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Abstract

The response of a murine macrophage cell line exposed to a library of seven metal and metal 

oxide nanoparticles was evaluated via High Throughput Screening (HTS) assay employing 

luciferase-reporters for ten independent toxicity-related signaling pathways. Similarities of 

toxicity response among the nanoparticles were identified via Self-Organizing Map (SOM) 

analysis. This analysis, applied to the HTS data, quantified the significance of the signaling 

pathway responses (SPRs) of the cell population exposed to nanomaterials relative to a population 

of untreated cells, using the Strictly Standardized Mean Difference (SSMD). Given the high 

dimensionality of the data and relatively small dataset the validity of the SOM clusters was 

established via a consensus clustering technique. Analysis of the SPR signatures revealed two 

cluster groups corresponding to (i) sub-lethal pro-inflammatory responses to Al2O3, Au, Ag, SiO2 

nanoparticles possibly related to ROS generation, and (ii) lethal genotoxic responses due to 

exposure to ZnO and Pt nanoparticles at a concentration range of 25 μg/mL-100 μg/mL at 12 h 

exposure. In addition to identifying and visualizing clusters and quantifying similarity measures, 

the SOM approach can aid in developing predictive quantitative-structure relations; however, this 

would require significantly larger datasets generated from combinatorial libraries of engineered 

nanoparticles.
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Introduction

There have been rising concerns that unintended exposures of humans and other ecological 

receptors to engineered nanomaterials (eNMs) may result in adverse effects that differs from 

those known for their bulk counterpart (1, 2). Environmental protection plans associated 

with the manufacture and use of eNMs requires understanding nano-bio interface 

interactions that govern the biological activity and potential toxicity of nanomaterials. In this 

regard, the rapid generation of complex toxicity datasets, integrating in-vitro information at 

both, the molecular and cellular levels, with in-vivo whole-organism data, has in tandem 

accelerated the emergence of a new multilevel paradigm for toxicity testing. An important 

goal of toxicity testing is to identify critical biological pathways that, when perturbed, can 

lead to adverse effects. Accordingly, high-throughput toxicity-pathway assays are emerging 

as central elements of toxicity testing (3). Specifically, high-throughput screening (HTS) 

aims to screen the toxicity of nanoparticle libraries in a multivariate context that usually 

includes multiple cell lines, exposure times and nanoparticle concentrations (4). HTS data 

analysis requires normalization to remove systematic errors and for comparison and 

combination of data acquired from different plates (5). Such data can then be used to 

identify similarity patterns to construct eNM categories of common mechanisms of action 

and thus support the development of structure-activity nanotoxicity relationships.

Statistical techniques such as cluster analysis have proven useful for “mining” the 

relationships hidden in multidimensional cellular activity datasets (6). Hierarchical 

clustering and its application to heat maps (i.e., mapping display of cell activity data) are 

commonly used in bioinformatics for the analysis of HTS datasets. This clustering approach 

does not preserve the intrinsic topology of the data (e.g., nanoparticles that are placed in 

consecutive leaves in the hierarchical tree structure may in fact be far apart in the original 

data space). Self-Organizing Map (7) analysis is an alternative approach that provides an 

ordered two-dimensional visualization of multidimensional HTS data where similar 

nanoparticles assigned to nearby SOM units are also closer in the HTS data space (i.e., 

preserves the original distance relationships). SOM provides more accurate and robust 

clustering specifically for “noisy” datasets (8). SOM analysis has been shown to be useful 

for the development of quantitative structure-activity (QSAR) (9) and structure-property 

relationships (QSPR) (10). SOM has also been effectively used for the exploratory analysis 

of microarray data since, in contrast to the rigid structure of hierarchical clustering (i.e., 

based on pairwise similarity that doesn't preserve the distances between all the elements in 

the data set) it allows organization of data clusters such that cluster similarity can be visually 

identified based on the proximity of SOM units relative to each other in the map (11). 

However, gene expression arrays and HTS datasets of eNM toxicity differ markedly in the 

sample size (e.g., thousands to tens of thousands genes), the latter usually being a smaller 

dataset (typically ∼10-100 nanoparticles in a specific concentration range) but of higher 

dimensionality (e.g., combination of different cell lines, toxicity-pathways and exposure 
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times). Smaller HTS datasets of higher dimensionality present a fundamental challenge of 

determining which clusters are truly representative of the actual physical domain (12). 

Consensus clustering can be utilized to overcome the above difficulty by providing a 

quantitative measure of cluster validity as demonstrated in a recent work on nano-SAR 

development (13, 14).

