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Abstract 

 
A computational grid is a wide-area computing 

environment for cross-domain resource sharing and 
service integration. Resource management and load 
balancing are key concerns when implementing grid 
middleware and improving resource utilization. Grid 
resource management can be implemented as a multi-
agent system with resource advertisement and discovery 
capabilities if job requests from users are associated 
with explicit QoS requirements. In this work agent-based 
self-organization is proposed to perform complementary 
load balancing for batch jobs with no explicit execution 
deadlines. In particular, an ant-like self-organizing 
mechanism is introduced and proved to be powerful to 
achieve overall grid load balancing through a collection 
of very simple local interactions. A modeling and 
simulation environment is developed to enable 
performance of the ant algorithm to be investigated 
quantitatively. Simulation results included in this work 
illustrate the impact of different performance 
optimization strategies on the overall system load 
balancing level, speed and efficiency. 
 
1. Introduction 
 

The grid is proposed to be a new computing 
infrastructure that provides uniform access to wide-area 
distributed resources [9]. Related grid technologies are 
layered as applications, tools, middleware and fabric [2]. 

Resource management and scheduling are important 
services of grid middleware, which must efficiently map 
grid-submitted jobs to available grid resources. An agent-
based methodology is considered to be flexible for grid 
resource discovery, since agents control query processes 
according to their own internal logic rather than relying 
on a fixed function query engine [11]. 

In our previous work an agent-based methodology 
was developed for building large-scale distributed 
software systems with highly dynamic behaviors [4]. This 
has been used in the implementation of an agent-based 
resource management system (ARMS) for grid 

computing [5]. While an ARMS system can achieve grid 
load balancing as a result of trying to meet QoS 
requirements specified explicitly by users [6], self-
organization is investigated in this work for agents to 
perform load balancing automatically for batch queuing 
jobs that are not explicitly associated with execution 
deadlines. 

As summarized in [17], social insect paradigm is one 
of the major self-organizing mechanisms used in 
nowadays applications. In this work, self-organization 
among ARMS agents is implemented using ant-like [18] 
local interactions so that load balancing can be achieved 
as an emergent collective behavior of the system. A 
modeling and simulation environment is developed to 
enable the performance of the ant algorithm to be 
investigated quantitatively. Several possible performance 
optimization strategies are discussed. Simulation results 
show that the choice of different strategies can have 
different impact on the overall system load balancing 
level, speed and efficiency. These information can be 
provided to improve performance of an actual running 
grid resource management system. 

There are some existing work that focus on the use 
of self-organization for distributed system management 
[12, 13, 15, 19]. Motivations of these work and 
corresponding approaches used are quite different from 
each other. The following two are most related to the 
work described in this paper. 

• Condor. Condor is motivated by improving system 
thoughput via cycle stealing [14]. Condor-G [10] is a 
centralized agent for users to access multiple Condor 
pools via Globus [8]. A recent work described in [3] 
focuses on resource sharing across Condor pools 
using a peer-to-peer flocking technique that is self-
organizing. In our work, a job scheduler, COSY [7], 
is utilized for local grid management. While Condor 
is mainly a batch computing system, COSY can 
provide both batch queuing and advance reservation 
supports. Compared with Condor-G, ARMS utilizes 
a decentralized agent-based approach. The grid-level 
self-organizing mechanism used in our work is also 
different from [3]. 



• Messor. Messor [16] is a grid computing system 
aimed at supporting the concurrent execution of 
large-scale parallel computations. Messor is 
implemented on top of the Anthill [1] framework 
that is based on ideas such as multi-agent systems 
and evolutionary programming. The ant algorithm 
used in this work is very similar with that in the 
kernel of Messor. More detailed investigation of the 
algorithm performance against different 
optimization strategies is carried out in this work. 

The rest of the paper is organized as follows: Section 
2 introduces the agent-based approach for grid resource 
management; in Section 3, self-organizing mechanisms 
for load balancing and related performance issues are 
discussed; simulation results are included in Section 4 
and the paper concludes in Section 5. 
 
