guarantee
an exact start time or meet a deadline. COSY implements
an additional policy that associates advance reservations
with mandatory shortest notice time.

ARMS utilizes an agent-based methodology for
distributed computing management. ARMS agents can
be integrated with COSY schedulers to perform global
grid management. This is illustrated in Figure 1.

Figure 1. Grid Resource Management with

ARMS and COSY

Each ARMS agent is a representative of one or
multiple COSYs in a higher-level grid environment. All
of agents can receive job requests from users. ARMS
agents are logically organized into a hierarchy and can
cooperate with each other for resource advertisement and
discovery. COSY is responsible for providing local grid
resource information to its corresponding agent. Agents
can advertise these information along the hierarchy to
neighboring agents. When a job request arrives, an agent
usually looks up its own COSY information first. If there
is no local resources available, an agent will make
decisions to dispatch requests that can not be satisfied
locally to neighboring agents. Detailed introduction to
these processes can be found in [4].

Load balancing in ARMS is previously driven by
QoS requirements of job requests. Users have to specify
an explicit job execution deadline so that the discovery
process among ARMS agents can result that a relatively
free grid resource is finally allocated. In this user-centric
scenario, as long as user’ requirements can be met, load
balancing may not be achieved if system workload is not
heavy or there are batch job requests that are submitted
without QoS specifications. Experimental results
included in [6] show that when system workload is very
heavy, load balancing can be achieved even in a user-
centric scenario.

In this work, a resource-centric scenario is
considered. ARMS agents are required to provide an
additional mechanism for automatic load balancing of
batch queuing jobs across multiple COSYs to improve
overall utilization of grid resources. This can lead to an
improved average response time to batch queuing jobs,
though there are no explicit deadlines associated with
these jobs. The required mechanism has to conform to
original motivations of ARMS to provide scalability and
adaptability. This is why self-organization is considered
to be a good choice.

3. Self-Organizing Load Balancing

The additional self-organizing mechanism for
automatic grid load balancing in ARMS does not allow a
centralized control. It must introduce very limit
additional workload and achieve reasonable performance.
The social insect paradigm is believed to be the right
choice to meet these requirements. In particular, the ant
algorithm is described below.

3.1 Ant-like Self-Organization

Consider an ant colony, several species of ants are
known to group objects in their environment (e.g., dead

Agent

Agent Agent

Agent Agent

COSY COSY

COSY

COSY

COSY

User

COSY

User

corpses) into piles so as to clean up their nests. An
artificial ant colony exhibiting this very same behavior is
described in [18] using a simulation environment. The
artificial ant follows three simple rules: (i) wander
around randomly, until it encounters an object; (ii) if it
was carrying an object, it drops the object and continues
to wander randomly; and (iii) if it was not carrying an
object, it picks the object up and continues to wander.
Despite their simplicity, a colony of these “unintelligent”
ants is able to group objects into large clusters,
independent of their initial distribution. The algorithm
used in ARMS (and also the one used in Messor) is
inspired by the idea that converse rules may form the
basis of a completely decentralized load balancing
algorithm. The iterative algorithm used in ARMS can be
described as:

1. An ant wanders from one agent to another randomly
and tries to remember the identity of an agent that is
most overloaded;

2. After a certain number of steps (m), the ant changes
the mode to search a most underloaded agent,
though still wandering randomly.

3. After the same m steps, the ant stops for one step to
suggest the current two remembered agents
(considered to be most overloaded and underloaded,
respectively) to balance their workload.

4. After load balancing is performed, the ant is
initialized again and starts a new loop from 1.

It is obvious that the pair of agents an ant can find in
steps of one loop can only have relatively large difference
in workload so that only relatively good balancing effect
can be obtained. However, these local interactions indeed
lead to global load balancing as an emergent collective
behavior given an enough loop number. This is
illustrated in Figure 2 using a simple case study.