In the current work, a strategy of SOM analysis, along with consensus clustering (15) and 

multi-scale bootstrap sampling (16), was demonstrated for data mining of a small eNM 

library (seven metal and metal oxide nanoparticles). Toxicity screening data were obtained 

via measurements of the activity of ten toxicity-related cell signaling pathways (hereinafter 

termed “signaling pathways”) for macrophage cells. Grouping of similar cell signaling 

pathway responses was accomplished via a consensus SOM clustering approach that 

provided both a quantitative and visual representation of pathway similarity and possible 

relationships.

Materials and Methods

Knowledge extraction

The present approach for knowledge extraction from nanoparticle (NP) HTS signaling-

pathway data is summarized in Figure S1 in Supporting Information (SI). In vitro HTS data 

measuring signaling pathway responses (hereinafter termed “SPR”) (SI, Table S1) of 

macrophage cells exposed to eNM were generated as described in the supporting 

information. Briefly, data acquired from different HTS plates were first normalized to 

account for systematic experimental errors. The significance of the biological responses (i.e., 

data labeling), triggered in macrophage cells exposed to eNMs, was quantified with respect 

to responses observed in untreated cells using the approach described later in this section 

(17). SPR similarities were then identified via SOM cluster analysis. Given the relatively 

small HTS dataset, consensus clustering was required for cluster validation (12, 15). 

Subsequently, clusters of SOM units were identified along with their associated dominant 

signaling pathways. Finally, an averaged cluster pathway signature (i.e., profile with respect 

to the pathway and time) was determined for each cluster in order to evaluate the similarity 

among clusters.

Experimental toxicity data

Seven metal and metal-oxide nanoparticles (Ag, Au, Pt, Al2O3, Fe3O4, SiO2, ZnO with 

respective primary diameters of 13, 12, 13, 12, 8, 19, and 20 nm) were acquired from 

commercial sources (Table S1; SI) to test for induction of toxicity-associated cell signaling 

pathways using a set of RAW 264.7 luciferase reporter cell lines. Macrophages were 

selected in this study since they constitute one of the principal immune-system sentinels 

whose phagocytic activity makes them likely to interact with eNMs upon exposure (18).

In order to obtain stable luciferase reporter cell lines, RAW 264.7 (ATCC #TIB-71) murine 

macrophage-like cells were transduced (see SI) with Cignal Lenti Reporters (SABiosciences 

Corp., US). Ten cell lines containing a unique transcriptional response element (TRE) were 

stably transduced with each of the ten pathway-specific reporters (SI, Table 1). An 
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additional control cell line was generated in which the TRE is absent (TRE-), leaving only a 

basal promoter element upstream of the luciferase gene. The TRE- data served as control 

samples (i.e., indicators of cytotoxic effects of nanomaterials and other non-specific events 

affecting cell viability) and for data normalization. Details of the experimental protocol are 

provided in the Supporting Information. Briefly, each individual reporter cell line was 

seeded at 2×104 cells per well in white 384 well plates (Thermo Fisher Sci., NH, US, 

Cat#4334) with nanoparticle concentrations spanning the range of 0.375 - 100 μg/mL (at 

two-fold increases). At specific times (i.e., t=3, 6, 12, 24 hours), luciferase levels produced, 

in response to nanoparticle exposure, were determined via Bright-Glo Luficerase Assay 

(Promega Corp., WI, US).

The HTS plate layout is provided in Figure 1. Cells in the wells located in the two outer 

columns of the plate were left untreated (i.e., served as a control indicative of the natural 

signaling pathway responses). The remaining wells contained cells exposed to the library of 

eNMs (Table 1). Well quadruplicates in each plate, served to account for natural (i.e., 

biological) and systematic (i.e., experimental) variabilities (5). Luminescence data were 

acquired from a set of 44 × 384-well plates (i.e., one plate for each studied signaling 

pathway plus TRE- control at each of the four exposure times) producing a total of 16,896 

luminescence data readings.

