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Abstract. Algorithms that modify the order of linear search lists are surveyed.

First the problem, including assumptions and restrictions, is defined. Next a

summary of analysis techniques and measurements that apply to these algorithms

is given. The main portion of the paper presents algorithms in the literature with

absolute analyses where available. The following section gives relative measures

which are applied between two or more algorithms. The final section presents open

questions.
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ABSTRACT

Algorithms that modify the order of linear search lists are surveyed. First

the problem, including assumptions and restrictions, is defined. Next a summary

of analysis techniques and measurements that apply to these algorithms is given.

The main portion of the paper presents algorithms in the literature with absolute

analyses where available. The following section gives relative measures which are

applied between two or more algorithms. The final section presents open questions.

INTRODUCTION

Sequential searches are performed on a list of initially unordered records.

After a record is found, the list is permuted by some algorithm in an effort to place

the more frequently accessed records closer to the front of the list, thus reducing

the expected search time. An interesting question is what algorithms can be used

for this permutation, and how do they perform relative to each other in terms of

expected search time.

One common application in which this situation arises is a list of identifiers

maintained by a compiler or interpreter. An example of this is the scatter table

used by the UCI LISP system. Identifiers are hashed into a list of buckets, each of

which is an unordered sequential list of identifier descriptions. The lists cannot be

initially ordered since the frequencies of references to the identifiers are not known.
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Since most programs tend to access some identifiers more often than others, those

identifiers should be nearer the front of the list.

1. RESTRICTIONS

We will refer to algorithms that maintain self-organizing lists by permuting

the records as permutation algorithms. The accessed record is the record currently

being searched for, and the probed record is the record currently being looking at

during a search.

Several limiting assumptions will be applied to the problem being considered.

The primary assumption is that no knowledge exists concerning probabilities of

accesses prior to the accesses themselves. It is however acceptable to know or

assume that the access probabilities follow some distribution or general rule without

knowing how that applies to individual records.

Only algorithms concerning linear lists will be considered. Although there

is much literature concerning arranging the records in trees which dramatically

reduces search time, sequential lists are still interesting due to savings in space.

In the general case, the permutation algorithm could completely reorder the

list at any time. We will only consider algorithms that apply permutations after

each access, and that the permutations only involve moving the accessed record

some distance forward in the list, leaving the rest of the records unchanged relative

to each other. Note that any permutation algorithm fitting this restriction will

leave the list unchanged whenever the first record is accessed. To avoid dwelling

on details of insertion, it will be assunied that the list initially contains all records

that will be accessed, and no others.

Finally, it will be assumed that the permutation algorithm requires no more

than time proportional to the time taken to find the record. Most algorithms to be

considered actually perform the permutation in constant time.
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2. MEASURES

Before trying to find a good permutation algorithm it is necessary to define

what is meant by "good." Arbitrarily label the records 1 to n. Let /?[l], p[2],...

be the search sequence, such that p[k] is the label of the record to be searched for

on the access. Let A be the initial configuration of the list such that Xk is the

location of the record labeled k. The first record is in location 1 and the last record

in a list of n records is in location n. Extending these definitions, let A(p, k) be

the configuration of the list after the first k accesses from sequence /?, assuming

initial configuration A and application of algorithm or. Note that for all 1 < i < n,

0),' = Aj.

2.1. Cost

The cost of a permutation algorithm a for a given A and p is the average cost

per access, in terms of the time (or work) to find the accessed record and the time

to permute the records afterwards. Formally:

IH
E Hp, k- i)p|jt]

CaiX,p) = ^
IpI

Recall that this only reflects the count of probes needed to find the record, not any

extra cost to apply the permutation.

Unfortunately, it is assumed that p is unknown at the start of the searches.

Therefore a permutation algorithm can only be measured by making some assump

tions about the search sequence. The following measures and assumptions will be

used.

r

2.1.1. Asymptotic Cost

In the general case, the asymptotic cost of a permutation algorithm is the

average cost, over all A and p. But the use of permutation algorithms implies

that at any given time some records can be expected to be accessed with a higher
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probability than others. Without this expectation, it must be assumed that records

are accessed purely at random, and no amount of ordering would increase the chance

of the next accessed record being closer to the front of the list. Therefore analyses

of asymptotic cost usually assume some constraints on the access strings that p can

contain. A common assumption is that each record A: has a fixed probability of

access Pk throughout p. It is often further assumed that the fixed probabilities of

record accesses follow a known probability distribution.