There are 100 agents involved in this case and
visualized in a 10x10 grid in Figure 2. A random
selection of agents is initialized with a very high
workload and the rest with 0 (see the first picture in
Figure 2). Only one ant is involved in the load balancing
process and configured with m=10. Thus each of loops
includes 21 steps with 20 steps’ wondering and 1 step
load balancing. During wandering steps, the ant selects
the next stop randomly from 8 neighboring agents of its
current position (5 if currently at the edge of the agent
grid and 3 if currently at a corner). Each agent is
assumed to have the same amount of resources so that a
load balancing process can be simplified to equalizing
workload between two agents. The load balancing is
processed step-by-step. The last picture in Figure 2 is the
visualization of workload distribution after 1400 steps’
simulation.

step=1 step=100 step=200 step=300 step=400

step=500 step=600 step=700 step=800 step=900

step=1000 step=1100 step=1200 step=1300 step=1400

Figure 2. Self-Organizing Load Balancing: a
Simple Case Study

It is obvious that after 1400 steps (~66 loops) the
load balancing level of the system is significantly
improved, though further balancing can still be processed
given more loops. For example, the ant does not get a
chance within 1400 steps to reach the agent at the upper
left corner and distribute its workload to other relatively
underloaded agents. There are a couple of factors that
can have impact on the performance of load balancing
process, e.g. the number of ants (n) and wandering steps
(m). These are discussed in Section 3.4 and investigated
in Section 4 using an integrated simulation environment.

3.2. System Implementation

The ant algorithm described above can be integrated

into the ARMS&COSY implementation introduced in
Section 2.

Each ARMS agent implemented in Java is a meta-
scheduler of multiple COSYs. The COSY scheduler is
implemented using C/C++ with Java APIs provided.
When an agent receives a job request with no explicit
QoS requirements, it will queue the job to one of its own
COSYs that can finish the job execution earliest. An
agent is updated with the current queue situation of all its
COSYs. The workload of an agent (w) is represented
using the average queue length of all its COSYs.

An ant exists as an XML document in the system
implementation that contains all necessary data. An
example can be found below:

<agentgrid type=”ant”>

<mode>max</mode>
<step>8</setp>
<maxagent>192.168.7.82:7070</maxagent>
<maxload>660</maxload>
<minagent>195.37.154.45:7070</minagent>
<minload>30</minload>

</agentgrid>

All corresponding operations required by the
algorithm described in the last section are actually
performed by the ARMS agent in which an ant currently
residents. An ant is initialized by an agent (mode=max
and step=m). Once an ant document is received by an
agent, the agent will act according to the ant’s current
status. If the ant is searching for an overloaded agent
(mode=max and step>0), the agent will check its own
workload, compare it with the current value maxload of
the ant, and update the maxload value accordingly. The
agent then sends the updated ant document to a randomly
selected neighboring agent. The ant mode is switched to
min and the step number updated to m when an ant
finishes its searching for overloaded agents (mode=max
and step=0). Then the ant begins steps searching for
underloaded agents (mode=min and step>0). When an
agent finds an ant has finished all of wandering steps
(mode=min and step=0), it is responsible to send a
message with information on minagent to suggest
maxagent to start the load balancing process. The ant
document is again initialized to start a new loop. During
the load balancing process, maxagent dispatches some of
its job requests to minagent until they almost equalize the
average queue length of their COSYs.

The ARMS agent is extended with the above self-
organizing load balancing functionalities. A prototype
system is implemented that integrates ARMS agents with
COSY schedulers. What is most concerned is how to
improve performance of the self-organizing load
balancing mechanism. Several performance metrics are
considered below.

3.3. Performance Metrics

There are a number of performance criteria that can
be used to describe grid resource management and
scheduling systems. In this work several common
statistics are investigated and used to characterize the
effect of grid load balancing.

