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Abstract. The paper presents self-organizing graphs, a novel approach
to graph layout based on a competitive learning algorithm. This method
is an extension of self-organization strategies known from unsupervised
neural networks, namely from Kohonen’s self-organizing map. Its main
advantage is that it is very flexibly adaptable to arbitrary types of visual-
ization spaces, for it is explicitly parameterized by a metric model of the
layout space. Yet the method consumes comparatively little computa-
tional resources and does not need any heavy-duty preprocessing. Unlike
with other stochastic layout algorithms, not even the costly repeated
evaluation of an objective function is required. To our knowledge this is
the first connectionist approach to graph layout. The paper presents ap-
plications to 2D-layout as well as to 3D-layout and to layout in arbitrary
metric spaces, such as networks on spherical surfaces.

1 Introduction

Despite the fact that large efforts have been devoted to the construction of graph
layout tools, their usability in practical applications is still relatively limited for
large graphs and in the case of non-standard layout requirements. Two impor-
tant issues that have to be addressed are flexibility and speed. The dilemma is
that fast algorithms, such as Sugiyama layout [24], are usually highly specialized
and tailored for a particular domain. On the other hand, more flexible declar-
ative layout methods, in particular simulated annealing [5] and other general
stochastic optimization methods, are computationally very expensive [6]. The
situation becomes worse if the evaluation of the cost function is expensive, such
as checking the (potentially quadratic) number of edge crossings, because it has
to be evaluated on every iteration. Especially genetic algorithms can exhibit a
very problematic performance [2I]. In real-world tasks, such as re-engineering,
graph sizes can easily reach more than 100000 nodes. In such cases speed is of
prime importance even if a sub-optimal layout has to be accepted.

This paper introduces a flexible new layout method called ISOM layout that
in comparison with other stochastic techniques consumes only little computa-
tional resources. No heavy-duty preprocessing and no costly repeated evaluation
of an objective function are required. One of the method’s major advantages is
its extreme versatility in regard to the visualization space used. The algorithm

S.H. Whitesides (Ed.): GD’98, LNCS 1547, pp. 246-Z62, 1998.
© Springer-Verlag Berlin Heidelberg 1998



Self-Organizing Graphs — A Neural Network Perspective of Graph Layout 247

is explicitly parameterized with a metric of the layout space and there is no
limitation on the metric that can be used. It is therefore directly useable for 2D
and 3D-graph layout as well as for non-standard layouts, for example in non-
rectangular viewing areas. Even specialized layout tasks like embedding a net-
work into a spherical surface can directly be solved as we will demonstrate. The
method presented is based on a competitive learning algorithm which is derived
from well-known self-organization strategies of unsupervised neural networks,
namely from Kohonen’s self-organizing maps [18] 19, 20]. To our knowledge this
is the first connectionist approach to graph layout.

At a first glance, a number of arguments are apparently speaking against
the application of NN to problems such as graph layout: It is difficult to han-
dle symbolic relations with NN and structures of potentially unlimited size are
not easily accommodated in a NN. Some of these problems have recently been
addressed by the neural folding architecture [I1] and by adaptive structure pro-
cessing [9]. However, our approach uses an entirely different way to overcome
these limitations: We will not use an external network structure “to learn the
graph”, instead the graph itself will be turned into a learning network.

The central problem in graph layout is that it requires to solve computation-
ally hard global optimization problems. As several excellent solutions for other
computationally hard optimization tasks prove, optimization is one of the partic-
ular strengths of NN. Prominent examples are the travelling salesman problem
or graph-theoretic problems like optimal bipartitioning [I6]. It therefore seems
promising to study NN for graph layout.

The main advantage of using a NN method for optimization problems is that
we do not have to construct a suitable heuristics by hand. Instead, the network
discovers the search heuristics automatically or—putting it less mysteriously—a
meta-heuristics is built into the learning algorithm of the network. As a conse-
quence, the implementation of the method is very simple.

2 Kohonen’s Self-Organizing Maps

The model of self-organizing graphs which we are going to present is an exten-
sion of a well-established neural network type, namely Kohonen’s self-organizing
maps (SOM), which are a kind of unsupervised competitive network. We will
therefore have to briefly review the basic idea of competitive learning before
we can introduce self-organizing graphs. A more general introduction to neural
networks is beyond the scope of this paper. The interested reader is referred to
[16] and [1] as well as Kohonen’s books [19, 20].