2.1.2. Worst Case Cost

The worst case cost of a permutation algorithm a is the maximum value of

Ca{\,p) over all A and p. Note that, by the given definition of cost, the worst case

is bounded above by n since cost is measured per access.

2.1.3. Amortized Cost

Worst case analyses often take the worst case of any step in a process and

multiply it by the number of steps. In many processes, it is impossible for that

worst case to occur at every step. Amortized analysis takes this into account and

gives (usually worst case) analyses of algorithms on a multiple-instruction basis,

which can yield a tighter bound than straight worst case analyses.

2.2. Convergence ^

Since all algorithms start from an initially unordered list, they must spend

some time with poor performance to begin ordering the list before the average costs

begin to approach the expected asymptotic costs. The amount of time required for

this is the convergence of the algorithm, and is particularly important if the accesses

demonstrate locality.

2.2.1. Locality

As stated earlier, one common assumption made about p is that the proba

bility of access for each record is fixed, so that the only access sequences included
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are those (of any length) that access each record the same percentage of the time

relative to the other sequences in the set. It is usually assumed that accesses are

independent of each other. Thus average case analyses tend to assume that all

sequences are equally likely, which is not always true for strings of accesses.

It is fairly easy to see that simple permutation algorithms will tend to order

the list, but it is unreasonable to expect the list to be in the perfect order (by the

probabilities of access on the records) for any length of time. In the asymptotic

case, there must be a steady state which consists of a number of list configurations

all of which have expected access times close to that of the asymptotic cost.

This assumption fails to model a common feature of access sequences called

locality, where subsequences of p may have relative frequencies of access drastically

different from the overall relative frequencies. For example, consider a list of 26

records with keys 'a' through 'z'. Each record is accessed exactly ten times, so that

the fixed probability of each record is 1/26. Whenever a record is found, it is moved

to the front of the list if it is not already there.

First, let p consist of 10 repetitions of a string of 'a' through 'z' (alphabet

ically ordered), so that accesses to the same record are always spaced 26 apart.

In this case, all accesses (except the first) to each record will take 26 probes.

Multiplying the number of records (26) by the number of accesses to each record

(9 — not counting the first) by the number of probes for each access (26) gives the

total number probes for all but the first access to each record. The first access

will take between 26 and the key's location in the alphabet. For example, the first

access to a can take between 1 and 26 probes, since a could be anywhere in the list.

But the first access to d cannot be less than 4 since a, 6, and c have been accessed

and therefore placed ahead of d. Assuming the best case (when A is initially al

phabetically ordered), the total number of probes for first accesses is just the sum
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from 1 to 26. Thus the best case cost of this algorithm given p will be

26

26(9)(26)+E»
t=i

260
= 24.75

Now consider the worst case cost of a different sequence p which accesses 'a'

ten times in a row, followed by ten accesses to 'b', continuing until it ends with ten

accesses to 'z'. As in the previous case, the number of probes for the first access to

each record is between 26 and the key's location in the alphabet. All other accesses

take only one probe. The worst case cost in this example will be

26

26(9)(1) + E26
t=i

260
= 3.5

Note that the worst case of the second example is still far better than the best

case of the first example. This demonstrates the fact that the cost of this permuta

tion algorithm can differ greatly for the same fixed probabilities if accesses in p to

the same record tend to cluster together instead of being dispersed throughout p.

These two examples highlight the change in behavior based on the locality of

the search sequence. Permutation algorithms are designed not necessarily just to

try to order the list of records by their total frequencies of access. The algorithms

can also try to put records near the front that have been accessed more frequently

in the recent past. This is usually desirable since many access sequences (such

as variable accesses in a program or words in a document) tend to demonstrate

locality.

Denning and Schwartz define the following principle of locality for page ac

cesses in operating systems, but it applies equally well in cases of record or variable

accesses for most programming contexts: (1) during any interval of time, a program

distributes its accesses nonuniformly over its pages; (2) taken as a function of time,

the frequency with which a given page is accessed tends to change slowly, i.e. it is
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quasi-stationary; and (3) correlation between immediate past and immediate future

access patterns tends to be high, whereas the correlation between disjoint access

patterns tends to zero as the distance between them tends to infinity [Den72].

2.2.2. Measures of CoDvergence

The main idea of permutation algorithms is to order the list so that the records

that are likely to be accessed tend to be near the front of the list. The list is never

expected to become perfectly ordered, but should eventually reach one of many

steady states where the expected time for an access remains within some small

constant of the asymptotic cost for that algorithm. Once a steady state is reached,

permutations based on further accesses are expected to continue to result in steady

states.

