
Self-organizing map in Matlab: the SOM Toolbox  

Juha Vesanto, Johan Himberg, Esa Alhoniemi and Juha Parhankangas 

Laboratory of Computer and Information Science, Helsinki University of Technology, Finland 

Abstract 

The Self-Organizing Map (SOM) is a vector 
quantization method which places the prototype vectors on 
a regular low-dimensional grid in an ordered fashion. 
This makes the SOM a powerful visualization tool. The 
SOM Toolbox is an implementation of the SOM and its 
visualization in the Matlab 5 computing environment. In 
this article, the SOM Toolbox and its usage are shortly 
presented. Also its performance in terms of computational 
load is evaluated and compared to a corresponding C-
program. 

 

1.  General 

This article presents the (second version of the) SOM 
Toolbox, hereafter simply called the Toolbox, for Matlab 
5 computing environment by MathWorks, Inc. The SOM 
acronym stands for Self-Organizing Map (also called 
Self-Organizing Feature Map or Kohonen map), a popular 
neural network based on unsupervised learning [1]. The 
Toolbox contains functions for creation, visualization and 
analysis of Self-Organizing Maps. The Toolbox is 
available free of charge under the GNU General Public 
License from http://www.cis.hut.fi/projects/somtoolbox. 

The Toolbox was born out of need for a good, 
easy-to-use implementation of the SOM in Matlab for 
research purposes. In particular, the researchers 
responsible for the Toolbox work in the field of data 
mining, and therefore the Toolbox is oriented towards that 
direction in the form of powerful visualization functions. 
However, also people doing other kinds of research using 
SOM will probably find it useful — especially if they 
have not yet made a SOM implementation of their own in 
Matlab environment. Since much effort has been put to 
make the Toolbox relatively easy to use, it can also be 
used for educational purposes. 

The Toolbox — the basic package together with 
contributed functions — can be used to preprocess data, 
initialize and train SOMs using a range of different kinds 
of topologies, visualize SOMs in various ways, and 
analyze the properties of the SOMs and data, e.g. SOM 

quality, clusters on the map and correlations between 
variables. With data mining in mind, the Toolbox and the 
SOM in general is best suited for data understanding or 
survey, although it can also be used for classification and 
modeling. 

2. Self-organizing map 

A SOM consists of neurons organized on a regular low-
dimensional grid, see Figure 1. Each neuron is a d-
dimensional weight vector (prototype vector, codebook 
vector) where d is equal to the dimension of the input 
vectors. The neurons are connected to adjacent neurons by 
a neighborhood relation, which dictates the topology, or 
structure, of the map. In the Toolbox, topology is divided 
to two factors: local lattice structure (hexagonal or 
rectangular, see Figure 1) and global map shape (sheet, 
cylinder or toroid).  

 

1

2

0

              

1

0

2

 

Figure 1. Neighborhoods (0, 1 and 2) of the centermost 
unit: hexagonal lattice on the left, rectangular on the right. 
The innermost polygon corresponds to 0-, next to the 1- 
and the outmost to the 2-neighborhood. 

The SOM can be thought of as a net which is spread to 
the data cloud. The SOM training algorithm moves the 
weight vectors so that they span across the data cloud and 
so that the map is organized: neighboring neurons on the 
grid get similar weight vectors. Two variants of the SOM 
training algorithm have been implemented in the Toolbox. 
In the traditional sequential training, samples are 
presented to the map one at a time, and the algorithm 
gradually moves the weight vectors towards them, as 
shown in Figure 2. In the batch training, the data set is 
presented to the SOM as a whole, and the new weight 
vectors are weighted averages of the data vectors. Both 
algorithms are iterative, but the batch version is much 
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faster in Matlab since matrix operations can be utilized 
efficiently.  

For a more complete description of the SOM and its 
implementation in Matlab, please refer to the book by 
Kohonen [1], and to the SOM Toolbox documentation. 
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Figure 2. Updating the best matching unit (BMU) and 
its neighbors towards the input sample marked with x. 
The solid and dashed lines correspond to situation before 
and after updating, respectively. 