Let P be the number of agents of an ARMS system
and wpk (p=1,2,……,P) be the workload of the agent p at
the step k. The average workload of all P agents is:

P

w
w

P

p
pk

k

�
== 1 . (1)

The mean square deviation of wpk that describes the load
balancing level of the system is defined as:

P

ww
l

P

p
pkk

k

�
=

−
= 1

2)(
. (2)

Apart from the load balancing level, how fast
workload in the system can be balanced is also concerned
by system developers. For example, in the case study
described in Figure 2, since only one ant is involved, load
balancing is processed very slowly, though it is possible
that a better balancing level can be achieved given more
loops. The load balancing speed (s) is represented using
an average improvement of load balancing level per step
during the latest loop:

��
��
�

+>
+
−

+≤
−

=
−− 12,

12

12,

12

0

mk
m

ll

mk
k

ll

s
kmk

k

k
. (3)

It is obvious that load balancing can not be achieved
for free. The process costs additional network
connections among agents. System load balancing
efficiency (e) is another metrics that takes consideration
of system costs for load balancing. Let ck be the total
number of agent connections that have been made to
achieve a load balancing level lk. The system efficiency ek
is represented using the average contribution of an agent
connection to load balancing level improvement during
the latest loop and calculated as follows:

���
���
	

+>
−

−

+≤
−

=

−−

−− 12,

12,

12

12

0

mk
cc

ll

mk
c

ll

e

mkk

kmk

k

k

k

. (4)

The most effective load balancing is achieved if
more improvement of l is achieved at a cost of fewer
network connections c. Most of the time, these metrics
described above are conflictive, that is not all metrics can
be high at the same time. For example, a high load
balancing level does not mean high efficiency, as
sometimes good load balancing may be achieved through
too many load balancing operations, leading to low
system efficiency. Some common strategies are described
in the section below that can be used for performance
improvement.

3.4. Performance Optimization

The load balancing level and speed can be improved
by increasing the number of involved ants. As indicated
in the case study illustrated in Figure 2, the wandering
scope of one ant is limit. If multiple ants are active
simultaneously, the load balancing can be processed
much faster. This of course costs more agent
communications. In an actual running system, system
load balancing level and efficiency can be tuned by
choosing a reasonable number of ants (n).

Another ant configuration that may have impacts on
system performance is the step number m. If a loop
includes a very small number of steps, an ant will initial
load balancing processes very frequently. If an ant is
initialized with a larger m, it will wander for a longer
time to find agents between which a more effective load
balancing can be processed. Different system load
distribution may lead to different load balancing
performance. In the previous case study (see Figure 2), it
may be more effective to trigger more load balancing
processes at the beginning when system workload is
seriously unbalanced at any area of the agent grid. But it
may be more effective to have a larger m later, since the
ant then is able to wander in a larger scope so that more
overloaded agents can be reached.

There are some other ways to improve system
performance for load balancing. For example, in the
Messor [16] ant algorithm, instead of wandering
randomly, additional load storages are used so that
smarter ants can move faster towards regions that are
believed to be more overloaded or underloaded. In this
work, another performance optimization strategy is
considered. When an ant wants to make decisions on
where to move next, its residence agent will contact all
its neighboring agents for latest workload information.
An ant always chooses the most overloaded neighboring
agent as the next stop in a max mode and most
underloaded one in a min mode. This strategy is believed
to be useful for ants to move fast towards interesting
agents, though of course at cost of additional agent
communications.

Due to an absence of a large system deployment, the
above performance optimization strategies cannot be
evaluated in an actual working environment. A modeling
and simulation environment becomes necessary to enable
these performance issues to be investigated quantitatively.
Several experiments are carried out and described in the
following section.

4. Performance Evaluation

In performance evaluation described in this section,
agent systems can be modeled using several aspects of
parameters and simulation results are displayed in
different views.

4.1. System Modeling

Behaviors of an actual running ARMS&COSY
system can be very complicated. However, the motivation
of developing an integrated environment is not to
accurately simulate system behaviors, but to enable the

impacts of performance optimization strategies described
in Section 3.4 to be investigated. In this work, agent
systems and the ant algorithm are modeled in a
simplified way using several aspects of parameters
enough to outline system characteristics statistically.

• Agents. The number of agents is defined as a square
number so that agents can be mapped and visualized
in a square grid as shown in Figure 2. Each agent
normally has 8 neighboring agents. All of
experiments described later include 2500 agents.

