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Abstract

Background

A fundamental issue in bioscience is to understand the mechanism that underlies the

dynamic control of genome-wide expression through the complex temporal-spatial self-

organization of the genome to regulate the change in cell fate. We address this issue by elu-

cidating a physically motivated mechanism of self-organization.

Principal Findings

Building upon transcriptome experimental data for seven distinct cell fates, including early

embryonic development, we demonstrate that self-organized criticality (SOC) plays an

essential role in the dynamic control of global gene expression regulation at both the popula-

tion and single-cell levels. The novel findings are as follows: i) Mechanism of cell-fate

changes: A sandpile-type critical transition self-organizes overall expression into a few

transcription response domains (critical states). A cell-fate change occurs by means of a

dissipative pulse-like global perturbation in self-organization through the erasure of initial-

state critical behaviors (criticality). Most notably, the reprogramming of early embryo cells

destroys the zygote SOC control to initiate self-organization in the new embryonal genome,

which passes through a stochastic overall expression pattern. ii) Mechanism of perturbation

of SOC controls: Global perturbations in self-organization involve the temporal regulation of

critical states. Quantitative evaluation of this perturbation in terminal cell fates reveals that

dynamic interactions between critical states determine the critical-state coherent regulation.

The occurrence of a temporal change in criticality perturbs this between-states interaction,

which directly affects the entire genomic system. Surprisingly, a sub-critical state, corre-

sponding to an ensemble of genes that shows only marginal changes in expression and con-

sequently are considered to be devoid of any interest, plays an essential role in generating a

global perturbation in self-organization directed toward the cell-fate change.
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Conclusion and Significance

‘Whole-genome’ regulation of gene expression through self-regulatory SOC control comple-

ments gene-by-gene fine tuning and represents a still largely unexplored non-equilibrium sta-

tistical mechanism that is responsible for the massive reprogramming of genome expression.

Introduction

In mature mammalian stem cells, the cell fate/state can be reprogrammed to provoke a shift

between two stable (and very different) gene expression profiles involving tens of thousands of

genes by means of a few reprogramming stimuli [1–5].

The coordinated control of a large number of genes must overcome several difficulties,

such as the substantial instability of genetic products due to the stochastic noise stemming

from the low copy number of specific gene mRNAs per cell and the lack of a sufficient number

of molecules to reach a thermodynamic limit [6,7]. Due to the complexity of the interaction

between molecular effectors and changes in the structure of chromatin, it has been a challeng-

ing issue to understand how globally coordinated control can determine the cell fate/state

from a genomic point of view. In this respect, it is important to gain a comprehensive under-

standing of dynamic control mechanisms that could help us to obtain a quantitative apprecia-

tion of the still largely qualitative notion of the epigenetic landscape [8]. The existence of

global gene regulation implies that the driving force of genomic expression acts through only

a small number of control parameters that underpin highly complex molecular genetics reac-

tion mechanisms. The hypothesis that a reliable model of a complex system can be obtained

through the use of few relevant parameters was aptly addressed by Transtrum et al. [9] in

terms of ‘sloppiness’:

“First, in spite of the large number of parameters, complex biological systems typically

exhibit simple behavior that requires only a few parameters to describe, analogous to how

the diffusion equation can describe microscopically diverse processes. Attempting to accu-

rately infer all of the parameters in a complex biological model is analogous to learning all

of the mechanical and electrical properties of water molecules in order to accurately predict

a diffusion constant. It would involve considerable effort (measuring all the microscopic

parameters accurately), while the diffusion constant can be easily measured using collective

experiments and used to determine the result of any other collective experiment. Second, in

many biological systems, there is considerable uncertainty about the microscopic structure

of the system. Sloppiness suggests that an effective model that is microscopically inaccurate

may still be insightful and predictive in spite of getting many specific details wrong.”

Here we explore the potential of coarse-grain statistical metrics regarding the expression

levels of gene ensembles [10,11] to sketch a model of biological regulation within the frame-

work of ‘statistical mechanics’. This approach may clarify how a small number of hidden con-

trol parameters can provoke a global change in the expression profile involving thousands of

genes.

Scientists working with microarray technology (cell population) are familiar with the strict

profile-invariance of independent samples relative to the same type of tissue. The expression

vectors for two independent samples of the same tissue, which consist of about 20,000 ORFs,

show a near-unity Pearson correlation, which points to a very strict global integration of cell

populations in terms of gene expression.
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The presence of global tissue-level control is evident when we compare two samples from

different tissues (Fig 1). A near-unity correlation is observed between the profiles of indepen-

dent samples of the same kind of tissue (Fig 1A). In contrast, when we consider samples from

different tissues, this near-unity correlation breaks down (Fig 1B). This simple plot suggests

that global self-organization supports the phenotype that corresponds to different cell types

and involves the whole expression profile in cell population dynamics. It is very interesting to

look at the results depicted in Fig 1 from the point of view of criticality-induced complexity

matching [12,13] in the field of complex networks.

Furthermore, Fig 2 suggests that the observed profile invariance is an emergent property

that strictly depends on the range of gene expression being considered. If we change the

box size from genes with very similar expression levels (low between-gene expression variance)

to the whole set, gene expression shifts from a stochastic to a genome-wide attractor profile

(which causes a near-unity Pearson correlation). The development of this correlation demon-

strates the presence of a transition that follows a tangent hyperbolic function (inset in Fig 2).

This implies that, while myriad transcriptional regulation control circuits are active at the

same time at a local level (which gives a stochastic distribution; refer to section IV), at the

global level of genome expression, very efficient tissue-level self-organization accompanied by

“higher-order cooperativity” [14] emerges. Such self-organization involves the parallel regula-

tion of more than 20,000 of different and functionally heterogeneous genes. This in turn sug-

gests that the ordination of gene ensembles (a coarse-grained approach [15–18]) according to

their expression level could be useful candidate for exploring genome-wide regulation.

While by far the great majority of scientists have focused on the details of local gene-expres-

sion control, in this work we approach gene-expression regulation at the global level as an

open thermodynamic (non-equilibrium) system by trying to answer some general questions:

• What is the underlying principle that regulates whole-genome expression through a global

expression transition?

• Are there some differences among different biological systems regarding the global dynamics

of genome expression?

• Is there a key player in the self-organization of expression?

• What is the mechanism of the self-organization that determines the change in the cell fate?

To address these important and still largely unanswered questions, we analyzed experimen-

tal transcriptome time-series of both microarray and RNA sequencing (RNA-Seq) data. We

sought to demonstrate the presence of critical transitions in different biological processes asso-

ciated with changes in the cell fate. We considered (i) early embryonic development in human

and mouse, (ii) the induction of terminal differentiation in human leukemia HL-60 cells by

dimethyl sulfoxide (DMSO) and all-trans-retinoic acid (atRA), (iii) the activation of ErbB

receptor ligands in human breast cancer MCF-7 cells by epidermal growth factor (EGF) and

heregulin (HRG), and (iv) T helper 17 cell differenation induced by Interleukin-6 (IL-6) and

transforming growth factor-β (TGF-β) (Methods).

Our approach is based on an analysis of the dynamics of transcriptome data by means of

the grouping (gene ensembles) of gene expression (averaging behaviors) built upon the results

obtained in our recent papers [10,11] dealing with an MCF-7 cell population (see more in

Methods). These previous studies revealed that self-organizing whole-genome expression

coexisted with distinct response domains (critical states), where the self-organization exhibits

criticality (critical behaviors) and self-similarity at a critical point (CP)—self-organized criti-

cality control (SOC control) of overall expression.

Mechanism of the Cell-Fate Change
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To understand the current analysis based on our previous studies, it is important to eluci-

date the following points:

1. In each critical state, coherent (collective/coordinated) behavior emerges in ensembles of

stochastic expression by more than 50 elements [11]. Due to this coherent-stochastic behav-

ior, it is important to stress that the characteristics of the self-organization through SOC

become apparent only in the collective behaviors of groups with more than 50 genes in terms

of their average value (mean-field approach).

2. SOC control of overall expression through a critical transition explains self-organization

and the coexistence of critical states at a certain time point. This phenomenon cannot be

interpreted in terms of the occurrence of a (first- or second-order) phase transition [19] in

an equilibrium system, i.e., a phase transition in the overall expression from one critical

state to another through a critical transition such as the ferromagnetic transition of iron at

a critical temperature (Tc) (T<Tc: ferromagnetic-ordered magnetic moments; T>Tc: para-

magnetic-disordered). The coexistence of critical states demonstrates the existence of an

internal order parameter such as the amount of gene-expression variance as in our formal-

ism, but not of a control parameter such as temperature. In our previous work [10], use of

the metaphorical example of the ferromagnetic transition to explain the self-organization of

the coexistence of critical states could mislead regarding the true picture of SOC control.

3. Self-organization exhibits super-, near- and sub-critical states corresponding to the ensemble

of high-, intermediate-, and low-variance gene expression, respectively, and their coherent

oscillatory dynamics [10,11]. This difference in expression variance in critical states reveals the

degree of cooperation of critical states based on the change in autocorrelation (Pearson corre-

lation between neighboring time points in a critical state): highest in the super-critical state,

medium in the near- critical state, and lowest (almost no change) in the sub-critical state (Fig

4A in [11]). This shows that stochastic perturbation in expression can spread in the super-criti-

cal state, whereas the perturbation in the sub-critical state is locally confined in time.

4. Despite considerable research over several decades, a general mathematical argument or

formulation regarding the SOC hypothesis under non-equilibrium conditions is still in a

primitive stage. This is due to the fact that there are a myriad of scenarios of self-organiza-

tion with critical behaviors under non-equilibrium conditions, where “a universal classifica-

tion scheme is still missing for non-equilibrium phase transitions and the full spectrum of

universality classes is unknown; it may be large or even infinite.” [20]. Thus, to date, there is

no stereotypic view of SOC in non-equilibrium systems (see more in subsection (iv) of

Discussion).

In the present report, we describe the existence of a temporal interval (which differs for

each system analyzed), where the change in transcriptome expression occurs via SOC at both

single-cell (based on RNA-Seq data) and population levels (microarray data). Notably, the

Fig 1. Correlation of gene expression profiles. A) The same cell types: Left panels: a near-unity Pearson
correlation, r, in whole gene expression (N: total number of mRNAs) within the same cell type is shown for different
types of molecular stimulation (first row: HRG- vs. EGF-stimulated MCF-7 cells; second row: DMSO- vs. atRA-
stimulated HL-60 cells). Right panels: 313 (n) gene expressions, which have a common probe ID among four
transcriptomemicroarray expression data sets (seeMethods) also show a near-unity Pearson correlation within the
same cell type. B)Different cell types (n = 313 gene expressions): The near-unity Pearson correlation between
independent samples of the same cell type breaks down when the gene expression profiles come from different (HL-
60 and MCF-7) cell types. ε(t) represents the ensemble of expression at time point t (N: the whole set; n: an
ensemble set) and ln(ε(t)) represents its natural logarithm, where the natural log of an individual expression value is
taken. Plots show t = 90min for MCF-7-stimulated cells and t = 18h for HL-60-stimulated cells.

doi:10.1371/journal.pone.0167912.g001
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erasure of an initial SOC state, i.e., the disappearance of a sandpile-type critical behavior (criti-

cality) of the initial state (t = 0 or initial cell state) determines when and how a crucial change in

the genome state occurs (sections I and II), which intriguingly coincides with real biological

critical events that determines the change in cell fate (Discussion).

SOC control occurs in a model-specific manner, which reveals that the spatio-temporal

profiles of self-organization in overall expression regulation differ among the different tested

systems; distinct critical states can coexist (section III). Furthermore, the emergent property

of the coherent dynamics in critical states helps us to understand how the emergent sloppiness

is exhibited in the genome-wide expression dynamics (section IV).

In sections V and VI, we demonstrate that a molecular stressor such as HRG in MCF-7

cells and DMSO in HL-60 cells, which induce cell differentiation, dynamically perturbs the

genome-wide self-organization in SOC, and as a result, terminal cell fates occur at the end of a

dissipative pulse-like global perturbation in self-organization. The perturbation of SOC occurs

due to the exchange of expression flux among critical states through the cell nucleus environ-

ment as an open thermodynamic system. The quantitative evaluation of such flux flow reveals

a mechanical picture of the interactions of critical states (“genome engine”;Discussion), and

their roles in self-organization; most notably, sub-critical states (ensembles of genes with low-

variance expression) are the central players for deriving the temporal development of self-

organization. There is no fine-tuning by an external driving parameter to maintain critical

dynamics in the SOC control of genome expression.

The elucidation of a statistical mechanism of the cell-fate change revealed through the per-

turbation of SOC in open thermodynamic gene regulation may contribute to new advances in

our understanding of the dynamic aspects of epigenomics and help to clarify the material

bases of biological regulation (Discussion).