Data preprocessing

Data normalization was performed in two steps. First, in order to account for nonspecific 

luciferase expression or alterations in cell viability, HTS data were normalized by dividing 

the luminescence values in each well by the luminescence values of the corresponding TRE− 

control cells exposed to the identical experimental conditions (i.e., exposed to the same 

concentration of nanoparticles). Second, for each plate, the strictly standardized mean 

difference (17) was used to determine the statistical significance of the differences between 

each set of quadruplicate measurements and the untreated (i.e., not exposed to eNMs) cell 

population (Figure S2, SI). The strictly standardized mean difference (SSMD) for two 

independent populations, 1 and 2 (e.g., quadruplicate responses and untreated samples) is 

estimated as:

(1)

where X̄
1 and X̄

2 are the averages of each population, n1 and n2 the corresponding 

population sizes (i.e., n1=4 and n2=64) and s1 and s2 are estimates of the standard deviation 

of each population. The SSMD, similar to Student's t-test, measures the significance of 

differences between the two populations while accounting for their intrinsic variability. 

However, unlike the SSMD, the student t-test under the assumption of unequal variances 

tends to underestimate of the likelihood of populations similarity (i.e., lower p-values) with 

increasing sample size (17). For example, SSMD ≥ 3 indicates that the probability that a 

value from the first population being greater than a value from the second population is > 

99.9% when the difference is normally distributed, or > 95% when the difference has a 
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unimodal distribution with finite variance (17). Following the above scheme, the SPR of the 

macrophage cells, exposed to a nanoparticle n at a given concentration C, was described by 

an SPR vector 

, whose forty components are the SSMD (Eq. 1) values of the normalized luminescence 

corresponding to the ten studied pathways at each of the four exposure time.

Similarity analysis

SOM representation (as two-dimensional projection) of the multidimensional HTS SPR data 

was accomplished as depicted in Figure 2. SOM identification of similar SPR vectors (i.e., 

SPR vectors that are close to each other in the native topology of the data), corresponding to 

similar patterns of signaling pathway activity, can aid in the identification of common 

mechanisms of action for specific types of nanoparticles. Details of the implementation and 

properties of the SOM analysis can be found elsewhere (7). Briefly, SOM provides an 

ordered projection of the SPR vectors while preserving the topology of the original HTS 

dataset (i.e., relative distances among the processed SPR vectors) and facilitates the 

identification and visualization of groups of eNMs that trigger similar biological responses. 

The SOM was developed utilizing an optimal (20, SI) two-dimensional hexagonal 8×5 grid 

(i.e., 40 SOM units, Figure 2). Each SOM unit k was characterized by a weighted average of 

its clustered SPR vectors yielding a prototype vector pk for the unit (Figure 2). During the 

map construction process prototype vectors adapts such that similar map units (i.e., in terms 

of prototype vectors) are organized closer to each other. The SOM structure can be 

conveniently visualized as a set of 40 consecutive layers (i.e., component planes; (20), each 

representing the responses (in terms of the prototype vector components) from one of the 

specific ten signaling pathway at one of the four different exposure times (Fig. 2). 

Accordingly, the component planes c-planes are displayed by a color code corresponding to 

each individual prototype vector component over the SOM.

Clustering of HTS data

Identification of clusters of SOM units (Figure 2) can be accomplished by determining the 

similarity among the prototype vectors (19, 20). However, cluster validation is challenging 

for HTS data since: (a) lack of prior knowledge about the expected cluster structure, and (b) 

clustering of a dataset of high dimensionality is sensitive to data quality (e.g., both in terms 

of dataset size and data uncertainty). Accordingly, in the present work identified HTS 

dataset clusters were validated using a consensus-clustering method (15). The approach 

consisted of randomly sampling the post-processed HTS dataset with replacement (i.e., 

allowing the selection of the same SPR vector multiple times) to generate replicate datasets 

of the same order of the original HTS dataset. Subsequently, the SOM algorithm was 

applied to cluster the SPR vectors in each replicate dataset. The cumulative number of 

clustering runs in which two response vectors were grouped together in the same SOM unit 

formed the elements of a symmetric consensus matrix M (dimension= n×n, where n=63, the 

total number of SPR vectors in the HTS dataset). This matrix was then normalized (forming 

a co-clustering index matrix) by dividing each element (i.e., representative of an SPR pair) 
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by the total number of times that the corresponding SPR pair is found in the total number of 

replicate datasets.

The validity of a given SOM cluster (either SOM unit or cluster), k, was quantified in terms 

of a consensus index CI(k), from the elements of the normalized consensus matrix M as,

(2)

where Ik is the set of consensus matrix indices corresponding to the SPR vectors in cluster k 

and Nk is the number of elements (SPR vectors) in the same cluster (16). The consensus 

index is in the range of [0,1] where values near unity are indicative of increasing cluster 

validity (i.e., the SPR vectors cluster together with increased validity irrespective of the 

perturbations introduced in the HTS dataset).