2. Agent-Based Resource Management 
 

Grid resource management is usually implemented 
at two layers. Traditional job schedulers for clusters and 
supercomputers can be used for local grid management. 
Management of grid resources at a higher level provides 
the capability of deliver grid-submitted jobs to local 
schedulers. This is illustrated below using an integration 
of ARMS [5] and COSY [7]. 

COSY is an NEC lightweight implementation of a 
job scheduler for PC clusters. The main feature of COSY 
is that both batch queuing jobs and advance reservations 
are supported. For batch jobs, COSY uses the first-come-
first-served policy together with aggressive backfilling to 
maximize the system throughput. For jobs with explicit 
QoS requirements, COSY can reserve nodes to guarantee 
an exact start time or meet a deadline. COSY implements 
an additional policy that associates advance reservations 
with mandatory shortest notice time.  

ARMS utilizes an agent-based methodology for 
distributed computing management.  ARMS agents can 
be integrated with COSY schedulers to perform global 
grid management. This is illustrated in Figure 1. 

 
Figure 1. Grid Resource Management with 

ARMS and COSY 

 

Each ARMS agent is a representative of one or 
multiple COSYs in a higher-level grid environment. All 
of agents can receive job requests from users. ARMS 
agents are logically organized into a hierarchy and can 
cooperate with each other for resource advertisement and 
discovery. COSY is responsible for providing local grid 
resource information to its corresponding agent. Agents 
can advertise these information along the hierarchy to 
neighboring agents. When a job request arrives, an agent 
usually looks up its own COSY information first. If there 
is no local resources available, an agent will make 
decisions to dispatch requests that can not be satisfied 
locally to neighboring agents. Detailed introduction to 
these processes can be found in [4]. 

Load balancing in ARMS is previously driven by 
QoS requirements of job requests. Users have to specify 
an explicit job execution deadline so that the discovery 
process among ARMS agents can result that a relatively 
free grid resource is finally allocated. In this user-centric 
scenario, as long as user’ requirements can be met, load 
balancing may not be achieved if system workload is not 
heavy or there are batch job requests that are submitted 
without QoS specifications. Experimental results 
included in [6] show that when system workload is very 
heavy, load balancing can be achieved even in a user-
centric scenario. 

In this work, a resource-centric scenario is 
considered. ARMS agents are required to provide an 
additional mechanism for automatic load balancing of 
batch queuing jobs across multiple COSYs to improve 
overall utilization of grid resources. This can lead to an 
improved average response time to batch queuing jobs, 
though there are no explicit deadlines associated with 
these jobs. The required mechanism has to conform to 
original motivations of ARMS to provide scalability and 
adaptability. This is why self-organization is considered 
to be a good choice. 
 
3. Self-Organizing Load Balancing  
 

The additional self-organizing mechanism for 
automatic grid load balancing in ARMS does not allow a 
centralized control. It must introduce very limit 
additional workload and achieve reasonable performance. 
The social insect paradigm is believed to be the right 
choice to meet these requirements. In particular, the ant 
algorithm is described below. 
 
3.1 Ant-like Self-Organization 
 

Consider an ant colony, several species of ants are 
known to group objects in their environment (e.g., dead 
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corpses) into piles so as to clean up their nests. An 
artificial ant colony exhibiting this very same behavior is 
described in [18] using a simulation environment. The 
artificial ant follows three simple rules: (i) wander 
around randomly, until it encounters an object; (ii) if it 
was carrying an object, it drops the object and continues 
to wander randomly; and (iii) if it was not carrying an 
object, it picks the object up and continues to wander. 
Despite their simplicity, a colony of these “unintelligent” 
ants is able to group objects into large clusters, 
independent of their initial distribution. The algorithm 
used in ARMS (and also the one used in Messor) is 
inspired by the idea that converse rules may form the 
basis of a completely decentralized load balancing 
algorithm. The iterative algorithm used in ARMS can be 
described as: 

1. An ant wanders from one agent to another randomly 
and tries to remember the identity of an agent that is 
most overloaded; 

2. After a certain number of steps (m), the ant changes 
the mode to search a most underloaded agent, 
though still wandering randomly. 