Methods

Biological Data Sets

We analyzed mammalian transcriptome experimental data for seven distinct cell fates in dif-

ferent tissues:

1. Cell population: Microarray data of the activation of ErbB receptor ligands in human breast

cancer MCF-7 cells by EGF and HRG; Gene Expression Omnibus (GEO) ID: GSE13009

(N = 22277 mRNAs; experimental details in [21]), which has 18 time points: t0 = 0, t1 = 10,

15, 20, 30, 45, 60, 90min, 2, 3, 4, 6, 8, 12, 24, 36, 48, tT = 17 = 72h,

2. Cell population: Microarray data of the induction of terminal differentiation in human leu-

kemia HL-60 cells by DMSO and atRA; GEO ID: GSE14500 (N = 12625 mRNAs; details in

Fig 2. Transition of gene expression from a stochastic to a genome-wide attractor profile. A) Plot shows
the whole expression profiles at 10min (x-axis) and 15min (y-axis) for the HRG response in MCF-7 cells. A
box is constructed from the center of mass (i.e., average of whole expression), (CM(10min), CM(15min)) (black
dot); a box contains gene expression within the range from CM(tj)—d to CM(tj) + dwith a variable box size, d. To
highlight the scaling of the Pearson correlation with box size d, rd for d = 0.05, 0.1 and 0.2 are reported. The plot
in the upper left corner shows that, between gene expression profiles, the Pearson correlation rd follows a
tangent hyperbolic function: rd = 0.97 � tanh(6.79 � d − 0.039) (p<10−4), which reveals a critical transition in the
correlation development. B) Stream plots for the box sizes in Panel A. These plots are generated from the vector
field values {Δxi, Δyi} at expression points {xi(10min), xi(15min)}, where Δxi = xi(15min)—xi(10min), Δyi =
xi(20min)—xi(15min), and xi(tj) is the natural log of the ith expression: xi(tj) = ln(εi(tj)) at t = tj (tj = 10min or 15min;
i = 1,2,..,N = 22,277). Blue lines represent streamlines and red arrows represent vectors at a specified
expression point (plot every 2nd, 6th 10th and 20th point for d = 0.05, 0.1, 0.2, and the whole set, respectively).
When wemove from a small number of genes to the whole set, gene expression shifts from a stochastic to a
genome-wide attractor profile.

doi:10.1371/journal.pone.0167912.g002
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[22]), which has 13 time points: t0 = 0, t1 = 2, 4, 8, 12, 18, 24, 48, 72, 96, 120, 144, tT = 12 =

168h,

3. Single cell: RNA-Seq data of T helper 17 cell differentiation from mouse naive CD4+ T cells

in RPKM values (Reads Per Kilobase Mapped), where Th17 cells are cultured with anti-IL4,

anti-IFNγ, IL-6 and TGF-β (details in [23]); GEO ID: GSE40918 (mouse: N = 22281 RNAs),

which has 9 time points: t0 = 0, t1 = 1,3,6,9,12,16,24, tT = 8 = 48h,

4. Single cell: RNA-Seq data of early embryonic development in human and mouse develop-

mental stages in RPKM values; GEO ID: GSE36552 (human: N = 20286 RNAs) and

GSE45719 (mouse: N = 22957 RNAs) (experimental details in [24]) and [25], respectively).

We analyzed 7 human and 10 mouse embryonic developmental stages:

Human: oocyte (m = 3), zygote (m = 3), 2-cell (m = 6), 4-cell (m = 12), 8-cell (m = 20), mor-

ula (m = 16) and blastocyst (m = 30),

Mouse: zygote (m = 4), early 2-cell (m = 8), middle 2-cell (m = 12), late 2-cell (m = 10),

4-cell (m = 14), 8-cell (m = 28), morula (m = 50), early blastocyst (m = 43), middle blastocyst

(m = 60) and late blastocyst (m = 30), where m is the total number of single cells.

For microarray data, the Robust Multichip Average (RMA) was used to normalize expres-

sion data for further background adjustment and to reduce false positives [26–28], whereas for

RNA-Seq data, RNAs that had zero RPKM values over all of the time points were excluded.

Random real numbers in the interval [0–1] generated from a uniform distribution were added

to all expression values for the natural logarithm. This procedure avoids the divergence of zero

values in the logarithm. The robust mean-field behavior through the grouping of expression

(see section II) was checked by multiplying the random number by a positive constant, a (a<

10), and thus, we set a = 1. Note: The addition of large random noise (a>>10) destroys the

sandpile CP.

Emergent Properties of SOC in the Mean-Field Approach

In this report, we examine whether characteristic behavior at a critical point (CP) is present in

overall expression to investigate the occurrence of SOC in various cell fates. We briefly sum-

marize below how SOC in overall gene expression was elucidated in our previous studies

[10,11].

1. Global and local genetic responses through mean-field approaches: Our approach was

based on an analysis of transcriptome data by means of the grouping (gene ensembles) of

gene expression (mean-field approach) characterized by the amount of change in time to

reveal the coexistence of local and global gene regulations in overall gene expression

[29,30]. A global expression response emerges in the collective behavior of low- and inter-

mediate-variance gene expression, which, in many expression studies, is cut-off from the

whole gene expression by an artificial threshold, whereas a local response represents the

genetic activity of high-variance gene expression as elucidated in molecular biology.

2. Self-organized criticality as an organizing principle of genome expression: To under-

stand the fundamental mechanism/principle for the robust coexistence of global and local

gene regulation, and further, the role of the global gene expression response, we elucidated

a self-organized criticality (SOC) principle of genome expression that could account for

global gene regulation [11]. In self-organization, the temporal variance of expression, nrmsf

(normalized root mean square fluctuation), acts as an order parameter to self-organize

whole gene expression into distinct expression domains (distinct expression profiles)

defined as critical states, where nrmsf is defined by dividing rmsf by the maximum of overall

Mechanism of the Cell-Fate Change
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{rmsfi}:

rmsfi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T þ 1

PT

j¼0ðεiðtjÞ � hεiiÞ
2

r

;

where rmsfi is the rmsf value of the ith expression (mRNA or RNA), which is expressed as εi(tj)

at t = tj (j = 0,1,..,T) and hεii is its temporal average (note: we use an overbar for a temporal

average when ensemble and temporal averages are needed to distinguish).

3. Coherent-stochastic behaviors in critical states: Coherent expression in each critical state

emerges when the number of stochastic expressions is more than 50 [11] (called coherent-

stochastic behavior: CSB). The bifurcation—annihilation of the ensemble of coherent gene

expression determines the boundary of critical states (Fig 5 in [10]).

4. Biophysical reason for specific groupings: Coherent dynamics such as coherent oscillation

emerge in the change in expression (e.g., fold change) (refer to Fig 7 in [10]; static and

dynamic domains correspond to sub- and super-critical states, respectively), but not in

expression itself. Furthermore, the change in expression but not expression itself, is ampli-

fied in a critical state (Fig 6B in [11])). This indicates stochastic resonance effect in the

change in expression. Thus, regarding self-organization, we investigated averaging behav-

iors in nrmsf (order parameter) and the change in expression.

5. Characteristic properties of SOC: Distinctive critical behaviors emerge at a critical point

in the averaging of two observables: the fold change in expression and nrmsf. Importantly,

different critical behaviors (i.e., criticality) that occur at the same CP can originate from dif-

ferent averaging behaviors (MCF-7 cells [11]), which confirms that the mean-fields are not

a statistical artifact. We call these sandpile-type transitional behavior and scaling-divergent

behaviors at a critical point (CP) summarized as follows:

a. Sandpile-type transitional behavior is based on the grouping of expression into k

groups with an equal number of n elements according to the fold change in expression.

A sandpile-type transition is the most common in SOC [31]. As n increased, the average

value of a group (a mean-field) converges, and an ensemble of averages exhibits a sand-

pile profile. Good convergence in the group is obtained above n = 50 (Fig 2 in [11]),

which stems from CSB. The top of the sandpile is a critical point (CP), where the CP usu-

ally exists at around a zero-fold change (null change in expression), and up- and down-

regulated expression is balanced between different time points. This indicates that the

critical behavior occurs through a ‘flattened expression energy profile’. This flatness sug-

gests that the strength of the correlation tends to increase with the size of the system

ensemble. As noted, a critical point can exist away from a zero-fold change through era-

sure of the initial-state criticality. A sandpile-type critical behavior shows that, as the dis-

tance from the CP (summit of the sandpile) increases, two different regulatory

behaviors, which represent up-regulation and down-regulation, respectively, diverge.

Furthermore, in the vicinity of the CP according to nrmsf, in terms of coherent expres-

sion, self-similar bifurcation of overall expression occurs to show transitional behavior

(Figs 1, 3A in [11]). Thus, since a critical behavior and a critical transition occur at the

CP, we can characterize it as a sandpile-type transition.

b. Scaling-divergent behavior (genomic avalanche) is based on the grouping of expres-

sion according to nrmsf: a nonlinear correlation trend between the ensemble averages of

nrmsf and mRNA expression at a fixed time point. Originally, we called this the DEAB

Mechanism of the Cell-Fate Change
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(Dynamic Emergent Averaging Behavior) of expression [10], which has both linear (scal-

ing) and divergent domains in a log-log plot. In the scaling domain, the quantitative rela-

tionship between the ensemble averages of nrmsf and mRNA expression,<nrmsf> and

<ε>, is shown in terms of power-law scaling behavior, where higher<nrmsf> corre-

sponds to higher<ε>:

1� hnrmsf i ¼ ahεi�b
:

Such scaling is lost at the CP in the MCF-7 cell fates. This shows that order (scaling) and

disorder (divergence) are balanced at the CP, which presents a genomic avalanche. The scal-

ing-divergent behavior reflects the co-existence of distinct response domains, i.e., critical

states. In S1 File, we address the genuineness of the power-law scaling and the existence of col-

lective behavior of gene expression in power-law scaling.

Chromosomes exhibit a fractal organization; thus, the power law behavior may reveal a

quantitative relation between the aggregation state of chromatin through nrmsf and the aver-

age expression of an ensemble of genes. The entity of gene expression likely scales with the

topology-associated chromatin domains (TADs), such that the degree of nrmsf should be

related to the physical plasticity of genomic DNA and the high-order chromatin structure.

Dynamic Flux Analysis for an Open Thermodynamic Genomic System

Sloppiness in SOC control reveals that genome expression is self-organized into a few critical

states through a critical transition. The emergent coherent-stochastic behavior (CSB) in a criti-

cal state corresponds to the scalar dynamics of its center of mass (CM), X(tj), where X 2

{Super,Near,Sub}: Super, Near and Sub represent the corresponding critical states (section

VI). Thus, the dynamics of X(tj) are determined by the change in the one-dimensional effective

force acting on the CM. We consider the effective force as a net flux of incoming flux from the

past to the present and outgoing flux from the present to the future. Based on this concept of

flux, it becomes possible to evaluate the dynamical change in the genetic system in terms of

flux among critical states through the environment.

1. Self-flux. The effective force is deduced as the decomposition of IN flux from the past

(tj-1) to the current time (tj) and OUT flux from the current time (tj) to a future time (tj+1), so

that the effective force as a net self-flux, f (X(tj)) from its temporal average, can be written as

f ðXðtjÞÞ ¼
DP

Dt
¼

1

Dt

(

ðXðtjÞ � Xðtj�1ÞÞ

Dtj

�
ðXðtjþ1Þ � XðtjÞÞ

Dtjþ1

)

� hf ðXÞi

¼ ðIN flux� hIN f luxiÞ � ðOUT flux� hOUT fluxiÞ;

ð1Þ

where ΔP is the change in momentum with a unit mass (i.e., the impulse: FΔt = ΔP) for a time

difference: Δt = tj+1—tj-1, and Δtj = tj—tj-1; tj is the natural log of the jth experimental time

point (refer to biological data sets); the CM of a critical state is X tj

� �

¼ 1

N

PN

i¼1lnðεiðtjÞÞ with

the natural log of the ith expression εi(tj), ln (εi(tj)) at t = tj; the temporal average of the net self-

flux,<f(X)> =<INflux>—<OUTflux>, and N is the number of expressions in a critical state

(Table 1).

As noted, the negative force, f (X(tj)), is taken such that a linear term in the nonlinear

dynamics of X(tj) corresponds to a force under a harmonic potential energy. The sign of the

net self-flux shows the net incoming force to X(tj) (X< =): net IN flux for f(X(tj))> 0, and net

outgoing force from X(tj) (X =>): net OUT flux for f(X(tj))< 0, where the net IN (OUT) flux

corresponds to activation (deactivation) flux (force), respectively.
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2. Interaction flux. The degree of interaction can be evaluated as the exchange of effective

force, so that the interaction force can again be decomposed into an IN-coming interaction

flux of a critical state, X(tj) from another critical state or the environment, Y, from the past (tj-

1) to the current time (tj), and an OUT-going interaction flux of X(tj) to Y from the current

time (tj) to the future (tj+1), and the net interaction flux is defined as

f ðXðtjÞ;YÞ ¼
1

Dt

ðXðtjÞ � Yðtj�1ÞÞ

Dtj

�
ðYðtjþ1Þ � XðtjÞÞ

Dtjþ1

( )

� hf ðX;YÞi; ð2Þ

where the interaction flux can be similarly defined by the first and second terms, which repre-

sent IN and OUT flux (refer to Eq (1)), respectively, and Y 2 {Super,Near,Sub,E} with Y 6¼ X: E

represents the environment, and hf(X;Y)i is the temporal average. The sign of the net interac-

tion flux (Eq (2)) corresponds to the direction of interaction: net IN interaction flux (Y =>X)

for positive and net OUT interaction flux (X =>Y) for negative. The interaction flux between

critical states can be defined when the number of expressions in a critical state is normalized.