Bitner proposes a measure of convergence he calls overwork as the area be

tween two curves [BlT79]. The horizontal (independent) axis is the number of

record accesses made (a range from 0 to oo). The first (and usually higher) curve

is the average cost of an algorithm as a function of the number of accesses. When

few accesses have yet been made, this curve can be expected to be high since the

list still has close to a random ordering, making it unlikely that records with high

access probabilities will be near the front. This curve approaches the asymptotic

cost of the algorithm as the number of accesses increases. The asymptotic cost is

the second curve (a straight horizontal line), and the overwork is defined as the

area between the expected cost curve and its asymptote. An algorithm is said to

converge faster than another algorithm if its overwork area is less.

Another measure of convergence could be the time (in terms of number of

record accesses) needed for a permutation algorithm to a reach a steady state from

a random initial state. As an alternate to his overwork measure, Bitner suggests a

modification of this time measure for which the time required for the expected cost

of transpose is less than that of move-to-front. (This measure could be generalized
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to compare any two algorithms, but Bitner was primarily interested in these two

and thus only mentioned the measure relative to them.)

When convergence is expressed as a measure of time, an interesting question

that can be asked about an algorithm is how quickly it adjusts to changes in locality

during search sequences. Tradeoffs between swift convergence and low asymptotic

cost have been^shown for several classes of permutation algorithms, but absolute

measures of convergence for algorithms are rare.

2.3. Relative Measurements

It is often desirable to compare permutation algorithms directly to each other.

This is useful both when no results can be obtained for a given algorithm, and

when the correlation between results for two or more algorithms is not clear. When

comparing algorithms, any of the previous measures may be used.

Algorithms are often compared to the use of the optimal static ordering, in

which the records are initially ordered by their static probabilities of access and left

in that order throughout the access sequence. The optimal static ordering is not

an algorithm by our definitions, since it uses knowledge about probabilities that

are assumed to be unavailable at the beginning of the algorithm. This ordering

provides a worst case cost of no more than n/2 (when the probabilities are equal)

and a best case approaching 1 as the differences in probabilities increases.

It should be noted that the optimal static ordering is not optimal overall. As

soon as locality of accesses is allowed, it is possible for self-adjusting algorithms

to have lower cost than the static order. Recall the examples given earlier with

ten calls to each of 26 keys. An optimal static order would require an average of

13.5 probes for any p of this sort. This is less than the best case with no locality

(24.75), but more than the worst case with complete locality (3.5). Thus the relative

effectiveness of permutation algorithms as compared to the optimal static ordering

is heavily dependent on the degree of locality in the access string p.
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3. KNOWN ALGORITHMS AND ANALYSES

There is a wealth of permutation algorithms in the literature. Bitner [1979]

and Gonnet et al. [1979] provide surveys of the most common algorithms and their

analyses. However, much work has followed, consisting of a few new algorithms, but

primarily of more enlightening relative measures between the existing algorithms.

3.1. Move-to-front

This is the algorithm used in the preceding example of the effects of locality.

When the accessed record is found, it is moved to the front of the list, if it is not

already there. All records that the accessed record passes are moved back one to

make room.

The move-to-front algorithm tends to converge quickly, but has a large asymp

totic cost. Every time a record with low access probability is accessed, it is moved

all the way to the front, which increases the costs of future accesses to many other

records.

Gonnet, Munro, and Suwanda give analyses of the cost of move-to-front for

a number of specific distributions of p [GON79]. Let P{ be the probability that

record i will be accessed at any given time, assuming that the probabilities are

fixed over all accesses. Thus Pi = (the number of occurrences of record i in p)/\p\.

The asymptotic cost for a general p has been shown by several analyses [MCC65,

BUR73, KNU73, Hen76, Riv76, BIT79] to be

1+ 2 E

-9-

PiPj

This counts only the search time; it would approximately double if the time to

permute the records were included.

Hendrics applies Markov chains to the same problem, obtaining the same

solution with possibly less work [HEN72]. He extends the application to move-to-k



strategies, which cause the records ahead of location k to move backwards on the

list [HEN73].

Gonnet, Munro and Suwanda give analysis for move-to-front assuming the

probabilities follow known distributions including Zipf's Law, Lotka's Law, expo

nential distribution, and Wedge distribution [Gon79].

3.2. Transpose

The accessed record, if not at the front of the list, is moved up one position

by changing places with the record just ahead of it. Under this method, a record

only approaches the front of the list if it is accessed frequently.