Results and Discussion

SOM clustering of signaling-pathway response data

Validation of SOM units (i.e., grouping of SPR vectors) was assessed via the consensus 

clustering approach (Eq. (2)). As shown in Fig. 3a, grouping of SPR vectors within SOM 

units was highly robust and reproducible as verified by the consensus clustering analysis. 

Two SOM units had the low consensus index values of 0.83 and 0.85. The first, contained 

nanoparticles of Ag (12.5 μg/mL and 50 μg/mL), Al2O3 (25 μg/mL) and SiO2 (3.12 μg/mL) 

and the second contained Ag (0.375 μg/mL and 1.6 μg/mL), Al2O3 (0.375 μg/mL) and ZnO 

at (25 μg/mL). The above results and the fact that the remaining SOM units had consensus 

index values above about 0.9 indicate that the SOM developed from the HTS data reflects 

valid SOM grouping (i.e., units) of SPR vectors.

Five SOM clusters were identified, each representing a group of similar SOM units, based 

on the similarities (distances) between neighboring SOM units and validated via a consensus 

approach (see Consensus Matrix, SI Figure S4). The consensus index values for Clusters I 

and II (Figure 4b) were of 0.91 and 0.94, respectively. Cluster I included SPR vectors 

corresponding to ZnO (50 and 100 μg/mL) and Pt (25, 50 and 100 μg/mL) at high 

concentrations while Cluster II consisted of SPR vectors corresponding to ZnO 

nanoparticles at concentration of 0.75 – 12.5 μg/mL. Cluster V (Figure 3b) had a consensus 

index of 0.89 and included the SPR vectors corresponding to SiO2, Al2O3 and Fe3O4 

nanoparticles at high concentrations (≥ 25 μg/mL), as well as those of SiO2, Al2O3, Fe3O4, 

Au, Pt, ZnO nanoparticles at moderate or low concentrations (<12.5 μg/mL). Finally, it is 

noted that although clusters III and IV (Figure 3b) had slightly lower consensus indices of 

0.71 and 0.69, respectively, these values can be viewed as indicative of a clear clustering 

tendency. Finally, it is noted that for comparison, a cluster heat map of the preprocessed 

HTS data was also developed and details are provided in the Supporting Information (Figure 

S3).
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Relationships between signaling-pathway response (SPR) vectors

A color-coded SOM representation (i.e., c-planes) of the signaling-pathway responses (SI, 

Table 1) is shown in Figure 4. In this representation, each c-plane, displays the SOM 

average of the components of the SPR vectors for each unit. The content of each of the SOM 

units in the forty c-planes (Figure 4) is identified with the specific nanoparticles (at a given 

concentration) through the unit labeling shown in Figure 3.

As is revealed in Figure 4, after short exposure time 3 h to 6 h, there is an incipient up-

regulation tendency of the NF-κB, MAPK/JNK and MAPK/ERK stress and inflammatory 

signaling pathways attributed to nanoparticles identified as members of cluster V (Figure 

3b). Macrophages are known to be stimulated to secrete inflammatory mediators, such as 

cytokines and chemokines, when exposed to foreign substances to enhance an immune 

response (22). Interestingly, significant down-regulation (blue colors in Figure 4) of the 

inflammatory NF-κB, MAPK/JNK and PKC/Ca++ signaling pathways is observed in 

clusters I and II (Figure 3b) that are specifically linked to the responses associated with 

exposure to ZnO nanoparticles (Figure 3b).

Inspection of the c-planes (Figure 4) reveals that after 12 h of exposure there is an additional 

significant up-regulation of p53, c-Myc and cell cycle signaling-pathways (areas in red color 

in Figure 4). Specifically, nanoparticles in clusters I and II (Figure 3b) induced a significant 

up-regulation of the p53/DNA damage pathway. The nanoparticles responsible for these 

signaling pathway responses were ZnO and Pt at concentration ranges of 0.75 μg/mL - 100 

μg/mL and 25 μg/mL - 100 μg/mL, respectively. A highly correlated pathway response is 

also observed in the c-plane (Figure 4) corresponding to the cell cycle/E2F pathway, which 

is responsible for delaying or halting cell cycle progression in response to DNA damage 

through the regulation of the G1/S cell cycle checkpoint (23).