3. The flux network. Due to the law of force, the net self-flux of a critical state, X(tj), is the

summation of interaction fluxes (Eq (2)) with the other critical states and the environment

given by

f ðXðtjÞÞ ¼
X

M¼2

i¼1

f ðXðtjÞ;AiÞ þ f ðXðtjÞ;EÞ; ð3Þ

where Ai 2 {Super,Near,Sub} with Ai 6¼ X, and M is the number of internal interactions

(M = 2). Eq (3) tells us that the sign of the difference between the net self-flux and the overall

contribution from internal critical states, f ðXðtjÞÞ �
PM¼2

i¼1 f ðXðtjÞ;AiÞ, reveals incoming flux

(positive) from the environment to a critical state or outgoing flux (negative) from a critical

state to the environment; when the difference in all critical states becomes zero, the genome

system itself is closed thermodynamically (no flux flow from the environment).

4. The average flux balance. If we take a temporal average of Eqs (1) or (3) and Eq (2) for

the data for both MCF-7 and HL-60 cells, we obtain the average flux balances of a critical state

(Table 2), X, and its interaction with other states or the environment, respectively:

hf ðXÞi � 0; and hf ðX;YÞi þ hf ðY;XÞi � 0: ð4Þ

Table 1. Averaged Critical States.

Averaged Critical States MCF-7 cells HL-60 cells

N = 22277 N = 12625

HRG EGF DMSO atRA

Super-critical 0.165<nrmsf 0.160<nrmsf 0.110<nrmsf 0.115 <nrmsf

3051 mRNAs 1969 mRNAs 2582 mRNAs 2465 mRNAs

Near-critical 0.094<nrmsf<0.165 0.081<nrmsf<0.160 0.078<nrmsf<0.110 0.095<nrmsf<0.115
6814 mRNAs 9119 mRNAs 2226 mRNAs 995 mRNAs

Sub-critical nrmsf<0.094 nrmsf<0.081 nrmsf<0.078 nrmsf<0.095
12412 mRNAs 11189 mRNAs 7817 mRNAs 9205 mRNAs

doi:10.1371/journal.pone.0167912.t001
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Results

The coherent dynamics of an ensemble of stochastic expression can be represented as a hill-

like function, which is defined as a ‘coherent expression state (CES)’, with regard to the proba-

bility density profile in the regulatory space (expression vs. fold change in the expression)

[10,11]. The emergence of a CES at around the critical point (CP) that marks the transition

allows us to describe critical transitions in distinct cell types. Fig 3A shows, as an example,

that, in DMSO-stimulated HL-60 cell differentiation, through the grouping of expression

based on the fold change in expression (see why inMethods), a sandpile-type critical behavior

is observed at 18-24h. These critical dynamics regarding the change in expression (e.g., fold

change) emerges due to stochastic resonance [11].

Around the critical behavior in terms of nrmsf (normalized root mean square fluctuation,

seeMethods), symmetry breaking occurs, which corresponds to the annihilation of a CES at a

lower expression level and the bifurcation of another CES at a higher expression level through

a flattened profile in the regulatory space (Fig 3B). The maximum density of the coherent state

Table 2. Average Interaction Fluxes: Arrow shows the direction of flux.

MCF-7 MCF-7 HL-60 HL-60

HRG EGF DMSO atRA

Super-Critical SINK

1–2 Super 0.3 0.2 1.3 0.5

 

Near

1–3 Super 1.9 1.6 2.6 2.5

 

Sub

1-E Super -2.2: -1.8: -3.9: -3.0:

! 1.3(Near) 1.2 0.0 1.5

EN -3.5(Sub) -3.0 3.9 -4.5

Near-Critical

2–1 Near -0.3 -0.2 -1.3 -0.5

!

Super

2–3 Near 1.6 1.4 1.3 2.0

 

Sub

2-E Near -1.3 -1.2 0.0 -1.5

!

EN

Sub-Critical SOURCE

3–1 Sub -1.9 -1.6 -2.6 -2.5

!

Super

3–2 Sub -1.6 -1.4 -1.3 -2.0

!

Near

3-E Sub 3.5 3.0 3.9 4.5

 

EN

doi:10.1371/journal.pone.0167912.t002
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follows a step functional like the critical transition at the CP (Fig 3C). The critical transition of

coherent expression in the vicinity of the CP shows self-similar behavior to that of the overall

expression (see section III) in DMSO-stimulated HL-60 cells, i.e., the sandpile-type critical

point exhibits a critical transition (called sandpile type critical transition). We also observed a

sandpile-type critical transition at a CP in HRG-stimulated cell differentiation [11].

Next, when the DMSO-induced expression matrix is randomly shuffled, no sandpile-type

CP is present (Fig 3D: right panel): the fold change scales almost linearly with the logarithm of

the level of expression. The corresponding frequency distribution changes from non-Gaussian

to Gaussian according to nrmsf (section III). This shows that (i) gene expression becomes ran-

dom due to the random shuffling of gene expression, and (ii) such randomized expression

destroys the sandpile-type critical behavior seen in Fig 3A.

Hence, we arrive to the conclusion that it is crucial to investigate the existence of a critical

point or criticality for SOC control in overall expression.

I. Perturbation of SOC control and the Genome-State Change

We investigated the occurrence of critical transitions in distinct cell types. First, we examined

whether the sandpile-type critical transition (seeMethods) occurs around the zero-fold change

(i.e., null change in expression) between different time points. The critical point (CP), at the

top of the sandpile, corresponds to a group of genes that show almost no (average) change in

expression. Next, we assessed whether or not the CP is a fixed point in time by evaluating if the

average nrmsf value of the CP group changes over time. The basic hypothesis that justifies the

choice of nrmsf as a metric for evaluating gene-expression dynamics is that gene expression

groups scale with topology-associated chromatin domains (TADs) [32–36]. The degree of

gene expression normalized fluctuation is presented with respect to chromatin remodeling,

i.e., nrmsf is expected to be associated with the physical plasticity of genomic DNA and the

high-order chromatin structure [11]. Thus, we can expect that, as the flexibility of a given

genome patch increases, so should the nrmsf of the corresponding genes. To confirm this fur-

ther, the scaling-divergent behaviors (Fig 4 andMethods) of nrmsf and average expression,

another important feature of SOC, may show a quantitative relation with the aggregation state

of chromatin. In S1 File, we show that gene expression exhibits collective behavior (as coher-

ent-stochastic behavior: CSB) in the power-law scaling through interactions among genes.

Fig 3. Self-organized criticality (SOC) in the DMSO-stimulated HL-60 cell fate. A) The grouping of whole
expression at 18-24h generates 25 groups with an equal number of 505 elements (mRNAs) according to the fold
change in expression. A plot of the average value for each group in log-log space (x: fold change at 18-24h vs. y:
expression at 24h) reveals a sandpile-type critical behavior at the critical point (CP), where the CP in terms of the
ensemble (group) average (< >) occurs at the near-zero-fold change (x = 0; null expression change; x-axis) with <nrmsf

(CP)> = 0.0756. Orange dots represent single mRNA expression in the background. B) The probability density function
for the ensemble of expression (coherent expression state: CES) is shown in the regulatory space (x: expression at 24h
vs. y: fold change in expression at18h-24h). Plots show that around <nrmsf(CP)> = 0.0756, a CES (highest density: x<
2.0) is annihilated and a new CES (highest density: x> 2.0) is bifurcated. The left to right panels show the sequence of
the bifurcation-annihilation event: before (I: 0.060 <nrmsf< 0.070: <nrmsf> = 0.0647), onset (II: 0.071 <nrmsf< 0.081:
<nrmsf> = 0.0756)) and after the event (III: 0.078 <nrmsf< 0.088: <nrmsf> = 0.0828). Colored bars represent the
probability density. C) The corresponding plot (B) reveals that a step function-like critical transition occurs at <nrmsf

(CP)> = 0.0756 in the space (x: <nrmsf> of coherent state vs. y: its expression of the highest density at 18h). Blue and
black arrows represent average values of the density trends before and after the transition, respectively. The plot
shows, in the vicinity of the CP, the occurrence of a self-similar bifurcation (symmetry breaking) in the expression profile
to that of the overall expression (see section III). D) RandommRNADMSO expression matrix reveals that, in this case,
a CP does not exist. This is confirmed by anomalous features of the corresponding SOC (Methods): non-scaling-
divergent (3 different time points are shown by colors) and non-sandpile critical behavior of random expression between
two different time points (orange dots: single random expression). The randommatrix is made by randomly selecting
eachmatrix component (i,j) from the original DMSO expression matrix (12625 expression (i) times 13 time points (j)).
We observed similar linear correlative behaviors for other cells in both microarray and RNA-Seq data.

doi:10.1371/journal.pone.0167912.g003

Mechanism of the Cell-Fate Change

PLOSONE | DOI:10.1371/journal.pone.0167912 December 20, 2016 14 / 47



Mechanism of the Cell-Fate Change

PLOSONE | DOI:10.1371/journal.pone.0167912 December 20, 2016 15 / 47



A transcriptome analysis based on a mean-field (grouping) approach (Methods) reveals

that sandpile transitions occur and the position of the CP exhibits time-dependence in terms

of nrmsf, which reflects the temporal development of SOC, i.e., the CP is not a fixed point (Fig

4). Interestingly, the CP of the initial state disappears over time, suggesting the occurrence of a

crucial change in the genome state (Fig 5). Regarding critical transitions around the CP (Fig

6), different types of dynamical bifurcation or annihilation of a characteristic coherent expres-

sion state occur around the CP in different cell models:

1. Unimodal-flattened-bimodal transition for MCF-7 cell-HRG and -EGF models, and

2. Unimodal-flattened-unimodal transition for HL-60 cell-atRA and -DMSO.

Both models point to symmetry breaking in the expression profile.

These results offer the following insights:

1. SOC control in different cell models: The self-similarity of symmetry breaking around the

CP suggests the existence of critical states (distinct transcription response domains) in dif-

ferent cell models (see section III). Furthermore, the self-similarity in the overall expression

suggests the occurrence of i) a unimodal-flattened-bimodal transition for MCF-7 cell fates,

and ii) a unimodal-flattened-unimodal transition for HL-60 cell fates, which will be shown

to be robust over time (section III), except for a transient change (see Fig 6A, an example

in the HRG response: a bimodal-bimodal transition at 15–20 min due to a bifurcation in

the unimodal profile; refer also to Fig 7B in [10]). The flattened distribution shows that the

degree of cooperation in expression regulation, i.e., the strength of the correlation around

the CP, tends to increase with the size of the system ensemble, as expected in the critical

dynamics of biological systems (see more in subsection (iv) ofDiscussion). The unimodal-

unimodal transition in HL-60 cell fates stems from the fact that a pair of two coherent

expression states (a bimodal expression profile as an autonomous bistable switch [10,11])

collapses to a single coherent state in the scaling region (low nrmsf region: Fig 4B).

2. Perturbation of SOC control: The temporal development of SOC control reflects the pres-

ence of dynamic changes in critical states in terms of both exchanging of genes between

critical states and changes in the expression profile. This implies the perturbation of SOC

control through the interaction between critical states (see sections V and VI).