2.1 Competitive Learning

There are two different types of learning for NN: Supervised and unsupervised
learning. Supervised learning requires an a-priori defined learning objective and
a “teacher” external to the network. In the learning phase this teacher (or super-
vision procedure) judges how close the network’s response is to the intended solu-
tion and makes appropriate adjustments to the network’s connection strengths
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(weights) in order to tune it towards the correct response. Once the learning
phase is finished, this enables the network to perform according to the prede-
fined objective function.

In unsupervised learning there is no teacher and no a-priori objective func-
tion: The net has to discover the optimization criteria itself. This, of course,
means that a particular network type can only perform well for a particular kind
of task. Typical application areas of unsupervised learning are: clustering, auto-
association, content-based retrieval, encoding, compression, and feature map-
ping. The best-known NN models of unsupervised learning are Hebbian learning
[16] and the models of competitive learning: The adaptive resonance theory [15],
and the self-organizing map or Kohonen network which will be explained in the
following. Some discussion of the usage of unsupervised learning for visualization
tasks can be found in [23]. In the case of graph layout, using an unsupervised
learning method means that we will not teach the layout aesthetics to the net-
work. Instead we will let the net discover the appropriate criteria itself.

The basic idea of competitive learning is that a number of output units
compete for being the “winner” for a given input signal. This winner is the
unit to be adapted such that it responds even better to this signal. In hard
competitive a.k.a. “winner-take-all” learning only a single unit is adapted. In
contrast, soft learning adapts several units at once. In a NN typically the unit
with the highest response is selected as the winner.

The learning process therefore requires to elect a winner and to apply a
selective weight adjustment in every learning cycle. This clearly sounds as if
some kind of supervision procedure was needed and as if we were discussing
a supervised learning scheme. Later we will indeed simplify (and accelerate)
the learning method by using an external supervision procedure, but the same
result can also be achieved with unsupervised learning. The key to managing
the selection of the winner as well as a selective update without supervision is
to use lateral and recursive network connections.

Most unsupervised competitive networks have a rather simple structure and
since we are aiming at Kohonen networks, we will only discuss networks that
consist of a single input layer and a single output layer (the so-called com-
petitive layer) here. The competitive net is wired such that each unit in the
competitive layer is connected to every input unit. Additionally each compet-
itive unit is connected to itself via an excitatory (positive) connection and it
is connected to all other units in the competitive layer via inhibitory (neg-
ative) connections (see Figure [). As usual, the response of a unit is calcu-
lated as a (usually sigmoidal) output function o of the net input to this unit,
i.e. as a function of the sum of all signals received from the inputs x1, ...,z
and via the lateral connections weighted by the respective connection strengths:
r; = J(Zle ;T + Y e Wjir;). If this update is made repeatedly the net-
work will exhibit a behaviour called competitive dynamics: Because of the lateral
connections the node which initially has the greatest response to the input in-
creases its own activation via self-excitation at the same time strongly inhibiting
the other units via the inhibitory lateral connections. With a suitable choice of
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Fig. 1. Competitive Layer Schematics Fig. 2. Updates in Weight-Space

the activation function o and the lateral weights, the network will for any given
input eventually settle into an equilibrium where only the single winner unit u;
is active and all other nodes have their activation reduced to zero [13| [14].

It remains to be shown how a selective weight update can be performed
without supervision. But since in the equilibrium state of an ideal competitive
net only the single winner unit u; is active (i.e. has a response r; > 0), the
update can just be enforced for every unit across the entire network provided it
is weighted by the corresponding unit’s response. In this way only the weights
belonging to the winner unit will be updated. The entire competitive learning
procedure can thus be formulated in the following way: (1) present an input
vector ¢ to the net and let the net settle into equilibrium, (2) for every node
u; enforce a weight correction Aw; = ar; (¢ — w,) where « is suitable learning
factor.