The slower record movement gives the transpose algorithm slower convergence,

but its stability tends to keep its steady state closer to optimal static ordering, and

results in a lower asymptotic cost. This is best if there is little locality in the

accesses.

3.3. Count

An extra field of memory is kept with each record, in which a count of accesses

to that record is maintained. The records are ordered by decreasing values of this

field. This may require linear time to reorder the records after an access if many of

the counts are equal, but maintaining a backpointer during the search can minimize

this cost.

3.4. Move-ahead-k

Move-ahead-k is a compromise between the relative extremes of move-to-front

and transpose. In the simple case, move-ahead-k s\mp\y moves the record forward

k positions. By this definition, if / is the distance to the front, move-to-front is

move-ahead-f and transpose is move-ahead-1.

This can be generalized to move a percentage of the distance to the front, or

some other function based on the distance. Other parameters to the function may
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also be of interest, such as how many accesses have taken place so far. As usual, if

the distance to be moved exceeds the distance to the front, then the record is only

moved to (or left at) the front.

The move-ahead-k algorithm was initially proposed by Rivest [1976]. Gonnet,

Munro, and Suwanda show that, for j > k, move-ahead-j converges faster than

move-ahead-k, but at the penalty of a higher asymptotic cost |GON79].

3.5. k-in-a-row

This might be called a meta-algorithm, since it can be applied to any permu

tation algorithm a. Algorithm a is applied only if the accessed record has been

accessed k times in a row. The purpose here is to slow the convergence of the

algorithm by not moving records on a single access, which may be a one-time oc

currence. If the record is accessed even twice in a row, the chances are greater that

it will have additional accesses in the near future. This has the advantage of not

requiring as much memory as do count rules, since it only needs to remember the

last record accessed, and a single global counter for number of accesses.

Gonnet, Munro and Suwanda propose this scheme and show that, for k = 2,

the convergence using move-to-front is the same as that of transpose [GON79].

Kan and Rossuse semi-Markov chains to analyze k-in-a-row policies [KanSO].

They consider rules that move elements closer to the front of the list only after the

elements have been accessed k times in a row. They show that the proportion of

time that the element with the i '̂* largest probability ofaccess will spend in the i^^

location approaches 1 as approaches oo.

3.6. Hybrids

Move-to-front and transpose clearly have tradeoffs concerning convergence and

asymptotic cost. If it is known ahead of time that the number of accesses will be

small, move-to-front is probably the better algorithm, whereas transpose is best if
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when the records are large or when there are many records. Since moving the

pointer forward slowly as the probes progress would be the same as performing

a sequential traversal at the end of the search, the pointer must occasionally be

jumped forward to the record which was just probed. The pointer will be advanced

to the probed record if and only if the probed record is not the accessed record, and

a boolean function JUMP is true. JUMP can be a function of variables such as the

current position of the back pointer, the position of the probed record, and/or the

number of accesses preceding the current one. They present definitions of JUMP

functions that demonstrate (on the average case) the same bishavior as move-to-

front, transpose, and move-ahead-k (for both constant k and k being a percentage

of the distance to the front).

4. COMPARISONS BETWEEN ALGORITHMS

Since it is often difiicult to obtain a standard measure for permutation algo

rithms, it is a common practice to simply measure the algorithms directly against

each other. The following sections describe these methods of comparison.

4.1. Optimal Algorithm?

A major question being asked is whether an optimal memoryless strategy

exists. Rivest defines an optimal permutation rule to be one with least cost for all

probability distributions and any initial ordering of the keys, and conjectures that

transpose is optimal under this definition [RIV76]. Kan and Ross provide evidence

to support this, and show that transpose is optimal among the rules that move

a single element some number of places closer to the front of the list [KAN80].

This result holds only under the assumption of no locality. Yao proves that if

an optimal algorithm exists, than it must be transpose (RIV76]. Anderson, Nash

and Weber provide a complex counterexample to Rivest's conjecture by showing

a permutation algorithm that outperforms transpose in the average case [And82].

- 13-



I

I

I

Therefore, no algorithm can be optimal over all p, and the following analyses for

different algorithms cannot be expected to demonstrate the superiority of any given

algorithm.

4.2. Asymptotic Cost

The asymptotic cost of move-to-front has been shown by many to be at

most twice the asymptotic cost of the optimal static ordering [McC65, KNU73,

HEN76, RIV76, BIT79]. Rivest shows that the asymptotic cost of transpose is less

than or equal to that of move-to-front for every probability distribution [Riv76].