3. After the same m steps, the ant stops for one step to 
suggest the current two remembered agents 
(considered to be most overloaded and underloaded, 
respectively) to balance their workload. 

4. After load balancing is performed, the ant is 
initialized again and starts a new loop from 1. 

It is obvious that the pair of agents an ant can find in 
steps of one loop can only have relatively large difference 
in workload so that only relatively good balancing effect 
can be obtained. However, these local interactions indeed 
lead to global load balancing as an emergent collective 
behavior given an enough loop number. This is 
illustrated in Figure 2 using a simple case study. 

There are 100 agents involved in this case and 
visualized in a 10x10 grid in Figure 2. A random 
selection of agents is initialized with a very high 
workload and the rest with 0 (see the first picture in 
Figure 2). Only one ant is involved in the load balancing 
process and configured with m=10. Thus each of loops 
includes 21 steps with 20 steps’ wondering and 1 step 
load balancing. During wandering steps, the ant selects 
the next stop randomly from 8 neighboring agents of its 
current position (5 if currently at the edge of the agent 
grid and 3 if currently at a corner). Each agent is 
assumed to have the same amount of resources so that a 
load balancing process can be simplified to equalizing 
workload between two agents. The load balancing is 
processed step-by-step. The last picture in Figure 2 is the 
visualization of workload distribution after 1400 steps’ 
simulation. 

 
step=1      step=100      step=200      step=300      step=400 
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Figure 2. Self-Organizing Load Balancing: a 
Simple Case Study 

It is obvious that after 1400 steps (~66 loops) the 
load balancing level of the system is significantly 
improved, though further balancing can still be processed 
given more loops. For example, the ant does not get a 
chance within 1400 steps to reach the agent at the upper 
left corner and distribute its workload to other relatively 
underloaded agents. There are a couple of factors that 
can have impact on the performance of load balancing 
process, e.g. the number of ants (n) and wandering steps 
(m). These are discussed in Section 3.4 and investigated 
in Section 4 using an integrated simulation environment. 
 
3.2. System Implementation 

 
The ant algorithm described above can be integrated 

into the ARMS&COSY implementation introduced in 
Section 2. 

Each ARMS agent implemented in Java is a meta-
scheduler of multiple COSYs. The COSY scheduler is 
implemented using C/C++ with Java APIs provided. 
When an agent receives a job request with no explicit 
QoS requirements, it will queue the job to one of its own 
COSYs that can finish the job execution earliest. An 
agent is updated with the current queue situation of all its 
COSYs. The workload of an agent (w) is represented 
using the average queue length of all its COSYs. 

An ant exists as an XML document in the system 
implementation that contains all necessary data. An 
example can be found below: 
 
<agentgrid type=”ant”> 

<mode>max</mode> 
<step>8</setp> 
<maxagent>192.168.7.82:7070</maxagent> 
<maxload>660</maxload> 
<minagent>195.37.154.45:7070</minagent> 
<minload>30</minload> 

</agentgrid> 



All corresponding operations required by the 
algorithm described in the last section are actually 
performed by the ARMS agent in which an ant currently 
residents. An ant is initialized by an agent (mode=max 
and step=m). Once an ant document is received by an 
agent, the agent will act according to the ant’s current 
status. If the ant is searching for an overloaded agent 
(mode=max and step>0), the agent will check its own 
workload, compare it with the current value maxload of 
the ant, and update the maxload value accordingly. The 
agent then sends the updated ant document to a randomly 
selected neighboring agent. The ant mode is switched to 
min and the step number updated to m when an ant 
finishes its searching for overloaded agents (mode=max 
and step=0). Then the ant begins steps searching for 
underloaded agents (mode=min and step>0). When an 
agent finds an ant has finished all of wandering steps 
(mode=min and step=0), it is responsible to send a 
message with information on minagent to suggest 
maxagent to start the load balancing process. The ant 
document is again initialized to start a new loop. During 
the load balancing process, maxagent dispatches some of 
its job requests to minagent until they almost equalize the 
average queue length of their COSYs. 