So far we have regarded the units’ responses as the desired output, but for
our purposes it is much more interesting to switch to a different perspective and
to look at the weights of the competitive units instead. In fact, from now on
we will ignore the actual responses of the units altogether. Eventually we will
transform our layout task into a problem in weight-space and solve it entirely
there. Each weight set for a competitive unit u; can be represented by a vec-
tor w; = (wj1,...,w;n). If we assume that input vectors and weight vectors
are normalized according to || w; ||= Y2, w7, = 1 then these vectors can be
represented by arrows to the surface of an n-dimensional unit hypersphere. In
weight-space a learning step can now be interpreted as turning the weight vector
of the winning unit towards the current input vector. Starting from an initial
random distribution of the weight vectors, the network will therefore attempt
to align its weight vectors with the input vectors it is seeing. In this way it ob-
viously solves an instance of a clustering task: The weight vectors are clustered
with the input vectors. Figure 4 shows an example: Starting from the initial ran-
dom configuration on the left side the network moves towards the configuration
on the right side of the same figure.

2.2 The Kohonen Network

If we switch from hard competitive learning to soft learning, several units may
be adapted at once. The question is, which units shall be chosen for an update?
If the network has some known spatial arrangement, one of the possibilities is
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to update the winner together with its neighboring nodes. This is the learning
algorithm used by Kohonen’s self-organizing maps. In real biological neural net-
works the spatial arrangement is in fact important and not only the strength
but also the location of a neural excitation conveys information. In order to
understand the importance of the spatial organization we need to have some
suitable metric for the sensory signals such that we can judge the proximity
of two input signals. If we know the network’s geometric arrangement (i.e. the
spatial locations of the individual units) such an input metric enables us to an-
alyze the relationship between proximity of input signals and spatial proximity
of the resulting network excitation. Surprisingly, in the mammal brain it is of-
ten the case that spatially close regions of cells respond to input stimuli that
are in proximity. Such mappings of metric regions of the input space to spatial
regions of the brain (or, more abstractly, metric regions of the output space)
are called topology preserving feature maps or topographic maps. Striking exam-
ples of such topographic maps in the mammal brain are the retinotopic map,
where close regions of the retina are mapped to close regions of the cortex, and
the somatosensory map, where close regions of the body surface are mapped
to close regions of the somatosensory cortex. These are both spatial metrics,
but examples of more abstract metrics can also be found. The tonotopic map
from the ear to the auditory cortex, for example, works such that spatially close
cells correspond to hearing similar frequencies. In fact, the seminal study in the
field [I7] established this kind of abstract mapping for the orientation receptor
cells which react to specific orientations of visual stimuli (such as grids). Their
spatial arrangement is such that cells located in proximity correspond to similar
angles of stimuli. Since topographic maps are a common phenomenon, some self-
organization mechanism that automatically performs the corresponding neural
“wiring” is likely to exist. Von der Mahlsburg [26] succeeded first in showing that
competitive learning can achieve this. Kohonen later extended and simplified the
model [18] [19] [20], casting it into the computationally more adequate form of
the so-called self-organizing map (SOM).

Kohonen’s networks use two relatively simple spatial configurations: They
are either rectangular or hexagonal grids implying an 8-neighborhood or a 6-
neighborhood, respectively. The network structure again is a single layer of out-
put units without lateral connections and a layer of n input units in which each
output unit is connected to each input unit.

Since Kohonen networks are a computational method we can sacrifice the
biological justification and simplify the situation by using an external supervision
process to select the winner and to update its weights. In this case we do not
need any lateral connections and we do not need to wait for the network to
settle into a stable state so that the network response can be computed much
faster, namely in constant time. In this way Kohonen’s learning procedure can
be formulated as:

1. present a stimulus vector v to the network,
2. find the unit u; with the largest response r;,
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3. adapt the weights of u; and all nodes in a neighborhood of a certain radius
r, according to the function Aw; = n(t) A(u;, u;) (v — w;).
4. After every k-th stimulus decrease the radius r.

n(t) is a time-dependent adaption factor and A(u;, u;) is a neighborhood function
the value of which decreases with increasing distance between u; and u;. Thus
the winner is adapted strongly whereas the influence of the input diminishes
with increasing distance from the winning unit. This process is iterated until the
learning rate 7(t) falls below a certain threshold.

