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Mammals can reliably predict the time of occurrence of an expected event after a predictive stimulus. Climbing activity is a prominent
profile of neural activity observed in prefrontal cortex and other brain areas that is related to the anticipation of forthcoming events.
Climbing activity might span intervals from hundreds of milliseconds to tens of seconds and has a number of properties that make it a
plausible candidate for representing interval time. A biophysical model is presented that produces climbing, temporal integrator-like
activity with variable slopes as observed empirically, through a single-cell positive feedback loop between firing rate, spike-driven Ca 2�

influx, and Ca 2�-activated inward currents. It is shown that the fine adjustment of this feedback loop might emerge in a self-organizing
manner if the cell can use the variance in intracellular Ca 2� fluctuations as a learning signal. This self-organizing process is based on the
present observation that the variance of the intracellular Ca 2� concentration and the variance of the neural firing rate and of activity-
dependent conductances reach a maximum as the biophysical parameters of a cell approach a configuration required for temporal
integration. Thus, specific mechanisms are proposed for (1) how neurons might represent interval times of variable length and (2) how
neurons could acquire the biophysical properties that enable them to work as timers.
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Introduction
The ability to predict forthcoming events on the basis of observed
environmental stimuli is essential for goal-directed behavior and
planning. Mammals and birds are able to predict not only events
to happen but also their time of occurrence relative to the time at
which a predicting stimulus appears (Gibbon and Church, 1990;
Gallistel and Gibbon, 2000). This ability is fundamental, because
behavioral preparation and planning are most useful if actions
are time-locked to the anticipated events. However, relatively
little is known about the physiological basis for extracting
the precise temporal structure within predictive event
relationships.

The prefrontal cortex is a brain area involved in working
memory, prediction, planning, and also time estimation in hu-
mans (Lalonde and Hannequin, 1999; Rainer et al., 1999; Fuster,
2000; Miller and Cohen, 2001; Goldman-Rakic, 2002). In work-
ing memory tasks, a cue is briefly presented followed by a choice
situation, after a delay of 1-2 sec in which the correct response
depends on the previously presented cue, which therefore has to
be kept in (working) memory during the delay. In vivo electro-
physiological recordings from prefrontal neurons during work-
ing memory tasks have shown that activity in prefrontal cortex is
often anticipatory (Niki and Watanabe, 1979; Quintana and Fus-
ter, 1999; Rainer et al., 1999; Romo et al., 1999). Many prefrontal

neurons exhibit sustained activity during the delay periods of
these tasks that is related to the expected target stimulus, not to
the presented cue. This predictive activity often takes a particular
form: it slowly climbs during the delay and reaches a maximum
almost coincident with presentation of the choice stimuli. The
slope of this climbing activity is often surprisingly linear and
might span intervals from hundreds of milliseconds (Rainer et al.,
1999) to tens of seconds (Quintana and Fuster, 1999). Thus,
slowly climbing “anticipatory” activity could linearly encode in-
terval time. At any point in time, the instantaneous firing rate
contains information about the relative amount of time that will
pass until the choice situation occurs. In favor of this interpreta-
tion, Komura et al. (2001) found in recordings from thalamic
neurons that the slope of climbing activity is adjusted within a few
trials to the length of the delay interval between predicting and
rewarding stimuli.

It remains, however, unclear how climbing activity might be
generated, both in terms of the required system dynamics and
with respect to the biophysical mechanisms. Moreover, it is un-
clear how a neural system might organize itself into a biophysical
configuration that can give rise to climbing activity and how the
slope of this activity might be adjusted to observed time intervals
as found by Komura et al. (2001). Here I show (1) that climbing
activity may be generated through a dynamical phenomenon
known as a “ghost” of a line attractor; (2) that line attractor
ghosts could be achieved on the single-cell level through in-
teractions between firing rate output and Ca 2�-gated ion
channels that have been found in pyramidal neurons; and (3)
that single-cell line attractors might emerge in a self-
organizing manner using solely fluctuations in intracellular
Ca 2� or other molecules.
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Weibert, Paul Tiesinga, Sabine Windmann, and Onur Güntürkün for careful reading of this manuscript and detailed
comments.