Fig 4. Time-development of the characteristic behaviors of SOC. A) MCF-7 cells and B) HL-60 cells. At each
experimental time point, tj (A: 18 time points and B: 13 points;Methods), the (ensemble) average nrmsf value of the
CP at t = tj, <nrmsf(CP(tj))> is evaluated at the sandpile-type critical point (top of the sandpile: right panels). In the top
center panels, <nrmsf(CP(tj))>, is plotted against the natural log of tj (A: min and B: hr). Error bar represents the
sensitivity of <nrmsf(CP(tj))> around the CP(tj), where the bar length corresponds to the change in nrmsf in the
x-coordinate (fold-change in expression) from x(CP(tj))—d to x(CP(tj)) + d for a given d (A: d = 0.005; B: d = 0.01;

due to muchmore mRNAs in MCF-7 cells). Temporal averages of <nrmsf(CP(tj))> are A)< nrmsfðCPÞ >HRG = 0.094

and< nrmsfðCPÞ >EGF = 0.081, and B)< nrmsfðCPÞ >DMSO, atRA = 0.078, where an overbar represents temporal
average. Note: An overbar for a temporal average is used when ensemble and temporal averages are needed to
distinguish. A) MCF-7 cells: The temporal trends of <nrmsf(CP(tj))> are different for HRG and EGF. The onset of

scaling divergence (left panels: second and third rows) occurs at around< nrmsfðCPÞ > (black dashed line), and
reflect the onset of a ‘genome avalanche’ (Methods). B) HL-60 cells: The trends of <nrmsf(CP(tj))> for the responses
to both DMSO (black line) and atRA (blue) seem to be similar after 18h (i.e., global perturbation; see section VI).
The scaling-divergent behaviors for both DMSO and atRA reveal the collapse of autonomous bistable switch (ABS
[10,11]) exhibited by the mass of groups in the scaling region (black solid cycles) for both DMSO and atRA. The onset

of divergent behavior does not occur around the CP (< nrmsfðCPÞ > = 0.078), but rather is extended from the CP
(see section III). The power law of scaling behavior in the form of 1- <nrmsf> = α<ε>-β is: A) α = 1.29 & β = 0.172 (p<
10−10) for HRG, and α = 1.26 & β = 0.157 (p<10−9) for EGF; B) α = 1.60 & β = 0.301 (p< 10−6) for DMSO, and α = 1.42
& β = 0.232 (p< 10−6) for atRA. Each dot (different time points are shown by colors) represents an average value of A)
n = 742 mRNAs for MCF-7 cells, and B) n = 505 mRNAs for HL-60 cells.

doi:10.1371/journal.pone.0167912.g004

Mechanism of the Cell-Fate Change

PLOSONE | DOI:10.1371/journal.pone.0167912 December 20, 2016 16 / 47



Mechanism of the Cell-Fate Change

PLOSONE | DOI:10.1371/journal.pone.0167912 December 20, 2016 17 / 47



Interestingly, regarding HL-60 cell fates, at 12-18h, a pulse-like global perturbations involv-

ing the regulation of critical states occur for the responses to both DMSO and atRA (section

VI). After 18h, the temporal trends of the CP(tj) for DMSO and atRA in terms of nrmsf

become similar (Fig 4B). Note that the bifurcation-annihilation events of CES around the

CP for both DMSO and atRA at 24-48h become almost identical (data not shown). This

shows that the dissipation of the stressor-specific perturbation in HL-60 cells drives the cell

population toward the same attractor state [22,37].

3. Genome-state change: Critical dynamics appear in the change in expression between dif-

ferent time points. Thus, in the change in expression at t0-tj (t0<tj), the erasure of the criti-

cality of the initial state (Fig 5) at t = tj indicates that a genome-state change occurs: at 3h in

HRG-stimulated MCF-7 cells, and at 24h and 48h in DMSO- and atRA-stimulated HL-60

cells. These HL-60 genome-state changes further confirm that both DMSO- and atRA-stim-

ulated HL-60 cells converge toward the same global gene-expression profile at 48h. Erasure

of the initial-state critical behavior occurs in different cell types; divergent behavior in up-

regulation (a partial erasure of criticality) disappears in HRG-stimulated MCF-7 cells,

whereas the full erasure of criticality occurs in both DMSO- and atRA-stimulated HL-60

cells. As demonstrated in section VI, these genome-state changes occur after dissipative

pulse-like global perturbations in SOC control (at 12-18h for HL-60 cells and at 15-20min

for HRG-stimulated MCF-7 cells). In contrast, as a proof of concept, the genome-state

change does not occur in EGF-stimulated MCF-7 cell (Fig 5; refer also to local perturbation;

section VI), which is consistent with cell proliferation (and the absence of differentiation)

in the EGF response [38,39].

Note: The independence of the choice of the initial state at t = t0 for the breakdown of sand-

pile type criticality at t = tb (condition: t0<tb) further confirms the timing of the genome-state

change. We observed that the time point (t0) of the initial state is earlier or equal to the onset

of the pulse-like global perturbation (12-18h) for DMSO-stimulated HL-60 cells (t0�12h; see

S1 Fig); after the global perturbation, this independence breaks (i.e., the breakdown of sand-

pile type criticality does not occur), suggesting that a pulse-like global perturbation directly

concerns with the first stage of cell-fate determination (process for autonomous terminal dif-

ferentiation; see subsection (ii) inDiscussion). The changes in the genome, thus, reveal two

critical events: a pulse-like global perturbation and erasure of the initial-state criticality that

determine the cell-fate change (see subsections (i)-(iii) inDiscussion).

To dig deeper into these findings, in the following sections, we investigate the transcrip-

tome SOC control in embryonic development at a single-cell level based on next-generation

RNA sequencing data, and address mechanism of the genome-state change in terminal cell

fates revealed through the perturbation of genome-wide self-organization.

Fig 5. Genome-state change revealed through erasure of the initial-state criticality in overall expression (cell population
level): The grouping of overall expression at t = tj (j 6¼ 0) according to the fold change in expression from the initial overall
expression (t = 0) shows how the initial-state critical behavior is erased over time, i.e., a sandpile profile in overall expression
is destroyed at t = tj from t = 0. This event points to the time when the genome-state change occurs. On the x-axis, ln(<ε(t)/ε(0h)>) (t:
min or hr) represents the natural log of the ensemble average (< >) of the fold change in expression, ε(t)/ε(t = 0h), and on the y-axis, ln
(<ε(t)>) represents the natural log of the ensemble average of expression, <ε(t)>. A) MCF-7 cells: In HRG-stimulated cells (black), the
divergent behavior in up-regulation is no longer observed, and the same shape is apparent after 3h. This suggests that the genome-
state change occurs at 3h (red) through erasure of the initial-state up-regulation process (partial erasure). In contrast, in EGF-
stimulated cells (blue), almost the same sandpile profile remains for up to 36h, which suggests that no genome-state change occurs
(see the local perturbation in Fig 14). B) HL-60 cells: A CP is erased at 24h (red) and 48h (red) in DMSO- (black) and atRA-stimulated
(blue) cells through the disappearance of divergent behaviors in both up- and down-regulation of the initial state (full erasure),
respectively. Furthermore, these plots suggest that the epigenomic states in DMSO- and atRA-stimulated cells become the same after
48h. Note: The Pearson correlations of overall expression between different time points are near-unity (Fig 1A). Each dot represents
the average value of A) n = 742mRNAs for MCF-7 cells, and B) n = 505 mRNAs for HL-60 cells.

doi:10.1371/journal.pone.0167912.g005
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Fig 6. The self-similar bifurcation or annihilation of a characteristic coherent expression state in the vicinity of a
critical point in different cell types. A coherent expression state (CES), which contains approximately 1000 expression
points, is bifurcated or annihilated around the CP through nrmsf grouping. The average nrmsf of an expression group, <nrmsf>,
is evaluated for a variable range: x + 0.01.(m-1) <nrmsf< x + 0.01.m (integer,m�10 for each x = 0.7, 0.8 and 0.9). The
probability density function (PDF) in the regulatory space (z-axis: probability density) around <nrmsf(CP)> shows. A) MCF-7
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II. Control of Single Zygotic Cell Embryonic Development and T helper
17 Cell Differentiation Through Self-Organized Criticality

The RNA-Seq approach allows us to check the tenability of SOC control at a single-cell level.

Here we analyze RNA-Seq data related to immune cell differentiation, and human and mouse

embryonic development.

Fig 7A shows Pearson correlations between gene expression profiles related to the zygote

and early embryo single-cell states. We previously demonstrated (see Fig 1) that the between-

profiles Pearson correlation follows a tangent hyperbolic function with an increase in the num-

ber of genes. A similar transitional behavior (the presence of a critical transition) is observed

in both human and mouse early embryo development. This transition takes place between the

4-cell and 8-cell states in human and between the middle and late 2-cell states in mouse.

Notably, the correlation transition corresponds to the onset of the breakdown of SOC con-

trol in early embryo development according to the number of cell states starting from the

zygote single-cell state. In both human and mouse embryos, the maternal SOC zygote controls

break down through cell-state development, and the overall expression becomes stochastic. In

human, the maternal SOC zygote control survives until the 8-cell state stage. After the morula

state (Fig 7B), no sandpile-type critical point exists, and the overall gene-expression profile is

fully stochastic compared with the overall expression in the zygote (see S2 Fig), which indi-

cates that the memory of genome expression in the zygote is lost in the morula state. In con-

trast, in the mouse embryo (Fig 7C), the maternal SOC controls survive from the zygote to the

2-cell state (middle stage).

The breakdown of early SOC zygote control in overall expression indicates that significant

global perturbation (refer to section VI) occurs to destroy the SOC zygote control in early

embryo development. The human scenario may be explained by the known fact that the

genome of the human embryo is not expressed until the 4–8 cell stage, which suggests that

there is no apparent significant perturbation as reprogramming in early human embryo devel-

opment (see more inDiscussion). The timing of reprogramming is further confirmed by

the independence of the breakdown of criticality from the choice of the initial cell-state (see

S1 Fig).

Along similar lines of reasoning, T helper 17 (Th17) cell differentiation shows that initial

SOC control (t = 0) is destroyed after 3h (Fig 7D), which reveals that the Th17 genome-state

changes at around 3-6h after the induction. Sandpile criticality emerges again after 6h in Th17

cell differentiation (see S2 Fig). The embryo and immune cell results confirm the presence of

specific SOC controls, not only in large cell populations, but also at a single-cell level.

Next, we examine the development of SOC control between sequential cell states. As shown

in Fig 8, from the zygote to the morula state in mouse, one sandpile-type critical regulation

transitions to another through a non-critical transition of regulation (absence of critical behav-

iors: non-SOC control) in the middle-late 2-cell state. This confirms that reprogramming of

the early mouse embryo cells from the zygote destroys SOC control to initiate self-organization

cells: In the HRG response at 15-20min, around <nrmsf(CP)> (<nrmsf(CP)>HRG = 0.0948 and <nrmsf(CP)>EGF = 0.0809; Fig
4A), the PDF exhibits a bimodal-flattened-bimodal transition, in which a bimodal profile points to the existence of two CESs: one
represents a low-expression state (LES) and the other represents a high-expression state (HES); the valley defines the
boundary between low and high expression [10]. In the EGF response (second row), above <nrmsf(CP)>, a low-expression
state (LES) is annihilated and only a high-expression state (HES) exists, i.e., a unimodal-bimodal transition is present. In the
HRG response, at a time period other than 15-20min, a unimodal-bimodal transition occurs [10]. This result shows the self-
similar symmetry-breaking event to the overall expression for MCF-7 cells, even at a transient change in the HRG response: a
bimodal-flattened-bimodal transition at 15–20 min. B) HL-60 cells: A unimodal-flattened-unimodal transition occurs at 18-24h
(pseudo-3-dimensional PDF plots of Fig 3B) for DMSO and at 0-2h for atRA, which again reveals the self-similarity to the
overall expression for HL-60 cells (section III).

doi:10.1371/journal.pone.0167912.g006
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Fig 7. Genome-state change revealed through erasure of the initial-state critical point in overall expression
(single cell level): Transcriptome RNA-Seq data (RPKM) analysis for A-C) human and mouse embryo development, and
D) T helper 17 cell differentiation. A) In both human and mouse embryos (red: human; blue; mouse; refer to development
stages inMethods), a critical transition is seen in the development of the overall expression correlation between the cell
state and the zygote single-cell stage, with a change from perfect to low (stochastic) correlation: the Pearson correlation for
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in the new embryonal genome at the late 2-cell state, which exhibits a stochastic overall expres-

sion pattern (Fig 7C). Thereafter, the SOC control again takes over embryo development.

Non-SOC control exhibits almost a linear behavior, which is a characteristic of randomized

expression (see S2 Fig and refer to the similar linear behavior in Fig 3D in a different cell

type).

The transition of SOC control through non-SOC control suggests that an SOC-control

“landscape”, i.e., a valley (SOC control)—ridge (non SOC control)—valley (SOC control), is

seen in early mouse embryo development. The genome expression dynamics in the early

embryo, through the development of SOC control, are consistent with the ‘epigenetic land-

scape’ frame, in the broad terms of the global activation-deactivation dynamics of the genome

generally consistent with the DNA de-methylation-methylation landscape [40].

The onset of the genome-state change (at the breakdown of initial-state SOC control)

exhibits a clear difference between single cells and a cell population (Fig 5): cell populations do

not exhibit a stochastic pattern, in contrast to single cells in early human and mouse embry-

onic development (Fig 7 and S2 Fig). The stochastic pattern is confirmed by low Pearson cor-

relation between the zygote and early embryo single-cell states at the onset (r< 0.5; Fig 7A),

whereas in cell populations, the Pearson correlation for overall expression at any different time

points is close to unity (Fig 1A and Fig 2B).

This result indicates that there is a critical transition at the genome-state change in the

ensemble of cells from single-cell stochastic to highly correlated cell-population behavior (i.e.,

emergent criticality-induced complexity matching [12]) in overall expression—the emergent

layer of a relevant collective regulation starting from a given minimal threshold number of

cells [11]. The near-stochastic pattern (Fig 7D) of helper Tell 17 cell differentiation at the

onset (single cell) confirms such a transition. The elucidation of the statistical mechanism [41]

of the emergent layer of collective regulation in a cell population may explain how coherent

oscillation of a critical state in the ensemble of stochastic expression (coherent-stochastic oscil-

lation) [10,11] emerges in interacting cell ensembles.