For the selection of the winner unit it is, in fact, not at all necessary to
compute the units’ responses. As Kohonen shows, the winner unit u; can as well
be taken to be the one with the smallest distance || v — w; || to the stimulus
vector, i.e. j = argminic1,... m} || v—w; ||. Both criteria turn out to be identical
for normalized vectors.

We can think of the adaption as being determined by a “cooling” param-
eter n, which decreases the adaption with increasing training time, a “decay”
parameter A, which decreases the adaption with increasing distance from the
winning unit, and a “narrowing” parameter k£ which decreases the spatial extent
of adaption over time. Kohonen demonstrates impressively that for a suitable
choice of the learning parameters the output network organizes itself as a topo-
graphic map of the input. Various forms are possible for the parameter functions,
but negative exponential functions produce the best results, the intuition being
that a coarse organization of the network is quickly achieved in early phases,
whereas a localized fine organization is performed more slowly in later phases.
Therefore common choices are: A(u;,u;) = e=d(uiug)*/20()* 4nq n(t) = bat™?,
where d(u;, u;) is the topological distance of u; and u; and o is a time-dependent
width factor of the form o(t) = aat™.

3 From Self-Organizing Maps to Self-Organizing Graphs

We have mentioned above that the first key to solving the layout task is to
look at the network’s behaviour in weight-space instead of at its responses. If
we visualize the behaviour of the SOM in weight-space, the connection to graph
layout will immediately become clear. Restricting the input to two dimensions,
each weight vector can naturally be interpreted as a position in 2D-space.
Figure B illustrates
the learning process of a
SOM with 9 units in a
rectangular grid. The 4-
neighborhood is depicted
by straight lines. The ini-
tial random weight distri-
bution (left) eventually
settles into an organized
topographic map (right).
Each unit has moved to one of the stimulus positions marked by black dots.

Fig. 3. Learning of a Topographic Map
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If we interpret the network’s weight-space in Figure B as the embedding of
a grid-like graph, the connection of SOM learning to graph layout immediately
becomes obvious: In its self-organization process the SOM has obviously created
a reasonable, if not perfect, layout for its network graph. This is not incidental,
since the optimization criteria for learning a topographic mapping and for per-
forming a graph layout are quite similar under a suitable transformation of the
layout problem.

As mentioned, the first key is to look at the weight-space instead of at the
output response and to interpret the weight-space as a spatial embedding of the
graph. Abstractly speaking, the SOM constructs a metric-preserving mapping
from the m-dimensional weight-space onto the n-dimensional input space. Let us
inspect this more closely and have a look at various ways to intuitively interpret
the way the SOM works: To cite [I6] “... we can think of a sort of elastic net in
input space that wants to come as close as possible to the inputs; the net has the
topology of the output array (i.e. a line or a plane) and the points of the net have
the weights as coordinates.” In other words, the learning process “stretches” the
network such that its nodes cluster with the input positions while at the same
time matching the topology of the network with the metric of the input space.

Clearly, this is quite similar to the task that we have to solve for graph
layout: There we have to find an embedding of the nodes such that the Euclidean
distance of a pair of nodes matches their graph-theoretic distance. The main
difference is that in the case of the SOM we have only dealt with very simple,
fixed 2D-network topologies, namely rectangular or hexagonal grids, whereas in
graph layout we must handle arbitrary topologies which are different for every
new task. The second key therefore is to realize that there are no restrictions on
the topology that we can give to the SOM’s network. The learning process will
always attempt to construct a metric preserving mapping between the input
space and the network topology. In fact, recent models of competitive neural
networks for other problem domains, such as the growing neural gas [I0], are
also using different topologies or even topologies that evolve during the training
process. The idea therefore is to train a competitive network that has the same
topology as the graph to be laid out. Now each unit of the network can be identified
with a node of the graph and each unit’s weight vector can be interpreted as
the spatial embedding of this node. Analogously to the SOM, we expect such
a network to settle into a configuration where the nodes are clustered with the
imput positions and where their Euclidean distances match their graph-theoretic
distances.

Note that a hidden shift of perspective was the third key to the solution:
Instead of training the network to compute a certain input-output relation we
are regarding the training phase as the intended computation. The network is
never actually used once it is trained.