3. Performance 

The Toolbox can be downloaded for free from 
http://www.cis.hut.fi/projects/somtoolbox. It requires no 
other toolboxes, just the basic functions of Matlab (version 
5.1 or later). The total diskspace required for the Toolbox 
itself is less than 1 MB. The documentation takes a few 
MBs more. 

The performance tests were made in a machine with 3 
GBs of memory and 8 250 MHz R10000 CPUs (one of 
which was used by the test process) running IRIX 6.5 
operating system. Some tests were also performed in a 
workstation with a single 350 MHz Pentium II CPU, 128 
MBs of memory and Linux operating system. The Matlab 
version in both environments was 5.3. 

The purpose of the performance tests was only to 
evaluate the computational load of the algorithms. No 
attempt was made to compare the quality of the resulting 
mappings, primarily because there is no uniformly 
recognized “correct” method to evaluate it. The tests were 
performed with data sets and maps of different sizes, and 
three training functions: som_batchtrain, 
som_seqtrain and som_sompaktrain, the last of 
which calls the C-program vsom to perform the actual 
training. This program is part of the SOM_PAK [3], 
which is a free software package implementing the SOM 
algorithm in ANSI-C. 

Some typical computing times are shown in Table 1. As 
a general result, som_batchtrain was clearly the 

fastest. In IRIX it was upto 20 times faster than 
som_seqtrain and upto 8 times faster than 
som_sompaktrain. Median values were 6 times and 3 
times, respectively. The som_batchtrain was 
especially faster with larger data sets, while with a small 
set and large map it was actually slower. However, the 
latter case is very atypical, and can thus be ignored. In 
Linux, the smaller amount of memory clearly came into 
play: the marginal between batch and other training 
functions was halved. 

The number of data samples clearly had a linear effect 
on the computational load. On the other hand, the number 
of map units seemed to have a quadratic effect, at least 
with som_batchtrain. Of course, also increase in 
input dimension increased the computing times: about 
two- to threefold as input dimension increased from 10 to 
50. The most suprising result of the performance test was 
that especially with large data sets and maps, the 
som_batchtrain outperformed the C-program (vsom 
used by som_sompaktrain). The reason is probably 
the fact that in SOM_PAK, distances between map units 
on the grid are always calculated anew when needed. In 
SOM Toolbox, all these are calculated beforehand. 
Likewise for many other required matrices. 

Indeed, the major deficiency of the SOM Toolbox, and 
especially of batch training algorithm, is the expenditure 
of memory. A rough lower bound estimate of the amount 
of memory used by som_batchtrain is given by: 
8(5(m+n)d + 3m2) bytes, where m is the number of 
map units, n is the number of data samples and d is the 
input space dimension. For [3000 x 10] data matrix and 
300 map units the amount of memory required is still 
moderate, in the order of 3.5 MBs. But for [30000 x 50] 
data matrix and 3000 map units, the memory requirement 
is more than 280 MBs, the majority of which comes from 
the last term of the equation. The sequential algorithm is 
less extreme requiring only one half or one third of this. 
SOM_PAK requires much less memory, about 20 MBs for 
the [30000 x 50] case, and can operate with buffered data. 
 

Table 1. Typical computing times. Data set size is 
given as [n x d] where n is the number of data samples 
and d is the input dimension.  

data size map units  batch   seq     sompak 

IRIX 
[300x10] 30   0.2 s   3.1 s   0.9 s 
[3000x10] 300   7 s 54 s    17 s 
[30000x10] 1000   5 min 19 min 9 min 
[30000x50] 3000   27 min  5.7 h   75 min 

Linux 
[300x10] 30   0.3 s    2.7 s    1.9 s 
[3000x10] 300   24 s    76 s    26 s 
[30000x10] 1000   13 min  40 min  15 min 



4. Use of SOM Toolbox 

4.1. Data format 

The kind of data that can be processed with the 
Toolbox is so-called spreadsheet or table data. Each row 
of the table is one data sample. The columns of the table 
are the variables of the data set. The variables might be the 
properties of an object, or a set of measurements measured 
at a specific time. The important thing is that every sample 
has the same set of variables. Some of the values may be 
missing, but the majority should be there. The table 
representation is a very common data format. If the 
available data does not conform to these specifications, it 
can usually be transformed so that it does. 