III. Distinct Time-Averaged Critical States in Terminal Cell Fates

The self-similarity around the CP (Fig 6) to overall expression highlights three distinct distri-

bution patterns of gene expression relative to different critical states:

1. A unimodal profile corresponding to high-variance expression for a super-critical state,

which belongs to a flexible genomic compartment for dominant molecular transcriptional

activity.

the cell state with the zygote follows a tangent hyperbolic function: a − b � tanh(c � x − d), where x represents the cell state
with a = 0.59, b = 0.44 c = 0.78 and d = 2.5 (p< 10−3) for human (red dashed line), and a = 0.66, b = 0.34 c = 0.90 and d = 3.1
(p< 10−2) for mouse (blue). The (negative) first derivative of the tangent hyperbolic function, -dr/dx, exhibits an inflection
point (zero second derivative), indicating that there is a phase difference between the 4-cell and 8-cell states for human,
and between the middle and late 2-cell states for mouse (inset); a phase transition occurs at the inflection point. Notably,
the development of the SOC control in the development of the sandpile-type transitional behaviors from the zygote stage
(30 groups; n: number of RNAs in a group:Methods) is consistent with this correlation transition: B) In human, a drastic
change in criticality occurs after the 8-cell state; a sandpile-type CP (at the top of the sandpile) disappears, and thereafter
there are no critical points. This shows that the zygote SOC control in overall expression (i.e., zygote self-organization
through criticality) is destroyed after the 8-cell state, which indicates that the memory of the initial stage of embryogenesis is
lost through a stochastic pattern as in the linear correlation trend (refer to the random expression matrix in S1 Fig or to Fig
3D). The results suggest that reprogramming (massive change in expression) of the genome occurs after the 8-cell state.
C) In mouse, a sandpile-type CP disappears right after the middle stage of the 2-cell state and thereafter a stochastic linear
pattern occurs, which suggests that reprogramming of the genome after the middle stage of the 2-cell state destroys the
SOC zygote control. D) In Th17 cell differentiation, a sandpile-type CP disappears after 3h through a stochastic linear
pattern. Therefore, the plot suggests that the genome-state change occurs at around 3-6h in a single Th17 cell.

doi:10.1371/journal.pone.0167912.g007
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Fig 8. The SOC control landscape as revealed by a sandpile-to-sandpile transition in mouse embryo development. The
development of a sandpile transitional behavior between sequential cell states suggests the existence of an SOC control landscape (first
row: schematic picture of a valley-ridge-valley transition; x-axis: cell state; y-axis: degree of SOC control). The second and third rows
show that a sandpile-to-sandpile transition occurs in mouse embryo development from the zygote single-cell stage to the morula cell
state: I: a sandpile (i.e., critical transition) develops from the zygote single-cell stage to the early 2-cell state = > II: a sandpile is destroyed
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2. A flattened unimodal profile (intermediate-variance expression) for a near-critical state,

corresponding to an equilibrated genomic compartment, where the critical transition

emerges.

3. A bimodal profile for HRG and EGF responses in MCF-7 cells or a unimodal profile for the

DMSO and atRA responses in HL-60 cells for a sub-critical state (low-variance expression).

The sub-critical state is the compartment where the ensemble behavior of the genomic

DNA structural phase transitions is expected to play a dominant role in the expression

dynamics. In the HRG response, a subset of consecutive genes pertaining to the same criti-

cal state (called barcode genes) on chromosomes, spanning from kbp to Mbp, has been

shown to be a suitable material basis for the coordination of phase-transitional behaviors

(refer to Fig 8A in [11]).

The presence of different distributions of a sub-critical state points to different forms of

SOC in biological processes with a varying sub-critical state, with regard to the bimodal char-

acter of the corresponding expression profile.

In the next section, we will show the existence of the expression flux flow between critical

states, which induces temporal fluctuation of the critical point as shown in Fig 4. For evidence

of such flow, we need to focus on the average critical state, and then show how perturbation

from this average generates activation/inactivation fluxes across the critical states.

The self-similarity of the symmetry breaking around the CP suggests that critical states have

distinct profiles. The degree of nrmsf acts as the order parameter for distinct critical states in

mRNA expression [10,11]. Thus, to develop a sensible mean-field approach, we estimate bimo-

dality coefficients along nrmsf by the following steps (Fig 9):

1. Sort and group the whole mRNA expression according to the degree of nrmsf. The nrmsf

grouping is made at a given sequence of discrete values of nrmsf, and

2. Evaluate the corresponding temporal average of the bimodality coefficient over time to

examine if the mean field (behavior of averages of groups) shows any distinctive behavior

to distinguish critical states.

Fig 9 clearly reveals that, in the overall expression, the mean-field behavior of the average

bimodality coefficient confirms the unimodal-bimodal transition of MCF-7 cells and the

unimodal-unimodal transition of HL-60 cells. Notably, the mean-field behaviors of bimodality

coefficients follow tangent hyperbolic functions (Fig 9A) for MCF-7 cells and Heaviside-like

step functions for HL-60 cells (Fig 9B). The distinct time-average behaviors between different

cell types further support cell type-specific SOC control.

In contrast, a randomly shuffled expression matrix (DMSO: HL-60 cells) does not exhibit

any apparent transitional behavior (Fig 9C), which further confirms the existence of distinc-

tive averaged critical states in both MCF-7 and HL-60 cells.

Two different behaviors in terms of the bimodality coefficient (see Table 1) are evident:

from the middle to the late 2-cell state, which exhibits stochastic expression (i.e., no critical transition; refer to the randommouse
expression matrix in S2 Fig) = > III: a sandpile again develops from the 8-cell state to the morula state. These results show that a
significant perturbation (reprogramming) in self-organization occurs from the middle stage to the late 2-cell stage through a stochastic
overall expression (refer to Fig 7). Note: Qualitatively, there is a high degree of SOC control for a well-developed shape of the sandpile-
type transition (SOC control), an intermediate degree of SOC control for a weakened (broken) sandpile, and a low degree for non-SOC
control. The latter is due to stochastic expression. The linear behavior (absence of a critical point) in mouse embryo development is also
reflected in the low Pearson correlation (r ~0.21 after the 8-cell state) (Fig 7A and 7C).

doi:10.1371/journal.pone.0167912.g008
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Fig 9. Critical states revealed through distinct functional behaviors of the bimodality coefficient: A)
MCF-7 cells, B) HL-60 cells and C) RandomDMSO expression matrix (see Fig 3D). The left panels (A and B)
show the frequency distribution of expression according to the degree of nrmsf. The center panels show the
temporal average of Sarle’s bimodality coefficient, <bi>, of the ith group over time; the value 5/9 represents the
threshold between the unimodal (below 5/9) and bimodal or multimodal distributions (above 5/9). The
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1. In MCF-7 cells, the averaged CP corresponds to the onset of scaling-divergent behavior and

the unimodal-bimodal symmetry breaking of the expression profile (Fig 6A), so that the

averaged sub-critical state (bimodal profile) is below the averaged CP (nrmsf< 0.094 for

HRG and nrmsf< 0.081 for EGF; Fig 4). The super-critical state (unimodal profile) is above

the point where the change in the bimodality coefficient reaches zero (nrmsf> 0.165 for

HRG and nrmsf> 0.160 for EGF), and the near-critical state (flattened unimodal) is

between them (Fig 9A).

2. In HL-60 cells, the transition of bimodality coefficients clearly distinguishes average critical

states (Fig 9B). Notably, the averaged CP does not correspond to the onset of scaling-diver-

gent behavior for either response (Fig 4B). In fact, the onset is extended: in the DMSO

response, the scaling region extends to the upper boundary of the near-critical state, while

in the atRA response, the scaling region extends to the upper boundary of the sub-critical

state, where the averaged CP exists in the (averaged) sub-critical state. This is attributable to

the collapse of autonomous bistable switch (ABS) of the sub-critical state, as discussed in

the previous section.

In summary, the mean-field behavior of bimodality coefficients exhibits markedly different

behaviors that can be used to distinguish averaged critical states.

IV. Coherent-Stochastic Behavior (CSB) in Critical States

Critical states display coherent-stochastic behavior (CSB), where coherent behavior emerges

in ensembles of stochastic expression [11]. In Fig 10A and 10B, random sampling of the aver-

aged critical states for both MCF-7 and HL-60 cells clearly shows that

1. The near-zero Pearson correlation between different randomly selected gene ensembles in

the critical states reveals stochastic expression, and

2. There is a sharp damping in variability (Euclidean distance of single time points from the

center of mass CM(tj) of the critical states). This is a further confirmation that the CM(tj) of

the critical states represents their coherent dynamics.

The emergent CSB of critical states through SOC control of the entire expression shows

how a population of cells can overcome the problem of stochastic fluctuation in local gene-by-

gene regulation. Moreover, the fact that CM represents the coherent dynamics of CSB tells us

grouping of expression is made at a specific sequence of discrete values of nrmsf (xi: nrmsfi = i/100; i:
integers) with a fixed range: xi—k.d < xi < xi + k.d. The values of k and d are set to be k = 150 and d = 0.0001
for MCF-7 and HL-60, and k = 100 and d = 0.001 for a randommatrix based on the convergence of the
bimodality coefficient. The convergence of the difference in bimodality coefficients at xi with an increase in k

(i.e., as the number of elements in a group increases) is shown between the next neighbors, <bi(k;xi)>—<bi(k-
1;xi)> for HL- 60 cells in the right panels of B). The 6 colored dots represent the convergent behaviors of
different nrmsf points. The behavior of the time average of the bimodality coefficient exhibits A) Tangent
hyperbolic function, bi = a − tanh(b + chnrmsfii); a = 1.38 and 1.35; b = 0.123 and 0.301; c = 13.8 and 10.2 for
HRG (p< 10−4) and EGF (p< 10−10), respectively, B) Heaviside step function-like transitions for HL-60 cell
fates, and C) No transition for a randomDMSO expression matrix, which importantly reveals that random
noises through the formation of a Gaussian distribution destroy a sandpile critical behavior. Based on these
distinct behaviors, we can determine the boundaries of averaged critical states (Table 1; see section III): A)

Critical states are defined by two points: the average CP,< nrmsfðCPÞ >, the onset of a genome avalanche
(Fig 4A), for the upper boundary of the sub-critical state, and the point where the change in the bimodality
coefficient,Δ<bi>, reaches zero for the lower boundary of the super-critical state; the near-critical state is
between them, and B) Step function-like transitions reveal the boundaries of averaged critical states, where
the near-critical state corresponding to the transitional region separates the other states.

doi:10.1371/journal.pone.0167912.g009
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how macroscopic control can be tuned by just a few hidden parameters through SOC. This

collective behavior emerges from intermingled processes involving the expression of more

than 20,000 genes; this corresponds to the notion that, despite their apparent bewildering com-

plexity, cell state/fate changes collapse to a few control parameters, and this ‘sloppiness’ [9]

derives from a low effective dimensionality in the control parameter-space emerging from the

coherent behavior of microscopic-level elements.

Furthermore, mRNA expression in a microarray reflects populations of millions of cells, so

that the ensemble of expression at t = tj represents a snapshot of time-dependent thermody-

namic processes far from equilibrium, where the usual pillars of equilibrium thermodynamics

such as ‘time-reversibility’ and ‘detailed balance’ break down, to reveal the characteristics of a

dissipative or far-from equilibrium system.

V. Sub-Critical State as a Generator of Self-Organizing Global Gene
Regulation

The temporal development of critical transitions in overall expression suggests that molecular

stressors on MCF-7 and HL-60 cells induce the perturbation of self-organization through

interactions between critical states. The emergent coherent-stochastic behavior (CSB) corre-

sponds to the dynamics of the center of mass (CM) of critical states (refer also to Fig 6B in

[11], which shows ON-OFF coherent oscillation of the sub-critical state with its CM). Hence,

an understanding of the dynamics of the CM of critical states and their mutual interactions

should provide insight into how the perturbation of self-organization in whole-mRNA expres-

sion evolves dynamically through perturbation.

Here, it would be useful to abstract the essence of the dynamics of critical states and their

mutual interactions into a simple one-dimensional CM dynamical system: the CM of a critical

state, X(tj), is a scalar point, and thus, the dynamics of X(tj) can be described in terms of the

change in the one-dimensional effective force acting on the CM. From a thermodynamic point

of view, this force produces work, and thus causes a change in the internal energy of critical

states. Hence, we investigate the genome as an open thermodynamic system. The genome is

considered to be surrounded by the intranuclear environment, where the expression flux rep-

resents the exchange of genetic energy or activity. This picture shows self-organized overall

expression under environmental dynamic perturbations; the regulation of mRNA expression

is managed through the mutual interaction between critical states and the external connection

with the cell nucleus milieu.