One question remains to be answered: Since the network clusters its weight
vectors with the input stimuli it is seeing, the set of input vectors clearly de-
termines the final layout. As can been seen in Figure [, each node of the graph
will move towards some stimulus position. So how can a reasonable set of input
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stimuli be obtained? The solution to this problem is surprisingly simple: A set
of points that is distributed uniformly in the input area is used as the set of input
stimuli. Using a uniform distribution has the important property that it causes
the net to stretch such that it uniformly fills the available input space (up to
a small border zone that remains unused). Of course, it also makes the set of
input stimuli independent from the actual graph to be laid out.

3.1 The ISOM Layout Algorithm

We are now set to detail the layout algorithm outlined above. The main differ-
ences to the original SOM are not so much to be sought in the actual process
of computation as in the interpretation of input and output. First, the problem
input given to our method is the network topology and not the set of stim-
uli. The stimuli themselves are no longer part of the problem description but
a fixed part of the algorithm. Secondly, we are interpreting the weight-space as
the output parameter. The actual network output is discarded completely. As
a consequence, there is no activation function o. Because of this inverted per-
spective the method is termed the inverted self-organizing map (ISOM). Apart
from these changes, we are using slightly different cooling and decay parameters
which have proven useful in experiments.

Algorithm ISOM

input: a graph G = (V, E), output: a spatial embedding of G
epoch t :=1;

radius T = Tmag; /¥ initial radius */

cooling factor c;

forall v € V' do v.pos := random_vector();
while (¢t < t42) do {
adaption c:= maz(min_adaption, e C(t/tmaz) . maz_adaption)
% := random_vector(); /* uniformly distributed in input area */
w:=v € V such that || v.pos — ¢ || is minimal
for w and all successors wy of w with d(w,wg) < r do

wy,.pos 1= wy.pos — 2~ HNWWK) o (wy,.pos — 1);
t:=1t+1;
if ¢ mod interval = 0 and r > min_radius do r :=r — 1;
} end.

Note that the node positions wg.pos which take the role of the weights in
the SOM are given by vectors so that the corresponding operations are vector
operations. Also note the presence of a few extra parameters such as the minimal
and maximal adaption, the minimal and initial radius, the cooling factor, and the
maximum number of iterations. Suitable values have to be found experimentally.
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3.2 Comparison to Force-Directed Layout

We will now show that the objective layout criteria implicitly used by the ISOM
are closely related to those that are used in the well-established group of force-
directed methods [8] [3].

Force-directed layout is minimizing the energy in the edges which are un-
derstood as springs attached to the nodes. These springs are used to model
attraction forces and repellent forces between neighboring nodes. Computing
a force-directed layout means to find a configuration where these forces are in
balance. The ISOM, on the other hand, is optimizing the embedding for the
following two objectives: (1) the graph-theoretic distance of all node pairs is
matched with their metric distance and (2) a uniform space filling distribution
of nodes is generated. We can understand (1) as the analogue of attractional
forces, since neighboring nodes move towards the same stimulus positions, and
(2) as the analogue of repellent forces, since the nodes are trying to drift apart
in order to fill the space.

Intuitively the objectives of the ISOM and of basic force-directed layout are
closely related and with both methods symmetries are automatically exhibited.
One of the main differences is that the ISOM achieves the approximation of
the implied computationally hard optimization problem as the byproduct of
a stochastic self-organization process. This eliminates the need to find a good
heuristic procedure for computing the equilibrium of forces and, in fact, the
ISOM procedure is potentially faster.

The computation performed in a single iteration is inexpensive. The winner
can be found in linear time (or in logarithmic time, if suitable spatial index
structures are used). If the graph is not dense, only a constant number of suc-
cessor nodes will be updated due to the limited radius. Each of these nodes can
be accessed in constant time from its predecessor and the correction factor can
also be computed in constant time. Thus, for a graph of bounded degree if the
number of epochs and the initial radius is considered as fixed, the entire layout
computation can be done in linear time. Even if we include the required number
of iterations as a dependent variable in the complexity calculation, the overall
complexity appears to be at most quadratic, since the experimental results in-
dicate that it is sufficient to use a number of iterations that is linear in the size
of the graph.