The ARMS agent is extended with the above self-
organizing load balancing functionalities. A prototype 
system is implemented that integrates ARMS agents with 
COSY schedulers. What is most concerned is how to 
improve performance of the self-organizing load 
balancing mechanism. Several performance metrics are 
considered below. 
 
3.3. Performance Metrics 
 

There are a number of performance criteria that can 
be used to describe grid resource management and 
scheduling systems. In this work several common 
statistics are investigated and used to characterize the 
effect of grid load balancing. 

Let P be the number of agents of an ARMS system 
and wpk (p=1,2,……,P) be the workload of the agent p at 
the step k. The average workload of all P agents is: 
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The mean square deviation of wpk that describes the load 
balancing level of the system is defined as: 
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Apart from the load balancing level, how fast 
workload in the system can be balanced is also concerned 
by system developers. For example, in the case study 
described in Figure 2, since only one ant is involved, load 
balancing is processed very slowly, though it is possible 
that a better balancing level can be achieved given more 
loops. The load balancing speed (s) is represented using 
an average improvement of load balancing level per step 
during the latest loop: 
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It is obvious that load balancing can not be achieved 
for free. The process costs additional network 
connections among agents. System load balancing 
efficiency (e) is another metrics that takes consideration 
of system costs for load balancing. Let ck be the total 
number of agent connections that have been made to 
achieve a load balancing level lk. The system efficiency ek 
is represented using the average contribution of an agent 
connection to load balancing level improvement during 
the latest loop and calculated as follows: 
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The most effective load balancing is achieved if 
more improvement of l is achieved at a cost of fewer 
network connections c. Most of the time, these metrics 
described above are conflictive, that is not all metrics can 
be high at the same time. For example, a high load 
balancing level does not mean high efficiency, as 
sometimes good load balancing may be achieved through 
too many load balancing operations, leading to low 
system efficiency. Some common strategies are described 
in the section below that can be used for performance 
improvement. 

 
3.4. Performance Optimization 
 

The load balancing level and speed can be improved 
by increasing the number of involved ants. As indicated 
in the case study illustrated in Figure 2, the wandering 
scope of one ant is limit. If multiple ants are active 
simultaneously, the load balancing can be processed 
much faster. This of course costs more agent 
communications. In an actual running system, system 
load balancing level and efficiency can be tuned by 
choosing a reasonable number of ants (n). 



Another ant configuration that may have impacts on 
system performance is the step number m. If a loop 
includes a very small number of steps, an ant will initial 
load balancing processes very frequently. If an ant is 
initialized with a larger m, it will wander for a longer 
time to find agents between which a more effective load 
balancing can be processed. Different system load 
distribution may lead to different load balancing 
performance. In the previous case study (see Figure 2), it 
may be more effective to trigger more load balancing 
processes at the beginning when system workload is 
seriously unbalanced at any area of the agent grid. But it 
may be more effective to have a larger m later, since the 
ant then is able to wander in a larger scope so that more 
overloaded agents can be reached. 

There are some other ways to improve system 
performance for load balancing. For example, in the 
Messor [16] ant algorithm, instead of wandering 
randomly, additional load storages are used so that 
smarter ants can move faster towards regions that are 
believed to be more overloaded or underloaded. In this 
work, another performance optimization strategy is 
considered. When an ant wants to make decisions on 
where to move next, its residence agent will contact all 
its neighboring agents for latest workload information. 
An ant always chooses the most overloaded neighboring 
agent as the next stop in a max mode and most 
underloaded one in a min mode. This strategy is believed 
to be useful for ants to move fast towards interesting 
agents, though of course at cost of additional agent 
communications. 

Due to an absence of a large system deployment, the 
above performance optimization strategies cannot be 
evaluated in an actual working environment. A modeling 
and simulation environment becomes necessary to enable 
these performance issues to be investigated quantitatively. 
Several experiments are carried out and described in the 
following section. 
 
4. Performance Evaluation 
 

In performance evaluation described in this section, 
agent systems can be modeled using several aspects of 
parameters and simulation results are displayed in 
different views. 
 