• Workload. A workload value and corresponding
distribution are used to characterize system workload.
Each of system models used in Section 4.2 is
configured with a workload value 25500, which is
initialized to a randomly selection of 10% of agents
at the beginning of simulation. This static workload
model represents the situation of a short period of
time in a dynamic process and is considered to be
enough for performance evaluation.

• Resources. Resources in a system model are defined
in the same way as workload. Each of system models
used in Section 4.2 is also configured with a resource
capability value 100, which is initialized to all
(100%) of agents. The resource model is also static.

• Ants. A user can specify the number of ants (n) and
wandering steps (m). Ants are initialized randomly
in the agent grid when simulation starts. Ants can
also be configured with different wandering styles:
random or optimal, as introduced in Section 3.4.

Once all of above information is input in a system
model, it is ready to start a simulation. There are two
views in which simulation results are displayed. During
each step, the workload of an agent is actually calculated
by its current workload value divided by its resource
capability value. Workload of all agents is mapped to a
gray value between 0 and 255 so that a visualization view
can be generated as shown Figure 2. The simulation
environment provides another statistical view to display
trends of statistics defined in Section 3.3. For example,
during each step, the simulation counts the number of
agent communications made for load balancing, which is
increased by 1 if an ant moves from one agent to another
and 2 if a load balancing is processed. Multiple models
can be simulated simultaneously and statistical results
can be compared in the same window.

4.2. Simulation Results

In the first experiment, the impact of the number of
ants on load balancing performance is investigated.
Totally 7 system models are defined with identical

information on agents, workload and resources, as
described in the last section. The ant number is
configured with 20, 50, 100, 200, 500, 1000, and 2000,
respectively. Ants are configured to wander randomly
with m=10. The simulation is processed for 300 steps
and simulation results on all of performance metrics are
illustrated in Figure 3.

Figure 3. Performance Impact of the Number of
Ants on Load Balancing: a Statistical View

In Figure 3, curves for ant numbers 20, 200 and
2000 are identified in black. Other in-between situations
are gray. It is obvious that with the number of ants
increased, both load balancing level and speed are
improved. Especially during the early steps of the
simulation, system performance is dramatically improved
with more ants involved. While extremely good load
balancing level and speed can be achieved with 2000 ants
involved, system cost on agent communications is proved
to be also extremely high, leading to very low system
efficiency. It seems that with 200 ants involved, high
system efficiency can be achieved as well as reasonable
load balancing level and speed. The choice of 200 ants is
a good tradeoff in this case study. The same result is also
visualized in Figure 4.

The first picture in Figure 4 visualizes the initial
workload distribution among agents during the
simulation of the first system model in which n=20. 10%
of agents are initialized as overloaded. The rest pictures
show agent workload distributions of all 7 system models
after the simulation of 300 steps. Initial situations of the
rest 6 simulations are not included since they are quite
similar to that shown in the first picture.

n=20; step=1 n=20; step=300

n=50; step=300 n=100; step=300

n=200; step=300 n=500; step=300

n=1000; step=300 n=2000; step=300

Figure 4. Performance Impact of the Number of
Ants on Load Balancing: a Visualization View

Extremely good load balancing effects are achieved
in the last three situations where so many ants are
involved in load balancing processes. A reasonable load
balancing is already achieved when only 200 ants are
involved after 300 steps.

The second experiment is motivated to study impact
of the number of ant wandering steps (m) on load
balancing performance. The system model with 200 ants
involved in the first experiment is chosen. 4 additional

models are desinged with various numbers of ant
wandering steps: 1, 5, 20, and 50, respectively. Ants are
still wandering randomly in these system models. The
statistical view for the second experiment is given in
Figure 5.