In contrast to force directed-models, the ISOM is easily adapted to any kind
of layout space, since it can be explicitly parameterized with the metric of this
space (see Section [B). On the other hand, some additional layout objectives,
such as orthogonal drawings, are more easily introduced in force-directed models,
since these can be modelled explicitly by extra forces [25].

4 Experimental Evaluation

Let us now give experimental results and some small examples, space not per-
mitting more. We have implemented a Java applet which is available for further
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exploration at http://www.bounce.to/BerndMeyer. The experiments confirm
our theoretical expectations and show that the ISOM converges unexpectedly
fast towards reasonable layouts. For medium-sized graphs (of up to approxi-
mately 25 nodes) typically not more than 500 epochs are required to produce
a nice layout. The basic structural organization of the graph happens very fast
in the early phases of the computation while later phases with small adaptions
and radiuses mainly serve to refine the layout.

The choice of parameters can be important, but the ISOM seems fairly robust
against small parameter changes and usually quickly settles into one of a few
stable configurations. As a rule of thumb for medium-sized graphs, 500 epochs
with a cooling factor ¢ = 0.4 yield good results. The initial radius obviously
depends on the size and connectivity of the graph. 7,,,,=3 with an initial adap-
tion of 0.8 was used for the examples. The interval for radius decrease has to be
chosen such that most of the adaption happens while » = 1 (with adaptions of,
say, 0.4...0.15). The final phase with » = 0 should only use very small adap-
tion factors (approximately below 0.15) and can often be dropped altogether.
A long phase for r = 0 with too high adaption factors is not advisable, since
the symmetry of the layout may be destroyed. This is not surprising, since we
know that a one-dimensional SOM will eventually be arranged as a space-filling
peano curve, if phase r = 0 is active for too long. In fact, it is fairly obvious
that the SOM algorithm for r = 0 reduces to mere vector quantization, since the
topological structure of the network is no longer taken into regard.

As a first small extension to
the basic model we can use dif-
ferent layout areas, such as non-
rectangular regions. This is sim-
ply done by choosing a distribu-
tion of input stimuli that is uni-
formly distributed in this region.
The only restriction on the shape
of this area is that it must be con-
vex, because otherwise edges might
shortcut across regions where the
layout area is caving in and even
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Free trees can be handled as Figure B illustrates, but a drawback is that
there is no straightforward possibility to draw a rooted tree according to the
usual layout conventions with the basic algorithm.

5 Self-Organizing Graphs in 3D and on Spheres

An obvious extension that comes to mind is to use the same method for 3D-
layout. The changes are straightforward: All that is required is to use 3D-vectors
for input stimuli and weights. Apart form this, the algorithm remains unchanged.
In most cases a reasonable 3D-structure is obtained (Figure[I). It is interesting
to compare a 3D-layout with a layout of the same graph in 2D-space.

For a cube, for example, the 2D-ISOM
generates exactly a 2D-projection of the
layout generated by the 3D-ISOM (Fig-
ure [5 right) instead of the planar 2D-
layout which would also be possible (Fig-
ure[d] left). This is because the non-planar ~ Fig. 5. 3D-Structures in 2D-Space
layout conforms better to the criterion of
uniform edge lengths.

Despite the fact that many layout methods give preference to planar layouts,
this example may serve to illustrate that a planar layout is not always superior
to a non-planar one. The important property of a good layout is to make the
structure of the graph plainly recognizable. Depending on what the meaning of
the graph is, this may sometimes even better be done with a non-planar layout.

Though the 3D-structure of a graph may already become apparent in a 2D-
layout, a real 3D-layout is often required for more complex structures. We have
implemented a prototype simulator for self-organizing 3D-graphs in Mathemat-
ica [27] which allows to look at the 3D-graph from different viewpoints or to
generate movies that show a 3D-layout rotating in 3D-space. Experience shows
that such possibilities are often required to fully recognize the 3D-structure on a
2D-display. While the above suggests that the ISOM works well in 3D-space, a
critical assessment is in place. It is not really clear whether the optimization of
layout objectives derived for 2D-space always leads to good 3D-drawings. This
has also been observed by other authors [4]. In fact, the aesthetic criteria gov-
erning 3D-layout are not well-understood, since we are dealing with a different
type of visual perception in 3D. In particular, we tend to interpret closed paths
as surfaces. If the structure of the graph is already known, automatically gener-
ated 3D-layouts can deviate quite far from the expectation. On the positive side
they often reveal additional structural properties (in particular symmetries) that
would not be recognized in the preconceived layout. This can be illustrated with
the layout in Figure [[I] which could also be drawn as a cube inside of another
cube with corresponding corners of the inner and outer cube connected.
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Fig. 6. The Complete Graph Ky Fig.7. A Rectangular Layout of Kg