The result by Gonnet, Munro and Suwanda concerning move-ahead-k algorithms

extends Rivest's work to show that transpose has lower asymptotic cost than move-

ahead-k for any A: > 1 [GON79].

Bitner shows that count is asymptotically equal to the optimal static ordering,

and that the difference in cost between the two decreases exponentially with time,

so that count is not much worse than the optimal static ordering even for fairly

small numbers of accesses [BIT79].

4.3. Worst Case

The worst case cost of move-to-front has been shown by many to be no more

than twice that of the optimal static ordering [BUR73, KNU73, HEN76, RIV76,

BIT79, Bens2, Sle84]. This might be intuitively seen by again considering the

examples given earlier. The worst case cost of move-to-front when there is no

locality and the accessed record is always at the.end of the list is about n, and the

cost using the optimal static ordering in the same situation is about n/2. This does

not show that move-to-front is never worse than twice the optimal static ordering,

but suggests this might be true.

The relative analyses for the worst case of move-to-front are by techniques

which are not generally applicable, with the exception of the analysis of Sleator
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and Tarjan [SLE84]. They give an amortized analysis, which they extend to show

that moving a record any fraction of the distance to the front of the list will be no

more than a constant times the optimal off-line algorithm. The constant is inversely

proportional to the fraction of the total distance moved.

Bently and Cole additionally point out that while the worst-case performances

of move-to-front and count are no more than twice that of the optimal static

ordering, the worst-case performance of transpose could be far worse [BEN82].

4.4. Convergence

Bitner shows that, while transpose is asymptotically more eflBcient, move-to-

front often converges more quickly [BIT79]. Bitner demonstrates that his overwork

measure for move-to-front is a factor of n less than transpose for a variety of

probability distributions. He also shows that move-to-front converges faster than

transpose by using his second measure of convergence (the number of accesses A

required for the expected cost of transpose to be less than that of move-to-front)

by pointing out that A increases quadratically with n, which indicates that move-

to-front converges faster than transpose.

Bitner suggests the use of a hybrid that changes from move-to-front to trans

pose when the number of requests is between 0(n) and 0(n^). He mentions that,

in his thesis, he addressed the issue of finding good bounds for when to change from

one to the other, but found it difiicult and was forced to make a guess based on

observation.

5. OPEN PROBLEMS

Since it has been shown that no single optimal permutation algorithm exists,

it becomes necessary to try to characterize under what circumstances different

algorithms are preferable. There are several conditions to consider, which give rise

to the following open questions concerning algorithms.
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5.1. Locality/Conv&gence

Hendricks lists relaxing the assumption of independence for analysis of permu

tation algorithms as an interesting open problem [HEN76]. He suggests a model by

which, when a record is accessed, its probability of access in the future is increased

(or decreased). He does not suggest how other probabilities should be altered to

account for this.

As yet, no good definition for locality of accesses has been applied to the

problem of measuring self-adjusting sequential search. This is unfortunate since

taking advantage of locality is one of the main reasons for using these techniques

in the first place, and it restricts measures of convergence to very general cases.

5.2. Optimize algorithms for a given level of locality

Once an algorithm can be analyzed in terms of its performance for a given

function of locality present in a access sequence, development of algorithms that

optimize convergence for the given level of locality is an obvious step. A few

hybrids were suggested that quickly converge to a steady state and also have a

good asymptotic cost such as using move-to-front initially and then switching to

transpose at some later time. As was pointed out, the time to switch to transpose in

the above example, and similar problems in other algorithms, is currently difficult

under the assumption that nothing at all is known about the access sequence.

Allowing only knowledge of the approximate degree of locality of the sequence may

make it possible to tailor these algorithms well.

Hybrids are not the only method of controlling response to locality. The

move-ahead-k algorithm could also be considered, especially the extended definition

that allows moving a function of the distance to the front rather than just a fixed

constant.
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SUMMARY

Self organizing lists have been in the literature for almost twenty years, and in

that time many permutation algorithms have been proposed that move the accessed

record forward by various distances, either constant or based on the location of the

record or past events. We have presented these algorithms along with the analyses

for them.

The majority of the literature deals with a only a few of the permutation al

gorithms. Many analyses on the same algorithms are given, either demonstrating a

new method of analysis or providing results based on different criteria. Almost all

average case analyses assume no locality, which is unreasonable in many applica

tions. While move-to-front has been shown to be better in some real applications

than transpose, there are no guidelines for choosing between the algorithms that

move the accessed record some distance between the two extremes.
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