To quantitatively designate such flux flow, we set up the effective force acting on the CM,

f(X(tj)) at t = tj, where the expression of each gene is assigned to have an equal constant mass

(set to unity). The impulse, FΔt, corresponds to the change in momentum ΔP and is propor-

tional to the change in average velocity: v(tj+1)—v(tj). Since a consideration of the center of mass

normalizes the number of genes being expressed in a critical state, we set the proportionality

Fig 10. Coherent-stochastic behaviors in critical states: A) MCF-7 cells and B) HL-60 cells. 200 random-number
ensemble sets are created, where each set has n (variable) sorted numbers, which are randomly selected from an integer
series {1,2,..,N} (N: total number of mRNAs in a critical state: Table 2). These random sets are used to create random
gene ensembles at t = tj (j

th experimental time points;Methods) from each critical state. 1) Left panels (A and B): For each
n at t = tj, Pearson correlations are evaluated between different random gene ensembles in the critical states by averaging
over the 200 ensemble sets, and then, their temporal average over experimental time points are evaluated. This gives a
near-zero Pearson correlation, consistent with the global stochastic character of microscopic transcriptional expression
regulation in critical states. 2) Right panels (A and B): For each random gene ensemble, the Euclidean distance of single
time points from the center of mass CM(tj) of the critical states is evaluated by averaging over the 200 ensemble sets. The
sharp damping of variability confirms that the emergent coherent dynamics of the critical states correspond to the
dynamics of the CM(tj).

doi:10.1371/journal.pone.0167912.g010
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constant, i.e., the mass of the CM, to be unity. Thus, f(X(tj)) = –F = (v(tj)—v(tj+1))/Δt, where Δt =

tj+1—tj-1, and the force is given a negative sign, such that a linear term in the nonlinear dynam-

ics of X(tj) corresponds to a force under a harmonic potential energy. The effective force, f(X(tj))

can be decomposed into IN flux: incoming expression flux from the past t = tj-1 to the present

t = tj, and OUT flux: outgoing expression flux from the present t = tj to the future t = tj+1 (Δtj =

tj—tj-1):

f XðtjÞ
� �

¼
1

Dt

(

ðXðtjÞ � Xðtj�1ÞÞ

Dtj

�
ðXðtjþ1Þ � XðtjÞÞ

Dtjþ1

)

¼ IN flux� OUT flux

We call the force, f(X(tj)), the net self-flux of a critical state. The net self-flux, IN flux—OUT

flux, has a positive sign for incoming force (net IN self-flux) and a negative sign for outgoing

force (net OUT self-flux).

When we adopt this concept of expression flux, it becomes straightforward to define the

interaction flux of a critical state X(tj) with respect to another critical state or the environment

Y:

f XðtjÞ;Y
� �

¼
1

Dt

ðXðtjÞ � Yðtj�1ÞÞ

Dtj

�
ðYðtjþ1Þ � XðtjÞÞ

Dtjþ1

( )

;

where, again, the first and second terms represent IN flux and OUT flux, respectively, and the

net, IN flux- OUT flux, represents incoming (IN) interaction flux from Y for a positive sign

and outgoing (OUT) interaction flux to Y for a negative sign. As noted, the interaction flux

between critical states can be defined as when the number of gene expressions in a critical state

is normalized, i.e., when we consider the CM. Due to the law of force, the net self-flux of a crit-

ical state is the summation of the interaction fluxes with other critical states and the environ-

ment (seeMethods).

Next, we consider how the net IN (OUT) flux of a critical state, the effective force acting on

the CM of a critical state, corresponds to the dynamics of its CM. Fig 11 clearly shows that the

trend of the dynamics of the CM of a critical state follows its net self-flux dynamics, in that the

CM is up- (down-) regulated for net IN (OUT) flux, where the CM is measured from its tem-

poral average value. This implies that the respective temporal average values are the baselines

for both flux and CM; this is further confirmed by the existence of an average flux balance in

critical states, where the net average fluxes coming in and going out at each critical state are

balanced (near-zero) (Methods).

Thus, we consider both temporal averaged expression flux among critical states and the

fluctuation of expression flux from the average (flux dynamics;Methods), so that

• Averaged expression flux shows a temporal average expression flow among critical states

through the environment, i.e., the characteristics of an open thermodynamic genomic system

(“genome engine” inDiscussion), and

• The flux dynamics represent fluctuation of the expression flux flow that is markedly different

from the basic properties in equilibrium Brownian behavior under a detailed balance. Further-

more, the sign of the net self-flux (i.e., net IN or OUT) corresponds to the activation (up-

regulation) of flux for positive responses and inactivation (down-regulation) for negative

responses.
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We examined the average flux network for the processes of MCF-7 and HL-60 cells. Fig

12A and Table 2 intriguingly reveal four distinct processes that share common features in

their flux networks:

1. A dominant cyclic flux between super- and sub-critical states: Average net IN and OUT

flux flows reveal how the internal interaction of critical states and external interaction with

the cell nucleus environment interact: notably, the formation of robust average cyclic state-

flux between super- and sub-critical states through the environment forms a dominant flux

flow in the genomic system. This formation of the cyclic flux causes strong coupling

between the super- and sub-critical states as revealed through the correlation analysis [11].

Fig 11. Dynamics of the center of mass (CM) of critical states comparedwith the net self-flux dynamics: Colored lines (red: super-
critical; blue: near-critical; purple: sub-critical state) represent net self-fluxes of critical states from their temporal averages (effective
force acting on the CM: Methods). Black lines represent the dynamics of the CM of critical states from their temporal averages, which are
increased three-fold for comparison to the corresponding net self-fluxes. The plots show that the net self-flux dynamics follow up- (down-)
regulated CM dynamics, such that the sign of the net self-flux (i.e., IN and OUT) corresponds to activation (up-regulated flux) for positive
responses and inactivation (down-regulated flux) for negative responses. The natural log of the experimental time points (MCF-7: minutes and
HL-60: hours) is shown.

doi:10.1371/journal.pone.0167912.g011
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2. Sub-critical state as a source of internal fluxes through a dominant cyclic flux: The

direction of the average flux in super- and sub-critical states reveals that the sub-critical

state is the source of average flux, which distributes flux from the nucleus environment to

the rest of the critical states, where the super-critical state is the sink to receive fluxes from

the near- and sub-critical states. Importantly, this clearly shows that the sub-critical state,

an ensemble of low-variance expression acts as a generator of perturbation in genome-wide

self-organization.

In summary, the results regarding average flux reveal the roles of critical states in SOC con-

trol of overall expression, and provide a statistical mechanics picture of how global self-organi-

zation emerges through the interaction among critical states and the cell nucleus

microenvironment.

VI. SOC Control Mechanism of Overall Gene Expression

The flux dynamics at critical states reveal the dynamic mechanism of SOC control in overall

expression. We can elucidate how dynamic interaction among critical states and the environ-

ment perturbs the average flux flow in the genomic system, as follows:

1) Flux dynamics reveal early nucleus activities. In Fig 12B and 12C, the flux dynamics

of CMs in HRG-stimulated MCF-7 cells show how the average flux network (Fig 12A) is sub-

stantially perturbed at early time points, which reflects the early occurrence of significant

genetic energy dissipation. This can be seen from the net self-flux dynamics (HRG response;

Fig 11). At 15-20min, global perturbation involving a large change in net self-flux in more than

one critical state occurs: the net self-flux of the super-critical state shows a pulse-like change

from net OUT (negative value) to IN self-flux (positive), i.e., an increase in internal energy,

which explains how the significant net flux into the super-critical state is used to activate the

expression of genes in the super-critical state from 15 to 20min. In contrast, for the sub- and

near-critical states, the net self-flux significantly changes from the net IN to net OUT self-flux

Fig 12. Genomic expression dynamics revealed through a flux analysis that includes crosstalk with the
environment: A) Average values of interaction flux (colored arrows) for MCF-7 and HL-60 cells show that a
sub-critical state acts as an internal ‘source’, where IN flux from the environment is distributed to other
critical states. In contrast, a super-critical state acts as an internal ‘sink’ that receives IN fluxes from other critical
states, and the same amount of expression flux is sent to the environment, due to the average flux balance
(Methods). Furthermore, the formation of a dominant cyclic state flux is revealed between super- and sub-critical
states through the environment. The average interaction flux is represented as i-j: interaction flux of the ith critical
state with the jth critical state (i, j = 1: super- (Super; red), 2: near- (Near; blue), 3: sub-critical state (Sub; purple)),
and a colored arrow for an internal i-j interaction points in the direction of interaction with the relative amount of flux
(see details in Table 2; positive and negative values represent incoming and outgoing flux, respectively, at a critical
state; outline and base colors are based on the ith critical and jth critical states, respectively). E represents the
internal nucleus environment. B) An early flux dynamic event in the HRG response resulting from the HRG
interaction flux dynamics (see C) are shown. Interaction flux dynamics i< = j (or i = >j; color based on j) represent the
interaction flux from the jth critical state to the ith critical state or vice versa. The interaction fluxes (see HRG in C; the
flux direction changes at y = 0) align to suppress the cyclic state flux at 10min (the first point in C), where the
interaction flux shows 1< = E, 1 = >2, and 1 = >3 at the super-critical state, 2< = E, 2< = 1, 2 = >3 at the near-critical
state, and 3 = >E, 3< = 1, 3< = 2 at the sub-critical state. They then align to enhance the cyclic state flux at 45 min
(5th point in C). This change in the dynamic flux structure is due to the global perturbation at 15-20min (see Fig 14;
section VI). At each node, the net flux (Fig 11; 10min: first point; 45min: 5th point) is indicated as IN for net
incoming flux (y >0), OUT for outgoing flux (y <0), or Balance (y~0). Note: The average flux balance at each node is
maintained, but not at individual time points. C) Notably, for MCF-7 cell fates (HRG and EGF), near-synchronous
interaction flux dynamics are seen at sub-critical states. The plots further show that the overall patterns are similar
between the same cell types, which again supports cell-type-specific SOC control. Dashed lines represent
interaction flux dynamics for i-j (color based on j).

doi:10.1371/journal.pone.0167912.g012

Mechanism of the Cell-Fate Change

PLOSONE | DOI:10.1371/journal.pone.0167912 December 20, 2016 32 / 47



(anti-phase with respect to the dynamics of the super-critical state), i.e., they show a loss of

internal energy.

The global perturbation at 15–20 min stems from genetic energy flow in the genomic sys-

tem, which shows a change from the strong suppression of cyclic flux at 10min before pertur-

bation to the enhancement at 45min after perturbation (Fig 12B): at 10min, the flow of the

interaction fluxes between the super- and sub-critical states aligns against the average cyclic

flux to suppress the cyclic flux (the strongest inhibition over time), and then, at 45 min, the

interaction fluxes change and align to enhance the cyclic flux; the change in the cyclic flux is

due to reversal of the genetic energy flow at 10min by a pulse-like global perturbation in self-

organization at 15–20 min (see below).

These results suggest the presence of early cell nucleus activities in HRG-stimulated MCF-7

cells. At 15min, genetic information, through signaling activities [38,39] in the cytoplasm from

the cell membrane induced by HRG, reaches the nucleus, and at 15-20min it activates the

high-variance genes of the super-critical state. In contrast, the near- and sub-critical states

(intermediate- and low-variance genes, respectively) are suppressed, so that the internal

genetic energy flow into the environment should induce a change in the physical plasticity of

chromatin structures of genes in these states, i.e., less pliable structures at the ensemble scale

(not at an individual scale).

2) SOC control mechanism of the genome-state change—role of the critical gene ensem-

ble. Here, we describe the SOC control mechanism of the genome-state change in terminal cell

fates at the cell population level. The genome-state change occurs through the breakdown of

initial-state criticality as follows:

Expression flux dynamics (Fig 13) show that the net self-flux of the sub- and super-critical

states can be well-described in terms of the net interaction between sub- and near-critical

states (Sub-Near), and between sub- and super-critical states (Sub-Super), respectively.

Namely, the dynamic interactions of Sub-Near and Sub-Super determine the net self-flux of

the sub- and super-critical states, respectively, which represents the effective driving forces act-

ing on their CMs, and thus determines their coherent oscillatory dynamics (Fig 11; see Fig 6 in

[11]). Biologically, the between-states interaction serves as the underlying basic mechanism of

self-regulatory gene expression such as epigenetics through the incorporation of rich variety of

transcriptional factors and non-coding RNA regulation to determine the critical-state coherent

oscillatory behaviors.

This essential role of the interactions explains how the temporal change in criticality at the

near-critical state, i.e., in expression of the critical gene ensemble of the CP, directly perturbs

the sub-critical state (the generator of flux dynamics) through their mutual interaction, and

the perturbation of this generator can spread over the entire system (Fig 13A).

The genome-state change (cell-fate change in the genome) occurs in such a way that the ini-

tial-state SOC control of overall gene expression (i.e., initial-state global gene expression regula-

tion mechanism) is destroyed through the erasure of an initial-state criticality; this suggests that

the critical gene ensemble of the CP plays a significant role in determining the cell-fate change.