Fig. 8. A Layout of a Free Tree Fig. 9. Another Example

Fig. 10. Hexagonal Cylinder Layout Fig.11. A Cube Inside a Cube?
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The ISOM is easily exten-

sible to other special layout Y oo,
spaces. In particular, there are 0
several interesting applications -0,

of layout on arbitrary spheri-
cal surfaces: (1) It can serve to
utilize the display space more
efficiently. A generalized fish-
eye view, for example, is but =
the projection of a uniform lay-

out on some spherical surface.

-0.5
Real spherical 3D-layout opens
even more interesting possibil- “1Wgpoch 499
ities: A graph can, for exam- _0.5 Radius 0
ple, be displayed on the surface 0 daption ¢.948
of a globe that can be inter- x 0.5

actively rotated. This combines
the space utilization of fisheye
views with a novel interaction
mode for graph exploration. (2)
A layout on a spherical surface
often provides a good alternative to non-planar straight line drawings without
burdening the user with the entire complexity of understanding a 3D-layout on
a 2D-display device (see Fig. [I2). (3) Finally, a spherical layout may simply be
part of the defined problem, such as a visualization of a world-wide network on
a globe.

Fig. 12. Layout on a Unit Hypersphere

The so far implicit parameterization of the algorithm with the metric of the
layout space is easily made explicit. The distance between u; and u; must now be
defined as the length of the shortest curve on the surface that connects u; and u;
and the adaption must be modified such that the node to be adapted moves along
this curve by the appropriate amount. In most cases it is easy to define the curve
connecting u; and u; in parametric form: r(t) = {x(t),y(t), 2(¢)} for 0 <t < 1.
Let w; = r(t1) and w; = r(t2). The length of the curve connecting u; and u; is
then simply given by

o[ () (3 - '

Whenever this integral can be expressed in closed form (or numerically aprox-
imated), the generalized ISOM below can be used for the particular surface.
For a unit hypersphere the formulas become particularly simple. Since all
shortest connections between two points u; and u; now lie on greater cir-
cles and the length of the connecting arc on a unit hypersphere is equal to
the cosine of the associated central angle, the distance formula is reduced to:
s(w;,wj) = cos(L(w;, w;)) = w; - w; The updated position thus is simply
given by the normalized vector H:_H with 7 := wy.pos — 2~ w-wk) (w.pos — ).
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Algorithm ISOM-generalized

input: a graph G = (V, E), output: a spatial embedding of G
epoch t :=1;

radius T = Tmag; /¥ initial radius */

cooling factor c;

forall v € V' do v.pos := random_vector();
while (t < tnaq) do {
adaption c:= mazx(min_adaption, e=/tmex) . max_adaption)
i := random_vector(); /* uniformly distributed on layout surface */
w:= v € V such that s(v.pos, %) is minimal
for w and all successors wy of w with d(w,wg) <r do
Let r(t1) = wyg.pos;

wg.pos = r(t2) such that 72&833 =1 — 2~ dwws) o

t:=t+1;
if t mod interval = 0 and r > min_radius do r :=r — 1;
} end.

A prototype version of self-organizing spherical graphs has also been imple-
mented in Mathematica. Figure [[2 shows one viewpoint of the spherical layout
of a hexagonal cylinder as an example.