The Toolbox can handle both numeric and categorial 
data, but only the former is utilized in the SOM algorithm. 
In the Toolbox, categorial data can be inserted into labels 
associated with each data sample. They can be considered 
as post-it notes attached to each sample. The user can 
check on them later to see what was the meaning of some 
specific sample, but the training algorithm ignores them. 
Function som_autolabel can be used to handle 
categorial variables. If the categorial variables need to be 
utilized in training the SOM, they can be converted into 
numerical variables using, e.g., mapping or 1-of-n 
coding [4].  

Note that for a variable to be “numeric”, the numeric 
representation must be meaningful: values 1, 2 and 4 
corresponding to objects A, B and C should really mean 
that (in terms of this variable) B is between A and C, and 
that the distance between B and A is smaller than the 
distance between B and C. Identification numbers, error 
codes, etc. rarely have such meaning, and they should be 
handled as categorial data. 

4.2. Construction of data sets 

First, the data has to be brought into Matlab using, for 
example, standard Matlab functions load and fscanf. 
In addition, the Toolbox has function som_read_data 
which can be used to read ASCII data files: 

 
sD = som_read_data(‘data.txt’); 
 
The data is usually put into a so-called data struct, 

which is a Matlab struct defined in the Toolbox to group 
information related to a data set. It has fields for numerical 
data (.data), strings (.labels), as well as for 
information about data set and the individual variables. 
The Toolbox utilizes many other structs as well, for 
example a map struct which holds all information related 
to a SOM. A numerical matrix can be converted into a 
data struct with: sD = som_data_struct(D). If the 
data only consists of numerical values, it is not actually 

necessary to use data structs at all. Most functions accept 
numerical matrices as well. However, if there are 
categorial variables, data structs has be used. The 
categorial variables are converted to strings and put into 
the .labels field of the data struct as a cell array of 
strings.  

4.3. Data preprocessing 

Data preprocessing in general can be just about 
anything: simple transformations or normalizations 
performed on single variables, filters, calculation of new 
variables from existing ones. In the Toolbox, only the first 
of these is implemented as part of the package. 
Specifically, the function som_normalize can be used 
to perform linear and logarithmic scalings and histogram 
equalizations of the numerical variables (the .data 
field). There is also a graphical user interface tool for 
preprocessing data, see Figure 3. 

Scaling of variables is of special importance in the 
Toolbox, since the SOM algorithm uses Euclidean metric 
to measure distances between vectors. If one variable has 
values in the range of [0,...,1000] and another in the range 
of [0,...,1] the former will almost completely dominate the 
map organization because of its greater impact on the 
distances measured. Typically, one would want the 
variables to be equally important. The standard way to 
achieve this is to linearly scale all variables so that their 
variances are equal to one.  

One of the advantages of using data structs instead of 
simple data matrices is that the structs retain information 
of the normalizations in the field .comp_norm. Using 
function som_denormalize one can reverse the 
normalization to get the values in the original scale: sD = 
som_denormalize(sD). Also, one can repeat the 
exactly same normalizations to other data sets. 

All normalizations are single-variable transformations. 
One can make one kind of normalization to one variable, 
and another type of normalization to another variable. 
Also, multiple normalizations one after the other can be 
made for each variable. For example, consider a data set 
sD with three numerical variables. The user could do a 
histogram equalization to the first variable, a logarithmic 
scaling to the third variable, and finally a linear scaling to 
unit variance to all three variables:  

 
sD = som_normalize(sD,'histD',1); 
sD = som_normalize(sD,'log',3); 
sD = som_normalize(sD,'var',1:3); 
 
The data does not necessarily have to be preprocessed 

at all before creating a SOM using it. However, in most 
real tasks preprocessing is important; perhaps even the 
most important part of the whole process [4]. 
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Figure 3. Data set preprocessing tool. 