In other words, a statistical mechanical layer [41] for the dynamic control of genome-wide

expression emerges in cells, where the critical gene ensemble ‘drives’ the fate of cell ensembles.

3) Global and local perturbations exist in the SOC control. So far, we have applied the

expression flux concept to the effective force acting on the CM of a critical state, X(tj). This

concept can also be extended to define kinetic energy self-flux for the CM of a critical state.

The kinetic energy of the CM with unit mass at t = tj is defined as 1/2.v(tj)
2, such that the net

kinetic energy self-flux, K(X(tj)) at t = tj, from its temporal average,< K(X)>, can be defined
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Fig 13. SOC control mechanism of overall gene expression in terminal cell fates (MCF-7 and HL-60 cells): A) Flow regime shows
how a dynamical change in criticality (critical behaviors) at the CP in terminal cell fates affects the entire genome (thick yellow arrow with a
black dashed outline) as follows (Super: super-; Near: near-; Sub: sub-critical state): The dynamical change in criticality (critical behaviors)
that originates from the CP at Near perturbs the net interaction flux (2–3 + 3–2; refer to Fig 12A) at Sub-Near, which determines the net self-
flux of Sub (B: right panels), and thus directly perturbs the Sub-response. This induces a perturbation in the net interaction flux of Sub-Super
(1–3+3–1), i.e., directly perturbs the Super-response (B: left panels). Furthermore, these perturbations on Sub and Super disturb the
dominant cyclic flux between Sub and Super, which in turn has an impact on sustaining the critical dynamics (source: Sub and sink: Super);
solid thick arrows represent average fluxes (Table 2). Note: the net self-flux of a critical state represents the effective driving force acting on
CM, and thus dynamic interactions among states determine the coherent oscillatory dynamics of Sub and Super (Fig 11). This schematic
picture also shows that the erasure of an initial-state criticality at the genome-state change reflects the destruction of the initial-state SOC
control on the dynamical change in the entire genomic system (i.e., pruning procedure for regulating global gene expression at the initial
state).

doi:10.1371/journal.pone.0167912.g013

Fig 14. Local and global perturbations in self-organizing genome-wide expression: The kinetic energy self-flux dynamics (y-axis) for
the CM of a critical state (see section VI) exhibit clear energy-dissipative behavior.Notably, the results show the occurrence of global and
local perturbations of self-organization. Pulse-like global perturbations show a transition from IN to OUT net kinetic energy flux or vice versa
(IN-OUT switching) in more than one critical state: at 15-20min, HRG; at 12-18h, DMSO; and at 2-4h (significant) and 12-18h, atRA. In contrast,
local perturbation is observed in the EGF response for up to 36h: there is only a marked response in the super-critical state, and almost no
response in the other states (i.e., the dynamics of the CM of critical states are localized around their average: Fig 11). The results suggest that the
global and local perturbations differentiate MCF-7 cell fates, whereas global perturbations drive the state change in HL-60 cells (see section I).

doi:10.1371/journal.pone.0167912.g014
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We investigate when a significant kinetic energy self-flux occurs to better understand the

global perturbation in the SOC control. Fig 14 shows that global perturbations are more evi-

dent in the net kinetic energy self-flux dynamics than in the effective force (Fig 11):

1. MCF-7: Global perturbation involving a change in net kinetic energy flux in critical states

occurs only at 10-30min, where a pulse-like transition occurs from outgoing kinetic energy

flux to incoming flux at 15-20min. The occurrence of this transition is confirmed by a pulse-

like maximal response in Pearson autocorrelation (P(tj;tj+1) at 15-20min: see Fig 4A in [11]).

Dissipation of the kinetic energy is evident in the HRG response, which quickly ends at

30min. In contrast, in the EGF response, only vivid flux activity in the super-critical state is

apparent until t = 36h, which demonstrates local perturbation in the EGF response. Thus,

global and local perturbations differentiate the cell fate between the responses to HRG and

EGF: the dissipative pulse-like global perturbation in the HRG response at 15-20min leads to

the genome-state change at 3h (Fig 5A), whereas the local perturbation in the EGF response

does not induce the state change (see section I). Furthermore, this global perturbation (see

also paragraph 1) above) suggests the existence of a novel primary signaling transduction

mechanism or a biophysical mechanism which can induce the inactivation of gene expression in

the near- and sub-critical states (a majority of expression: mostly low-variance gene expression)

within a very short time. This global inactivation mechanism that is associated with more

than 10,000 of low-variance mRNAs in a coordinated manner should be causally related to

the corresponding changes in the higher-order structure of chromatin (as discussed in the

literature from a theoretical perspective [42–44] and a biological perspective [45,46]).

2. HL-60: In the response to DMSO, a clear pulse-like global perturbation occurs at 12-18h. In

the response to atRA, the first significant global perturbation occurs early (2-4h) and a sec-

ond smaller global perturbation occurs at 12-18h, which can be confirmed by a change in

the effective force (Fig 11). They both show distinct dissipative oscillatory behavior of

kinetic energy flux dynamics. Again, these global perturbations occur before the genome-

state changes (24h for DMSO and 48h for atRA; Fig 5B). As shown in S1 Fig, a pulse-like

global perturbation may relate to process for the autonomous terminal differentiation (the

first stage of cell-fate determination; see more in subsection (ii) inDiscussion).

4) Long-term global mRNA oscillation underlies SOC control. The sub-critical state is

the source of internal genetic energy flow in SOC control, and therefore, the oscillatory net

self-flux of sub-critical states generates a long-term global mRNA oscillation [47] to sustain the

self-control of SOC.

Discussion

We investigated the dynamics of collective gene behavior in several biological processes associ-

ated with changes in the cell fate:

1. Early embryo development in human and mouse,

2. Helper T 17 cell differentiation, induction of terminal differentiation in human leukemia

HL-60 cells by DMSO and atRA,
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3. Activation of ErbB receptors in human breast cancer MCF-7 cells by epidermal growth fac-

tor (EGF) and heregulin (HRG).

Our approach builds upon an analysis of transcriptional expression of gene ensembles

ordered according to the normalized amount of change in time (nrmsf) and the fold change in

expression.

In all of the models analyzed, despite temporally different experimental intervals, a self-

organized critical transition (SOC) in whole-genome expression was found to play an essential

role in the change in the genome state at both the population and single-cell levels. The results

suggest that the full or partial erasure of the initial-state sandpile-type criticality (critical behav-

ior) can be an indicator of the genome-state change (see the summary in Table 3). This is due

to the fact that the erasure of criticality destroys the SOC control mechanism of the dynamical

change in the entire genomic system (Fig 13A).

Notably, regarding embryo development, the initiation of reprogramming, i.e., whether or

not a single cell successfully achieves reprogramming, can be determined by the erasure of the

sandpile-type critical point (CP) or criticality stemming from the initial stage of embryogene-

sis. Thus, the critical gene ensemble of the CP should exist to affect the entire genome expres-

sion in reprogramming. It is important to note that the erasure of criticality is independent of

the choice of the initial-state (see more in section I), and this independence further confirms

the timing of the cell-fate change for both reprogramming in embryonic development and cell

differentiation in terminal cells.

In a terminal cell fate, the independence of the choice of the initial state for erasure of criti-

cality breaks after the global perturbation. This suggests that, regarding the terminal cell-fate

change, there exist two critical events: a pulse-like global perturbation and erasure of the ini-

tial-state criticality that determine the cell-fate change (see subsection (ii) below).

The whole-genome expression self-organizes into distinct critical states (expression com-

partments) through a critical transition. Their coherent dynamics emerge from an ensemble of

stochastic expression (coherent-stochastic behaviors) corresponding to the one-dimensional

dynamics of the center of mass (CM) of expression, which exhibited the characteristics of an

open thermodynamic system and the dynamic perturbation of SOC control for the genome-

state change:

1. The average expression flux of critical states (Fig 12A) clearly showed that, for MCF-7 and

HL-60 cells, the collective behavior of low-variance gene ensembles acted as a driving force

to transmit their potentiality, or energy of coherent transcription fluctuations, to high-vari-

ance genes. This can be interpreted in terms of the metaphor of a ‘genome engine’:

Table 3. Timing of the Genome-State Change through Distinct Erasures of Initial-State Critical Behavior: Trends of averaging behavior are shown
(represented by solid back and red lines; x-axis: fold change in expression; y-axis: expression) (initial-state: state at t = t0 or zygote state for
embryos).

EGF-stimulated MCF-7 cells HRG-stimulated MCF-7 cells atRA- and DMSO-stimulated
HL-60 cells

Mouse and Human Embryos
& Th17 cell

Sandpile Type Critical Behavior: Divergent UP-
and DOWN-Regulations

Absence of Divergent Behavior
in UP-Regulation

No Critical Behaviors: Non-
Stochastic Type

No Critical Behaviors:
Stochastic Type

NO State Change State Change at 3h State Change at Reprogramming:

After 2-cell (M) (Mouse)

24h (DMSO) and 48h (atRA) After 8-cell (Human)

State Change after 3h (Th17)

Sandpile type CP NO Divergent Behavior No CP No CP

Fig 5A Fig 5A Fig 5B Fig 7

Cell population Cell population Cell population Single cell

doi:10.1371/journal.pone.0167912.t003
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A sub-critical state, which is an ensemble of low-variance mRNAs, acts as a large piston

that moves only slightly. This work propagates through cyclic flux (like a camshaft) to make

a super-critical state, an ensemble of high-variance mRNAs, activated as a small piston that

moves greatly, while remaining anti-phase to the dynamics of the sub-critical state. A near-

critical state (intermediate-variance mRNAs) plays the role as an ignition switch of the

genome engine. The genome engine emerges only when thousands of molecular gene regu-

lations are integrated through SOC control.

2. Flux dynamics (expression flux dynamics from their averages) revealed that SOC control

(i.e., the genome engine) is perturbed locally or globally to determine the genome-state

change. In cell differentiation (HRG: MCF-7 cells, and DMSO and atRA: HL-60 cells), the

genome-state changes occur at the end of the dissipation of global pulse-like perturbations,

which involve the overall expression through the relevant responses of other critical states

in addition to the super-critical state. In contrast, in EGF-stimulated MCF-7 cells (cell pro-

liferation and no differentiation), no genome-state change can occur due to the local per-

turbation: only the super-critical state is affected, while other states show only very weak

responses (i.e., they remain near their average expression fluxes). Thus, the global and local

perturbations of SOC control differentiate MCF-7 cell fates, whereas global perturbations

underlie the state change in HL-60 cells.

These results give us a mechanism of the genome-state change in terminal cell fates: the

(partial or full) erasure of an initial-state critical behavior leads to a critical change in the

genome state at the end of a dissipative pulse-like global perturbation in self-organization.

Regarding early embryo development, further studies will be needed to confirm this mecha-

nism for regulating the cell fate. Note that in single-cell embryonic development, when we

consider the number of cell states as different time points, a similar approach to the terminal

cell-fate change (sections III-VI) can be taken to investigate the mechanism of how genome

reprogramming can occur through the breakdown of self-organization.

Notably, an analysis of the literature strikingly confirms that the time intervals of the

observed thermodynamic changes revealed by an expression flux approach to transcriptome

data are consistent with real biological critical events that determine the change in cell fate.

The embryo model is particularly intriguing for our purpose because, in contrast to both HL-

60 and MCF-7 cells, it is not based on the average behavior of a huge population, but rather on

the behavior of a very few cells at a time.

The above findings lead to some important consequences:

(i) Biological Interpretations of the Global and Local Perturbations of
SOC Control in MCF-7 Cells

Regarding our present finding of the global perturbation in the SOC control in MCF-7 cell-

HRG dynamics, a study of the early gene response [38] established that EGF and HRG induced

a transient and sustained dose-dependent phosphorylation of ErbB receptors, respectively, fol-

lowed by similar transient and sustained activation kinetics of Akt and ERK.

Following ERK and Akt activation from 5-10min, the ligand-oriented biphasic induction of

early transcription key proteins of the AP-1 complex (c-FOS, c-MYC, c-JUN, and FRA-1) took

place: high for HRG and negligible for EGF. The proteins of the AP-1 complex are non-specific

stress-responders supported by the phosphorylation of ERK in a positive feedback loop. In addi-

tion, the key reprogramming transcription factor c-MYC (the protein of which peaked at 60min,

as confirmed in JE’s laboratory at Latvian Biomedical Research & Study Centre) can amplify the

transcription of thousands of active and initiated genes [48] or direct-indirect targets [49] and
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modify chromatin by recruiting histone acetyltransferase [50]. Further Saeki et al. [21] revealed

that after HRG the early sustained by ERK activation of AP-1, c-FOS in particular, induces, the

sequential activation of late transcription factors EGR4, FOSL-1, FHL2, and DIPA peaking at 3h.

In turn, those begin to down-regulate an ERK proliferative pathway by a negative feedback loop.

This allowed differentiation to occur (differentiation needs suppression of proliferation).