6 Extensions

A problem that can occur in some layouts are “collapses” or “clashes” in which
two (connected or unconnected) nodes are moving towards the same position.
Theoretically three types of clashes could occur: edge-edge clashes, node-edge
clashes, or node-node clashes. Node-node clashes can be avoided by (1) choosing
a larger layout area and (2) choosing different cooling factors or more epochs such
that the final phase with » = 0 is extended and the node distribution becomes
more “space filling”. An alternative way to deal with node-clashes is a post-
process which zooms in on the clashing cluster and generates a new local layout
by applying ISOM layout only to the nodes in the zoomed area. Nodes outside
of this area are ignored and remain unchanged during this post-process. Both
solutions are not completely satisfying, primarily because they require interven-
tion from the user. Also some structures are notorious for letting unconnected
or unrelated nodes move towards the same position, and an alternative layout
in which these nodes are located in entirely different places may be preferable
depending on the context (think back to the example in Figure [[T]). Choosing
different parameters does separate clashing nodes. It does not, however, find an
entirely different structure. We are currently investigating the use of different
types of decay functions A in order to achieve the desired effect. Particularly
promising seems the usage of the so-called Mexican hat distribution (the solid
curve in Figure [[3)) instead of the standard Gaussian distribution (the dashed
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curve). Because the Mexican hat function falls below zero above a certain dis-
tance, it can be used to simulate a force that pushes unrelated nodes apart (i.e.
nodes with a large topological distance). Of course, the usage of the clipping
radius must be modified accordingly.

As for edge-clashes, since every edge-edge clash implies a node-edge clash, it
is sufficient to eliminate the latter type. A simple way to achieve this is to use
a post-process that substitutes each edge running through a node to which it is
not adjacent by a curved edge that avoids the node.

There are a number of extensions that come to
mind which we did not yet have a chance to experi-
ment with sufficiently. A relatively straightforward
extension concerns more richly structured graphs.
If there are different edge types, some types may
be interpreted as relating the adjacent nodes more
closely than other types. In this case we would want
nodes connected by such edges to be in a closer
proximity. This could be enforced by giving dif-
ferent edge types different weights and using the Fig. 13. Mexican Hat
induced weighted topological distance as the pa-
rameter of the decay function.

The combination of the ISOM with additional layout constraints is worth
further exploration. The basic idea is to supply a set of arithmetic constraints
on the node positions against which updates must be verified. An update causing
inconsitency must be rejected. As an alternative strategy the next best winner
could be chosen. Instead of just checking consistency it may also be reasonable
to accept—with a certain percentage of exceptions—only updates which reduce
the degree of constraint violation. A constraint-enhanced ISOM would make it
possible to explicitly avoid node clustering. More importantly, it would offer the
possibility to take problem-specific layout constraints into regard. A layout of
rooted trees, for example, should be fairly straightforward. It is clear, however,
that this extension is computationally costly.

From a theoretical perspective a statistical analysis of the network behaviour
is desirable. So far we have found suitable values for the layout parameters by
experimentation. It would be a great improvement if we could develop a statis-
tically justified heuristics for estimating suitable parameter values. For this the
notion of the network’s energy state would be useful. Though it is a customary
and fruitful method to look at neural network learning methods from the point
of view of energy minimization, this is rarely done for Kohonen networks. How-
ever, some steps towards this are reported in [22| [12]. Such a notion could be
the key to a thorough theoretical analysis of the ISOM and might even reveal
formal connections to force-directed layout.
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7 Conclusions

The paper has introduced self-organizing graphs and the ISOM graph layout
method which is based upon an extension of the competitive learning algorithm
used in the self-organization of Kohonen networks. To our knowledge this is
the first connectionist approach to automatic layout. We have presented an ex-
perimental evaluation and extensions of the basic model to 3D-layout and to
generalized layout spaces such as spherical surfaces.

The advantages of the ISOM layout method, which has an extremely simple
implementation, are its adaptability to different types, shapes, or dimensions of
layout areas and even to different metric spaces. On top of this it consumes only
little computational resources which renders it comparatively fast.

Since graph layout is a computationally hard optimization problem, it is
interesting to note that many good solutions for such problems, such as simulated
annealing, force-directed models, genetic algorithms, neural networks, and more
recently ant colonies [7] are inspired by natural metaphors. So is the ISOM.

We are hoping that in the future we will be able to support our intuitive
understanding of the ISOM’s function by a more formal analysis based on the
notion of an energy state of the network.
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