 

Figure 4. SOM initialization and training tool. 

 

4.4. Initialization and training 

There are two initialization (random and linear) and 
two training (sequential and batch) algorithms 
implemented in the Toolbox. By default linear 
initialization and batch training algorithm are used. The 
simplest way to initialize and train a SOM is to use 
function som_make which does both using automatically 
selected parameters: 

 
sM = som_make(sD); 
 
The training is done is two phases: rough training with 

large (initial) neighborhood radius and large (initial) 
learning rate, and finetuning with small radius and 
learning rate. If tighter control over the training 
parameters is desired, the respective initialization and 
training functions, e.g. som_batchtrain, can be used 
directly. There is also a graphical user interface tool for 
initializing and training SOMs, see Figure 4. 

4.5.  Visualization and analysis 

There are a variety of methods to visualize the SOM. In 
the Toolbox, the basic tool is the function som_show. It 
can be used to show the U-matrix and the component 
planes of the SOM:  

 
som_show(sM); 
 
The U-matrix visualizes distances between neighboring 

map units, and thus shows the cluster structure of the map: 
high values of the U-matrix indicate a cluster border, 
uniform areas of low values indicate clusters themselves. 
Each component plane shows the values of one variable in 
each map unit. On top of these visualizations, additional 
information can be shown: labels, data histograms and 
trajectories.  

With function som_vis much more advanced 
visualizations are possible. The function is based on the 
idea that the visualization of a data set simply consists of a 
set of objects, each with a unique position, color and 
shape. In addition, connections between objects, for 
example neighborhood relations, can be shown using 
lines. With som_vis the user is able to assign arbitrary 
values to each of these properties. For example, x-, y-, and 
z-coordinates, object size and color can each stand for one 
variable, thus enabling the simultaneous visualization of 
five variables. The different options are: 

- the position of an object can be 2- or 3-dimensional 
- the color of an object can be freely selected from 

the RGB cube, although typically indexed color is 
used 

- the shape of an object can be any of the Matlab 
plot markers ('.','+', etc.), a pie chart, a bar 



chart, a plot or even an arbitrarily shaped polygon, 
typically a rectangle or hexagon 

- lines between objects can have arbitrary color, 
width and any of the Matlab line modes, e.g. '-' 

- in addition to the objects, associated labels can be 
shown 

For quantitative analysis of the SOM there are at the 
moment only a few tools. The function som_quality 
supplies two quality measures for SOM: average 
quantization error and topographic error. However, using 
low level functions, like som_neighborhood, 
som_bmus and som_unit_dists, it is easy to 
implement new analysis functions. Much research is being 
done in this area, and many new functions for the analysis 
will be added to the Toolbox in the future, for example 
tools for clustering and analysis of the properties of the 
clusters. Also new visualization functions for making 
projections and specific visualization tasks will be added 
to the Toolbox.  

4.6. Example 

Here is a simple example of the usage of the Toolbox to 
make and visualize a SOM of a data set. As the example 
data, the well-known Iris data set is used [5]. This data set 
consists of four measurements from 150 Iris flowers: 50 
Iris-setosa, 50 Iris-versicolor and 50 Iris-virginica. The 
measurements are length and width of sepal and petal 
leaves. The data is in an ASCII file, the first few lines of 
which are shown below. The first line contains the names 
of the variables. Each of the  following lines gives one 
data sample beginning with numerical variables and 
followed by labels. 

 
#n sepallen sepalwid petallen petalwid 
5.1 3.5 1.4 0.2 setosa 
4.9 3.0 1.4 0.2 setosa 
... 

 
The data set is loaded into Matlab and normalized. 