4.1. System Modeling 
 

Behaviors of an actual running ARMS&COSY 
system can be very complicated. However, the motivation 
of developing an integrated environment is not to 
accurately simulate system behaviors, but to enable the 

impacts of performance optimization strategies described 
in Section 3.4 to be investigated. In this work, agent 
systems and the ant algorithm are modeled in a 
simplified way using several aspects of parameters 
enough to outline system characteristics statistically. 

• Agents. The number of agents is defined as a square 
number so that agents can be mapped and visualized 
in a square grid as shown in Figure 2. Each agent 
normally has 8 neighboring agents. All of 
experiments described later include 2500 agents. 

• Workload. A workload value and corresponding 
distribution are used to characterize system workload. 
Each of system models used in Section 4.2 is 
configured with a workload value 25500, which is 
initialized to a randomly selection of 10% of agents 
at the beginning of simulation. This static workload 
model represents the situation of a short period of 
time in a dynamic process and is considered to be 
enough for performance evaluation. 

• Resources. Resources in a system model are defined 
in the same way as workload. Each of system models 
used in Section 4.2 is also configured with a resource 
capability value 100, which is initialized to all 
(100%) of agents. The resource model is also static. 

• Ants. A user can specify the number of ants (n) and 
wandering steps (m). Ants are initialized randomly 
in the agent grid when simulation starts. Ants can 
also be configured with different wandering styles: 
random or optimal, as introduced in Section 3.4.  

Once all of above information is input in a system 
model, it is ready to start a simulation. There are two 
views in which simulation results are displayed. During 
each step, the workload of an agent is actually calculated 
by its current workload value divided by its resource 
capability value. Workload of all agents is mapped to a 
gray value between 0 and 255 so that a visualization view 
can be generated as shown Figure 2. The simulation 
environment provides another statistical view to display 
trends of statistics defined in Section 3.3. For example, 
during each step, the simulation counts the number of 
agent communications made for load balancing, which is 
increased by 1 if an ant moves from one agent to another 
and 2 if a load balancing is processed. Multiple models 
can be simulated simultaneously and statistical results 
can be compared in the same window. 
 
4.2. Simulation Results 
 

In the first experiment, the impact of the number of 
ants on load balancing performance is investigated. 
Totally 7 system models are defined with identical 



information on agents, workload and resources, as 
described in the last section. The ant number is 
configured with 20, 50, 100, 200, 500, 1000, and 2000, 
respectively. Ants are configured to wander randomly 
with m=10. The simulation is processed for 300 steps 
and simulation results on all of performance metrics are 
illustrated in Figure 3. 

 

Figure 3. Performance Impact of the Number of 
Ants on Load Balancing: a Statistical View 

In Figure 3, curves for ant numbers 20, 200 and 
2000 are identified in black. Other in-between situations 
are gray. It is obvious that with the number of ants 
increased, both load balancing level and speed are 
improved. Especially during the early steps of the 
simulation, system performance is dramatically improved 
with more ants involved. While extremely good load 
balancing level and speed can be achieved with 2000 ants 
involved, system cost on agent communications is proved 
to be also extremely high, leading to very low system 
efficiency. It seems that with 200 ants involved, high 
system efficiency can be achieved as well as reasonable 
load balancing level and speed. The choice of 200 ants is 
a good tradeoff in this case study. The same result is also 
visualized in Figure 4. 

The first picture in Figure 4 visualizes the initial 
workload distribution among agents during the 
simulation of the first system model in which n=20. 10% 
of agents are initialized as overloaded. The rest pictures 
show agent workload distributions of all 7 system models 
after the simulation of 300 steps. Initial situations of the 
rest 6 simulations are not included since they are quite 
similar to that shown in the first picture. 

 
n=20; step=1                      n=20; step=300 

 
n=50; step=300                      n=100; step=300 

 
n=200; step=300                      n=500; step=300 

 
n=1000; step=300                      n=2000; step=300 

Figure 4. Performance Impact of the Number of 
Ants on Load Balancing: a Visualization View 

Extremely good load balancing effects are achieved 
in the last three situations where so many ants are 
involved in load balancing processes. A reasonable load 
balancing is already achieved when only 200 ants are 
involved after 300 steps. 