Figure 5. Performance Impact of the Number of
Ant Wandering Steps on Load Balancing: a

Statistical View

Only 3 situations where m=1, 10, and 50 are
identified in black in Figure 5. Curves for m= 5 and 20
are gray. An interesting result is observed when
comparing load balancing levels of m=1 and 5. During
early steps of the simulation when workload is seriously
unbalanced among agents, more load balancing processes
help improve performance instead of wandering a lot.
However, during later steps of the simulation when the
system has achieved a reasonable load balancing level, it
seems wandering more to look for more overloaded or
underloaded agents in a larger scope becomes more
important than processing load balancing locally and
frequently. Within the simulation of 300 steps, further
increases of the number of ant wandering steps to m=10,
20, and 50 do not show any benefit. While it is possible
that a better load balancing level can be achieved given
further steps in these situations, the load balancing
speeds are low.

Simulation results of the second experiment show
that a better performance can be achieved if ants wander
for 5 steps in each mode, that is, 11 steps per loop. Since
each ant wanders randomly, the scope an ant can reach is
actually very limit. In system models of this experiment,
2500 agents and 200 ants are involved. This means

averagely an ant is responsible for load balancing among
12.5 agents. In general, a good load balancing effect can
be achieved in a system model if the number of ant
wandering steps in a loop equals to the average number
of agents an ant is responsible for load balancing. This
leads to an empirical equation for choosing m:

n
P

m
2

≈ . (5)

A third experiment is carried out to optimize ant
wandering processes to improve load balancing
performance. Simulation results are illustrated in Figures
6 and 7, respectively.

Figure 6. Performance Impact of the Ant
Wandering Style on Load Balancing: a

Statistical View

The system model in the second experiment in which
n=200 and m=5 is used again and identified in Figure 6
in black. The curve associated with the optimal solution
is dark gray. The optimization obviously does not work
as well as expected. As shown in the left picture of
Figure 7, the optimization guides all of the ants in one
direction and a very good load balancing is only achieved
in a local area of the agent grid. The similar phenomenon
is also discussed in Messor.

In this experiment, an additional mechanism is
introduced to enable ants “jumping” randomly once a
while (20 steps in this case) before stuck in a local area.
The result is identified in Figure 6 in gray and proved to
work well as illustrated in the right picture of Figure 7. It
is also shown in Figure 6 that the optimal solutions,
whether with or without the jumping mechanism, costs

much more than the previous random wandering and
leads to low system efficiency.

style=optimal; step=300 style=jumping; step=300

Figure 7. Performance Impact of the Ant
Wandering Style on Load Balancing: a

Visualization View

It is suggested that in a grid environment where
workload is distributed randomly across all areas, ants
can already result in very good load balancing by
wandering randomly. Further optimal solutions can be
considered to improve performance if system efficiency is
not the main issue for system engineering. These
experiences learned from simulation-based performance
evaluation can become important references when
engineering an actual working system for grid resource
management and load balancing.

5. Conclusions

The main contribution of this work includes: (i)
quantitative performance evaluation of an ant algorithm
using a modeling and simulation approach; (ii) self-
organizing load balancing of batch queuing jobs with no
explicit QoS requirements across distributed grid
resources; and (iii) an initial implementation of an agent-
based grid management system with ARMS and COSY.

There are many important features required by a grid
computing system and not discussed in this work, e.g.
security and data management. Future work will focus on
the refinement of the system prototype and the ant
algorithm.

References

[1] Ö. Babaoglu, H. Meling, and A. Montresor, “Anthill: A

Framework for the Development of Agent-Based Peer-to-Peer
Systems”, in Proc. of 22nd IEEE Int. Conf. on Distributed
Computing Systems, Vienna, Austria, pp. 15-22, 2002.

[2] M. Baker, R. Buyya, and D. Laforenza, “Grids and Grid
Technologies for Wide-area Distributed Computing”, Software:
Practice and Experience, Vol. 32, No. 15, pp. 1437-1466,
2002.

[3] A. R. Butt, R. Zhang, and Y. C. Hu, “A Self-Organizing Flock

of Condors”, in Proc. of IEEE/ACM Supercomputing Conf.,
Phoenix, AZ, USA, 2003.