Thus, the continuity of the biological relay of the HRG-induced early (pre-committing) and

late transcription activities leads to a commitment of differentiation from 3h (cell-fate change),

which is necessarily coupled to the suppression of proliferation and stops the genome boost by

the ERK pathway. Neither a sustained ERK dependent positive feed-back loop, nor the follow-

ing negative feed-back is achieved in the case of EGF. Subsequently, these cells did not differ-

entiate but continued proliferation.

In the corresponding expression data, we observed, after HRG, a powerful genome engine

causing a pulse-like global perturbation (15-20min) as pre-committing and erasure of the ini-

tial-state critical transition to induce the genome-state change at 3h, which was not observed

after treatment with EGF, in which case only local perturbation (i.e., only vivid activity of the

super-critical state) was observed.

It is important to note that the sub-critical state (low-variance expression: a majority of

mRNA expressions; Table 1) generates the global perturbation in the HRG response (section

V). The dynamic control of gene expression in the sub-critical state is expected from the coop-

erative ensemble behaviors of genomic DNA structural phase transitions (see (v) below)

through interaction with environmental small molecules, which has not been considered in

previous biological studies. Thus, a true biological picture for MCF-7 cells may be obtained by

deciphering the biological functions of genes in the sub-critical state in a coordinated (rather

than an individual) manner.

(ii) Global Perturbations of SOC Control in HL-60 Cells Committed to
Differentiation

The general mechanisms of the commitment to differentiation are not yet well understood.

Developmental biologists usually discriminate the two phases into (1) reversible, with the capa-

bility of autonomous differentiation; and (2) essentially irreversible [51]. A study in an HL-

60-DMSO cell model [52] found that a minimum induction time of 12h was needed for cells

to commit to differentiation. In turn, Tsiftsoglou et al. [53] found that exposure to differentia-

tion inducers for only 8 to 18h, which is much shorter than the duration of a single generation,

is needed to provide commitment for autonomous terminal differentiation.

Consistent with these findings, we revealed that, at 12-18h, global perturbation involving

critical states is observed for the responses to both DMSO and atRA. The induction of differen-

tiation for both inducers is different in the sense that, in contrast to DMSO, which induces the

development of macrophages/monocytes, treatment with atRA leads to segmented neutrophils

[53]. Interestingly, our analysis also shows that the achievement of cell-fate determination at

24h for DMSO and at 48h for atRA (Fig 5B) occurs in these two models in different ways,

although they converge at the same final state at 48h.

In particular, we observed early global genome perturbation in the response to atRA (at 0-

4h), which was not seen in the DMSOmodel. This may be due to a difference in Ca2+ influx.

Calcium release from the ER combined with capacitative calcium influx from the extracellular

space leads to markedly increased cytosolic calcium levels and is involved in cell activation

[54] to control key cell-fate processes, which include fertilization, early embryogenesis [55],

and differentiation [56]. The amplitude and duration of the Ca2+ response are decoded by

downstream effectors to specify cell fates [57]. Yen et al. [58] and others have shown that pre-
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committed HL-60 cells display early cytosolic Ca2+ influx. Moreover, intracellular calcium

pump expression is modulated during myeloid differentiation of HL-60 cells in a lineage-spe-

cific manner, with higher actual flux in the atRA response [59].

(iii) SOC Control in Human and Mouse Related to the Developmental
Oocyte-to-Embryo Transition

Fertilized mature oocytes change their state to become developing embryos. This process

implies a global restructuring of gene expression. The transition period is dependent on the

switch from the use of maternally prepared stable gene transcripts to the initiation of proper

embryonic genome transcription activity. It has been firmly established that, in mice, the

major embryo genome activation occurs at the two-cell stage (precisely between the mid and

late 2-cell states), while in humans this change occurs between the 4- and 8-cell stages [60]. We

detected these time intervals, which differ for mouse and human, in the development of SOC

control: from sandpile-type critical transitions to stochastic expression distributions (Fig 7A

and 7B). Reprogramming of the genome destroys the SOC control of the initial stage of

embryogenesis. Developmental studies by Wennekamp et al. in Hiiragi’s group [61] revealed

the onset of symmetry breaking between cells in the early embryo and consequently the speci-

fication of distinct cell lineages strictly consistent with our model. In addition, what about the

physical state of chromatin during these developmental steps?

The erasure of paternal imprinting by DNA 5-methylcytosine de-methylation and hydroxy-

methylation as part of epigenetic reprogramming occurs in the embryo, which allows signifi-

cant decompaction of the repressive heterochromatin and an increase in the flexibility of the

transcribing part of chromatin [62]. Detailed studies of the DNAmethylation landscape in

human embryo by Guo and colleagues [40] revealed a decrease in the level of methylation of

gene promoter regions from the zygote to the 2-cell stage, which would erase oocyte imprint-

ing. The strength of this correlation increases gradually until it becomes particularly strong

after human embryonic genome activation (full reprogramming) at the 8-cell stage [63]. DNA

de-methylation unpacks repressive heterochromatin, which manifests in the dispersal and spa-

tio-temporal reorganization of pericentric heterochromatin as an important step in embryonic

genome reprogramming [64]. This synchronization of the methylome to confer maximum

physical decompaction and flexibility to chromatin and the reprogramming of transcriptome

activity for totipotency support the feasibility of SOC, which was determined here by an inde-

pendent method.

In addition, transposable elements, which are usually nested and epigenetically silenced in

the regions of hypermethylated constitutive heterochromatin, also become temporarily acti-

vated during the oocyte-to-embryo transition in early embryogenesis [65]. In turn, in human, a

peak in SINE activation coincides with the 8-cell stage [40]. The significance of transient retro-

transposon activation in embryogenesis, as has been suggested [62], may be that the thousands

of endogenous retro-elements in the mouse genome provide potential scope for large-scale

coordinated epigenetic fluctuations (further harnessed by piRNA along with de novo DNA

methylation). In other words, this should create a necessary critical level of transcriptional noise

as a thermodynamic prerequisite for the non-linear genome-expression transition using SOC.

(iv) Extended Concept of Self-Organized Criticality in the Cell-Fate
Decision

The recent success with induced pluripotent stem cells (iPSCs) [1] is a remarkable break-

through not only for possible manipulation of the cell fate through somatic genome repro-

gramming, but also for understanding the mechanisms of both development and disease.
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However, it is still a daunting challenge to elucidate the mechanism of how the transition to

a different mode of global gene expression involving the entire genome through a few repro-

gramming stimuli occurs to achieve the self-control of on/off switching for thousands of func-

tionally unique heterogeneous genes in a small and highly packed cell nucleus.

A fundamental issue is to elucidate the mechanism of the self-organization at the ‘whole

genome’ level of gene-expression regulation that is responsible for massive changes in the

expression profile through genome reprogramming. To explain this mechanism of massive

state changes, self-organized criticality (SOC) has been found to be one of the most important

discoveries in statistical mechanics. SOC was proposed as a general theory of complexity to

describe self-organization and emergent order in non-equilibrium systems (thermodynami-

cally open systems). However, despite considerable research over the past several decades, a

universal classification has not yet been developed to construct a general mathematical formu-

lation of SOC [20]. Useful background information on SOC is found in [20, 66–72].

Recently, the concept of SOC has been used (and extended) to propose a conceptual model

of the cell-fate decision (critical-like self-organization or rapid SOC) through the extension of

minimalistic models of cellular behavior [73,74]. A basic principle for the cell-fate decision-

making model (a coarse-grained model, the same as in our approach) is that gene regulatory

networks adopt an exploratory process, where diverse cell-fate options are first generated by

the priming of various transcriptional programs, and then a cell-fate gene module is selectively

amplified as the network system approaches a critical state [75,76]; these review articles also

present a useful survey of studies on self-organization in biological systems.

Self-organizing critical dynamics of this type are possible at the edge between order and

chaos and are often accompanied by the generation of exotic patterns. Self-organization is

considered to occur at the edge of chaos [77–80] through a phase transition from a subcritical

domain to a supercritical domain: the stochastic perturbations initially propagate locally (i.e.,

in a sub-critical state), but due to the particularity of the disturbance, the perturbation can

spread over the entire system in an autocatalytic manner (into a super-critical state) and thus,

global collective behavior for self-organization develops as the system approaches its critical

point.

We checked the above paradigm in different cases of cell-state transitions at both the popu-

lation and single-cell levels, and interpreted the observed changes in gene expression in terms

of critical-like self-organization. A rigorous statistical-mechanical analysis of the time-develop-

ment of perturbation in self-organization (see sections IV-VI) revealed the relevant features,

however, these were somewhat different from classical SOC models.

We found that:

1. SOC control in overall expression exists at both the population and single-cell levels. In the

cell-fate change at the terminal phase (determination of differentiation for the cell popula-

tion), SOC does not correspond to a phase transition in the overall expression from one

critical state to another. Instead, it represents a self-organization of the coexisting critical

states through a critical transition.

2. The timing of the genome-state change (i.e., cell-fate change in the genome) is determined

through erasure of the initial-state criticality at both the population and single-cell levels.

This suggests the existence of specific molecular-physical routes for the erasure of critical

dynamics for the cell-fate decision. The cell-fate change (commitment to cell differentia-

tion) in terminal cell fates occurs at the end of dissipative global perturbation in self-organi-

zation: first stage by means of a pulse-like global perturbation and commitment stage

through erasure of the initial-state criticality.
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3. Dynamic interactions between critical states determine the critical-state coherent dynamics

(coherent-stochastic oscillation [11]). The occurrence of a temporal change in criticality

perturbs this between-states interaction, which directly affects the entire genomic system.

Thus, the erasure of an initial-state criticality at the genome-state change reflects the

destruction of the initial-state SOC control on the dynamical change in the entire genomic

system (i.e., pruning procedure for regulating global gene expression at the initial state).

4. The sub-critical state (ensemble of low-variance gene expressions) sustains critical dynam-

ics in SOC control of terminal cell fates. Furthermore, a sub-critical state forms a robust

cyclic state-flux with a super-critical state (ensemble of high-variance gene expressions)

through the cell nuclear environment. The results show that there is no fine-tuning of an

external driving parameter to maintain critical dynamics in SOC control.

It has been pointed out that fine-tuning of a driving parameter for self-organization in clas-

sical SOC generates a controversy regarding the real meaning of self-organization (see more in

[75]).

However, despite these differences, the occurrence of global and local perturbations in cell-

fate decision processes suggests that there may be another layer of a macro-state (genome

state) composed of distinct micro-critical states (found by us). After a pulse-like global pertur-

bation occurs in multiple micro-states through the erasure of initial-state criticality, the

genome state transitions to be super-critical to guide the cell-fate change (HRG-stimulated

MCF-7 cells, and DMSO- and atRA-stimulated HL-60 cells). On the other hand, the genome

state of EGF- stimulated MCF-7 cells remains sub-critical (no cell-fate change) because the

local perturbation only induces the activation of a micro-critical state. Further studies on this

matter are needed to clarify the underlying fundamental mechanism, and the development of

a theoretical foundation for the SOC control mechanism as revealed in our findings is needed.

(v) Mechanism of the ‘Genome Engine’ in Self-Organization and
Genome Computing

In the genome engine, the role of the sub-critical state as a generator leads to a new hypothesis

that the genomic compartment, spanning from kbp to Mbp, which produces low-variance gene

expression may be the mechanical material basis for the generation of global perturbation, where

the coordinated ensemble behavior of genomic DNA structural phase transitions through inter-

actions with environmental molecules plays a dominant role in the expression dynamics [81,82].

In HRG-stimulated MCF-7 cell differentiation, a subset of consecutive genes pertaining to the

same critical state (called barcode genes from kbp to Mbp; see Fig 8A in [11]) on chromosomes

has been shown to be a suitable material basis for the coordination of phase-transitional behav-

iors. The critical transition of barcode genes was shown to follow the sandpile model as well as

genome avalanche behavior. This indicated that there is a non-trivial similarity through SOC

between the coherent-stochastic network of genomic DNA transitions and the on-off nerve-fir-

ing in neuronal networks [72]. Thus, a potential function of the genome engine may be asyn-

chronous parallel computing, and coherent-stochastic networks based on the on/off switching of

sub-critical barcode genes may act as rewritable self-organized memory in genome computing.

Here we have highlighted how the genome engine, i.e., the global response, is driven by the

oscillatory behavior of a sub-critical state, i.e., of genes for which the change in expression is

quantitatively minor but strongly coherent. This coherence appears when we consider ensem-

bles of genes with n (number of genes) greater than 50 [11]; this behavior is consistent with the

particular organization of chromatin into topology-associated domains. The relative flexibility

of each domain is probably associated with the changes in expression.
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The demonstration of a ‘genetic energy flux dynamics’ across different critical states tells us

that chromatin is traversed by coherent waves of condensation/de-condensation, analogous to

the allosteric signals in protein molecules. The possibility of controlling such signal transmis-

sion through control of the higher-order structure of genomic DNA raises the possibility of

very intriguing applications, such as in the much more mature case of allosteric drugs [83,84].
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