The second experiment is motivated to study impact 
of the number of ant wandering steps (m) on load 
balancing performance. The system model with 200 ants 
involved in the first experiment is chosen. 4 additional 



models are desinged with various numbers of ant 
wandering steps: 1, 5, 20, and 50, respectively. Ants are 
still wandering randomly in these system models. The 
statistical view for the second experiment is given in 
Figure 5. 

 

Figure 5. Performance Impact of the Number of 
Ant Wandering Steps on Load Balancing: a 

Statistical View 

Only 3 situations where m=1, 10, and 50 are 
identified in black in Figure 5. Curves for m= 5 and 20 
are gray. An interesting result is observed when 
comparing load balancing levels of m=1 and 5. During 
early steps of the simulation when workload is seriously 
unbalanced among agents, more load balancing processes 
help improve performance instead of wandering a lot. 
However, during later steps of the simulation when the 
system has achieved a reasonable load balancing level, it 
seems wandering more to look for more overloaded or 
underloaded agents in a larger scope becomes more 
important than processing load balancing locally and 
frequently. Within the simulation of 300 steps, further 
increases of the number of ant wandering steps to m=10, 
20, and 50 do not show any benefit. While it is possible 
that a better load balancing level can be achieved given 
further steps in these situations, the load balancing 
speeds are low. 

Simulation results of the second experiment show 
that a better performance can be achieved if ants wander 
for 5 steps in each mode, that is, 11 steps per loop. Since 
each ant wanders randomly, the scope an ant can reach is 
actually very limit. In system models of this experiment, 
2500 agents and 200 ants are involved. This means 

averagely an ant is responsible for load balancing among 
12.5 agents. In general, a good load balancing effect can 
be achieved in a system model if the number of ant 
wandering steps in a loop equals to the average number 
of agents an ant is responsible for load balancing. This 
leads to an empirical equation for choosing m: 

n
P

m
2

≈ .    (5) 

A third experiment is carried out to optimize ant 
wandering processes to improve load balancing 
performance. Simulation results are illustrated in Figures 
6 and 7, respectively. 

 

Figure 6. Performance Impact of the Ant 
Wandering Style on Load Balancing: a 

Statistical View 

The system model in the second experiment in which 
n=200 and m=5 is used again and identified in Figure 6 
in black. The curve associated with the optimal solution 
is dark gray. The optimization obviously does not work 
as well as expected. As shown in the left picture of 
Figure 7, the optimization guides all of the ants in one 
direction and a very good load balancing is only achieved 
in a local area of the agent grid. The similar phenomenon 
is also discussed in Messor. 

In this experiment, an additional mechanism is 
introduced to enable ants “jumping” randomly once a 
while (20 steps in this case) before stuck in a local area. 
The result is identified in Figure 6 in gray and proved to 
work well as illustrated in the right picture of Figure 7. It 
is also shown in Figure 6 that the optimal solutions, 
whether with or without the jumping mechanism, costs 



much more than the previous random wandering and 
leads to low system efficiency. 

 
style=optimal; step=300       style=jumping; step=300 

Figure 7. Performance Impact of the Ant 
Wandering Style on Load Balancing: a 

Visualization View 

It is suggested that in a grid environment where 
workload is distributed randomly across all areas, ants 
can already result in very good load balancing by 
wandering randomly. Further optimal solutions can be 
considered to improve performance if system efficiency is 
not the main issue for system engineering. These 
experiences learned from simulation-based performance 
evaluation can become important references when 
engineering an actual working system for grid resource 
management and load balancing. 
 
5. Conclusions 
 

The main contribution of this work includes: (i) 
quantitative performance evaluation of an ant algorithm 
using a modeling and simulation approach; (ii) self-
organizing load balancing of batch queuing jobs with no 
explicit QoS requirements across distributed grid 
resources; and (iii) an initial implementation of an agent-
based grid management system with ARMS and COSY. 

There are many important features required by a grid 
computing system and not discussed in this work, e.g. 
security and data management. Future work will focus on 
the refinement of the system prototype and the ant 
algorithm. 
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