[4] J. Cao, D. J. Kerbyson, and G. R. Nudd, “High Performance
Service Discovery in Large-Scale Multi-Agent and Mobile-
Agent Systems”, Int. J. Software Engineering and Knowledge
Engineering, Special Issue on Multi-Agent Systems and
Mobile Agents, Vol. 11, No. 5, pp. 621-641, 2001.

[5] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R. Nudd,
“ARMS: an Agent-based Resource Management System for
Grid Computing”, Scientific Programming, Special Issue on
Grid Computing, Vol. 10, No. 2, pp. 135-148, 2002.

[6] J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R. Nudd,
“Agent-Based Grid Load Balancing Using Performance-
Driven Task Scheduling”, in Proc. of 17th IEEE Int. Parallel
and Distributed Processing Symp., Nice, France, 2003.

[7] J. Cao and F. Zimmermann, “Queue Scheduling and Advance
Reservations with COSY”, in Proc. of 18th IEEE Int. Parallel
and Distributed Processing Symp., Santa Fe, NM, USA, 2004.

[8] I. Foster and C. Kesselman, Globus: a Metacomputing
Infrastructure Toolkit, Int. J. Supercomputer Applications, Vol.
11, No. 2, pp. 115-128, 1997.

[9] I. Foster and C. Kesselman, The GRID: Blueprint for a New
Computing Infrastructure, Morgan-Kaufmann, 1998.

[10] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke,
“Condor-G: a Computation Management Agent for Multi-
Institutional Grids”, Cluster Computing, Vol. 5, No. 3, pp.
237-246, 2002.

[11] K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy
and Survey of Grid Resource Management Systems for
Distributed Computing”, Software: Practice and Experience,
Vol. 32, No. 2, pp. 135-164, 2002.

[12] D. Kurzyniec, T. Wrzosek, D. Drzewiecki, and V. Sunderam,
“Towards Self-organizing Distributed Computing Frameworks:
The H2O Approach”, Parallel Processing Letters, Vol. 13, No.
2, pp. 273-290, 2003.

[13] I. Liabotis, O. Prnjat, T. Olukemi, A. L. M. Ching, A.
Lazarevic, L. Sacks, M. Fisher, and P. McKee, “Self-
Organising Management of Grid Environments”, Int. Symp.
on Telecommunications, Isfahan, Iran, 2003.

[14] M. Litzkow, M. Livny, and M. Mutka, “Condor – a Hunter of
Idle Workstations”, in Proc. 8th IEEE Int. Conf. on Distributed
Computing Systems, San Jose, CA, USA, pp. 104-111, 1988.

[15] S. Lynden and O. F. Rana, “Coordinated Learning to Support
Resource Management in Computational Grids”, in Proc. of
2nd IEEE Int. Conf. on Peer-to-Peer Computing, Linköping,
Sweden, pp. 81-89, 2002.

[16] A. Montresor, H. Meling, and Ö. Babaoglu, “Messor: Load-
Balancing through a Swarm of Autonomous Agents”, in Proc.
of 1st Int. Workshop on Agents and Peer-to-Peer Computing,
1st ACM Int. Joint Conf. on Autonomous Agents and Multi-
Agent Systems, Bologna, Italy, 2002.

[17] S. K. Mostefaoui, O. F. Rana, N. Foukia, S. Hassas, G. Di
Marzo Serugendo, C. Van Aart, and A. Karageorgos, “Self-
Organising Applications: A Survey”, in Prof. of 1st
International Workshop on Engineering Self-Organising
Applications, 2nd ACM Int. Joint Conf. on Autonomous
Agents and Multi-Agent Systems, Melbourne, Australia, pp.
63-69, 2003.

[18] M. Resnick, Turtles, Termites, and Traffic Jams: Explorations
in Massively Parallel Microworlds, MIT Press, 1994.

[19] F. Wang, “Self-organising Communities Formed by Middle
Agents”, in Proc. of 1st ACM Int. Joint Conf. on Autonomous
Agents and Multi-Agent Systems, Bologna, Italy, pp. 1333-
1339, 2002.