Interestingly, the c-Myc pathway c-plane shows significant up-regulation (Figure 4) induced 

by ZnO at high concentrations (50 - 100 μg/mL) and Pt (25 - 100 μg/mL) nanoparticles in 

cluster I (Figure 3b). Deregulation of c-Myc may have a severe effect on normal cell 

functions, including proliferation, differentiation, and apoptosis (24). It is plausible that the 

stimulation of apoptosis by c-Myc may not always be directly linked to cell cycling; it can 

also arise through indirect actions that culminate in DNA damage (25). The combined 

response observed in these pathways is consistent with the known fact that damaged DNA in 

mammalian cells triggers the production of proteins that initiate cell-cycle arrest, DNA 

repair and ultimately may induce apoptosis (26). The possible induction of cell death by 

nanoparticles in cluster I (Figure 3b), is supported by the down-regulation of the PKC/Ca++ 

pathway observed after 6 h. Indeed, there is considerable evidence that a number of 

toxicants alter Ca2+ signaling processes and may induce cell death by apoptosis (27). For 

instance, the exposure of human cells to Pt nanoparticles results in genotoxic stress that 

increases DNA damage, accumulation of cells at the S-phase of cell cycle and apoptosis 

(28). Genotoxic effects were also observed in human epidermal cells after 6 h of exposure to 

low concentrations of ZnO nanoparticles (29). This genotoxic potential may be mediated 

through lipid peroxidation and oxidative stress (30).
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The down-regulation of the hypoxia pathway (Figure 4) induced by the same group of 

nanoparticles (ZnO and Pt) could be attributed to the fact that high expression levels of p53 

lead to a decrease in HIF-1α protein levels and thereby eliminate the activity of the HIF-1 

reporter (31). Finally, there was significant decrease in the response of the cell cycle, c-Myc 

and DNA damage signaling pathways after prolonged exposure to nanoparticles (24 h). It is 

possible that these results may have been affected by cytotoxicity of ZnO and Pt 

nanoparticles (Cluster I in Figure 3b) as indicated by a significant reduction in the 

luminescence signal associated with TRE- control cells (not shown).

Extraction of signaling-pathway response signatures

Similarity in terms of the biological response of the five SOM clusters was evaluated by 

comparing their averaged pathways response. Accordingly, the prototype vectors 

components (i.e., SSMD values) of the SOM units in each cluster (Figure 3b) were averaged 

to obtain distinct pathway response (PR) signatures (Figure 5 and 6). In this representation |

SSMD| ≈ 0.5 indicates a weak effect (17) with a probability less than about 70% of a 

response that is significantly different from the untreated cells. Conversely, for |SSMD| > 0.5 

the effects are stronger (SI) with higher probability of significant up or down-regulation of 

the signaling pathway as observed in the PR signatures for clusters I, II and V (Figures 5 and 

6). The signaling PR signatures for these clusters suggest that the significant responses (i.e., 

pathways with the highest SSMD values) for the above clusters are associated with sub-

lethal pro-inflammatory response (Cluster V) and lethal response including DNA damage 

(Clusters I and II). In contrast with the above, reliable biological interpretation could not be 

derived from the PR signatures for clusters III and IV (not shown) since these clusters had 

low consensus clustering indices (Figure 3b) and low |SSMD| values (e.g. mostly |SSMD| 

<0.5).

The sub-lethal response inferred in Cluster V (Figure 5) can only be considered as a 

moderate biological effect with a probability in the range 70% - 80% of being significantly 

different from the untreated cells. On the other hand, the PR signatures in Cluster V, which 

includes silica and alumina have its more significant components in pathways related to 

ROS generation and inflammatory responses (e.g., NF-κB, MAPK/JNK, and MAPK/ERK). 

It has been reported that exposure to SiO2 nanoparticles could lead to cellular morphological 

modifications, mitochondrial dysfunction, and oxidative stress by generation of intracellular 

ROS (32). It is interesting to note that ROS generation has been reported to trigger pro-

inflammatory responses, both in vivo and in vitro, by changes in the expression levels of 

distinct genes and pathways related to inflammatory responses and apoptosis including 

MAPK/ERK kinase, NF-κB and AP-1 (33, 34). Further, alumina nanoparticles have been 

shown to initiate inflammatory events in macrophages, including secretion of pro-

inflammatory cytokines and interaction with neighboring cells (35). Activator protein-1 

(AP-1) has also been demonstrated to be redox sensitive and its activation has been linked to 

both exogenous oxidants (36) and ligand-induced ROS (37). ROS has also been reported to 

activate serine/threonine phosphorylation processes (e.g., regulation of serine/threonine 

kinases of the MAPK family including ERKs and JNKs) (38).
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Significant PR signatures are observed for clusters I and II (Figure 3b). In cluster II (ZnO 

nanoparticles at 0.75 – 12.5 μg/mL) the most significant signaling pathways are related to 

TGF-β (SMAD), cell cycle (E2F) and DNA damage (p53) (Figures 4 and 6). The activity in 

the genotoxicity-related pathway (p53/DNA damage) is more evident after a 12 h exposure 

period with SSMD > 1.5 which corresponds to a significant difference (probability > 80%) 

between the response of cells exposed to low ZnO concentrations (0.75 μg/mL – 12.5 

μg/mL) relative to the response of untreated cells. The correlation between the c-planes (Fig. 