Before normalization, an initial statistical look of the data 
set would be in order, for example using variable-wise 
histograms. This information would provide an initial idea 
of what the data is about, and would indicate how the 
variables should be preprocessed. In this example, the 
variance normalization is used. After the data set is ready, 
a SOM is trained. Since the data set had labels, the map is 
also labeled using som_autolabel. After this, the 
SOM is visualized using som_show. The U-matrix is 
shown along with all four component planes. Also the 
labels of each map unit are shown on an empty grid using 
som_addlabels. The values of components are 
denormalized so that the values shown on the colorbar are 
in the original value range. The visualizations are shown 
in Figure 5. 

%% make the data 
sD = som_read_data('iris.data'); 
sD = som_normalize(sD,'var'); 
 
%% make the SOM 
sM = som_make(sD,'munits',30);  
sM = som_autolabel(sM,sD,'vote'); 
 
%% basic visualization 
som_show(sM,’umat’,’all’,’comp’,1:4,... 
         ’empty’,’Labels’,’norm’,’d’);  
som_addlabels(sM,1,6); 

 
From the U-matrix it is easy to see that the top three 

rows of the SOM form a very clear cluster. By looking at 
the labels, it is immediately seen that this corresponds to 
the Setosa subspecies. The two other subspecies 
Versicolor and Virginica form the other cluster. The U-
matrix shows no clear separation between them, but from 
the labels it seems that they correspond to two different 
parts of the cluster. From the component planes it can be 
seen that the petal length and petal width are very closely 
related to each other. Also some correlation exists between 
them and sepal length. The Setosa subspecies exhibits 
small petals and short but wide sepals. The separating 
factor between Versicolor and Virginica is that the latter 
has bigger leaves. 
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Figure 5. Visualization of the SOM of Iris data. U-
matrix on top left, then component planes, and map unit 
labels on bottom right. The six figures are linked by 
position: in each figure, the hexagon in a certain position 
corresponds to the same map unit. In the U-matrix, 
additional hexagons exist between all pairs of neighboring 
map units. For example, the map unit in top left corner has 
low values for sepal length, petal length and width, and 
relatively high value for sepal width. The label associated 
with the map unit is 'se' (Setosa) and from the U-matrix it 
can be seen that the unit is very close to its neighbors. 



Component planes are very convenient when one has to 
visualize a lot of information at once. However, when only 
a few variables are of interest scatter plots are much more 
efficient. Figures 6 and 7 show two scatter plots made 
using the som_grid function. Figure 6 shows the PCA-
projection of both data and the map grid, and Figure 7 
visualizes all four variables of the SOM plus the 
subspecies information using three coordinates, marker 
size and marker color. 
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Figure 6. Projection of the  IRIS data set to the 
subspace spanned by its two eigenvectors with greatest 
eigenvalues. The three subspecies have been plotted using 
different markers: ����������	
�x for Versicolor and ������
Virginica. The SOM grid has been projected to the same 
subspace. Neighboring map units connected with lines. 
Labels associated with map units are also shown. 
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Figure 7. The four variables and the subspecies 
information from the SOM. Three coordinates and marker 
size show the four variables. Marker color gives 
subspecies: black for Setosa, dark gray for Versicolor and 
light gray for Virginica.  

5. Conclusions 

In this paper, the SOM Toolbox has been shortly 
introduced. The SOM is an excellent tool in the 
visualization of high dimensional data [6]. As such it is 
most suitable for data understanding phase of the 
knowledge discovery process, although it can be used for 
data preparation, modeling and classification as well.  

In future work, our research will concentrate on the 
quantitative analysis of SOM mappings, especially 
analysis of clusters and their properties. New functions 
and graphical user interface tools will be added to the 
Toolbox to increase its usefulness in data mining. Also 
outside contributions to the Toolbox are welcome. 

It is our hope that the SOM Toolbox promotes the 
utilization of SOM algorithm – in research as well as in 
industry – by  making its best features more readily 
accessible. 
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