4) corresponding to E2F and p53 (i.e., both showing significant response in the same SOM 

units) is consistent with the suggestion that significant DNA damage induced by the ZnO 

nanoparticles triggers cell cycle arrest. The above two pathways also appear to be significant 

for nanoparticles in cluster I (Figure 3b). However, at the higher ZnO and Pt nanoparticles 

(> 25 μg/mL) more significant genotoxic effects (i.e., larger SSMD values) were observed 

relative to the untreated cells. After 12 h of exposure, DNA damage (p53), cell cycle (E2F) 

and c-Myc (Myc) pathways display significant response levels (i.e., SSMD ≅ 5 for DNA 

damage with a >99.9% probability of being different relative to the response of the untreated 

cells). The above response decreased significantly after a 24 h exposure, possibly due to the 

cytotoxicity of the nanomaterials and the corresponding decline in the measured 

luminescence.

In summary, SOM enabled detailed analysis of the clustering structure of the SPR induced 

by a set of seven Me and MeO nanoparticles to which RAW 264.7 macrophage cells were 

exposed. The SOM analysis identified two groups of SPR signatures corresponding to (i) 

sub-lethal pro-inflammatory responses that are possibly related to ROS generation, and (ii) 

lethal genotoxic responses after exposure to ZnO and Pt nanoparticles at high 

concentrations. Comparison of the SOM c-planes relevant relationships between the cell 

signaling pathways. The current study demonstrates that the Self-Organizing Map is an 

effective tool for the analysis of HTS nanoparticle data that complements and extends the 

data mining capabilities of more traditional techniques such as cluster heat maps. Finally, it 

is important to recognize that notwithstanding the power of SOM or other methods for 

knowledge extraction from multidimensional nanoparticle HTS toxicity datasets, definitive 

generalizations and conclusions regarding clustering and activity patterns of eNM toxicity 

will require significantly expanded datasets including eNM structural and physicochemical 

properties than presently available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Depiction of the experimental set-up for the HTS assay and the data generation. Layout of a 

384-well HTS plate (left) showing the location of untreated samples (i.e., cell not exposed to 

eNMs) and the four replicate wells for each nanoparticle concentration. Four different plates 

were employed to measure the activity of each of the 10 pathways (right) at different 

exposure times (3, 6, 12 and 24 h).
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Figure 2. 
Structure and principal elements of the SOM used the current work. The gray plane (left) 

represents the SOM grid composed by 40 units arranged in a hexagonal configuration of 8×5 

units. Subsequent color slices correspond to the visualization of each of the 40 component 

planes (c-planes) corresponding to each signaling pathway at each exposure time (3 h – 24 

h). The plane on the right side depicts the clustering of similar SOM units based on the 

distance matrix.
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Figure 3. 
Clustering of nanoparticles according to their signaling pathway response profile using the 

SOM. (a) Visualization of the consensus index for each SOM unit. (b) Clusters obtained 

from the SOM distance matrix and its corresponding consensus index.
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Figure 4. 
Component planes corresponding to the biological response (up-regulation/down-regulation) 

of the 10 cell signaling pathways for the RAW 264.7 macrophage cells at 3 h, 6 h, 12 h and 

24 h of exposure to the seven nanoparticles (Table 1).
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Figure 5. 
Sub-lethal pro-inflammatory signatures at 3h, 6h, 12h and 24h of exposure corresponding to 

SPR profiles in Cluster V. The error bars indicate the within-cluster variability of each 

signaling pathway.
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Figure 6. 
Lethal genotoxic signatures of ZnO and Pt. The error bars indicate the within-cluster 

variability of each signaling pathway. (a) Response signatures at 3h, 6h, 12h and 24h of 

exposure corresponding to SPR profiles in Cluster II, (b) Response signatures at 3h, 6h, 12h 

and 24h of exposure corresponding to SPR profiles in Cluster I.
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