Correspondence should be addressed to Dr. Daniel Durstewitz, Biopsychology, GAFO 04/991, Ruhr-University
Bochum, D-44780 Bochum, Germany. E-mail: daniel.durstewitz@ruhr-uni-bochum.de.
Copyright © 2003 Society for Neuroscience 0270-6474/03/235342-12$15.00/0

5342 • The Journal of Neuroscience, June 15, 2003 • 23(12):5342–5353



Materials and Methods
Neuron model. All computations were performed using a spiking leaky-
integrate-and-fire (LIF) neuron model described by the following mem-
brane potential equation:

Cm

dVm

dt
� �Ileak � IAHP � IADP � IAMPA � INMDA � IGABA � Iinj .

(1)

A spike was elicited whenever Vm � Vth, after which the membrane
potential was reset to Vreset � Eleak. A refractory period was ensured by
the afterhyperpolarizing current:

IAHP � gAHPmax exp���t � tsp�/�AHP��Vm � EAHP�, (2)

where gAHPmax is a constant maximum conductance strength; �AHP is the
decay time constant (5 msec); EAHP is the reversal potential; and tsp is the
time of the last spike (i.e., each spike brought gAHP to its maximum value
from where it decayed exponentially). IADP modeled a Ca 2�-dependent
afterdepolarizing current, activating on Ca 2� influx, that has been de-
scribed in pyramidal neurons (Andrade, 1991; Haj-Dahmane and An-
drade, 1997, 1998, 1999). It was given by the following equations:

IADP � gADPmaxm�Vm � EADP�
(3)

dm

dt
�

m� � m

�ADP
with m� � �1 � exp��ADP��ADP � �Ca2�	i���

�1,

where m is the Ca 2�-dependent activation gate. To keep the model sim-
ple, an explicit implementation of Ca 2� conductances was omitted, and
Ca 2� influx was simply triggered by spiking according to the double-
exponential function:

�Ca2�	i�t� � ACa �

tsp�

�e��t�tsp�/�off � e��t�tsp�/�on�, (4)

where the sum is over all spike times tsp.
With the parameter settings used here for ACa and �on/�off (Table 1),

this yielded a spike frequency-dependent Ca 2� influx comparable with
the data by Helmchen et al. (1996) (Fig. 1 A). Thus, this simple equation
is a phenomenologically adequate description of the Ca 2� influx trig-
gered by series of spikes.

Synaptic currents (IAMPA, INMDA, and IGABA) were given by double-
exponential functions, multiplied by a synaptic short-term depression/
facilitation factor, a(tsp). INMDA in addition contained a voltage-
dependent Mg 2� gate, s(Vm) (Jahr and Stevens, 1990):

IAMPA/GABA

� gAMPA/GABAmax�
�tsp�

a�tsp��e
��t�tsp�/�off � e��t�tsp�/�on��Vm � EAMPA/GABA�

INMDA � gNMDAmaxs�Vm��
�tsp�

a�tsp��e
��t�tsp�/�off � e��t�tsp�/�on��Vm � ENMDA�

with s�Vm� � 1.08 � �1 � 0.19 exp��0.064Vm���1, (5)

where �on and �off are the onset and offset time constants of the conduc-
tances. It is important to note that synaptic input was not required for
producing climbing activity, which in the present model was generated
through a single-neuron feedback loop (consistent with recent data by
Egorov et al., 2002). Nevertheless, it was included to simulate the kind of
input a single neuron would receive in a cortical environment from a
surrounding network and to provide a source of noise required for self-
organized adjustment of parameters (see Results). Synaptic input had
both a structured component related (phase-locked) to the spike times of
the neuron and a Poisson-like unstructured component. The first com-
ponent represented recurrent feedback triggered by spiking of the neu-
ron or input attributable to synchronized and phase-locked oscillatory
activity as it has been observed during delay periods in working memory
tasks (Funahashi and Inoue, 2000; Constantinidis et al., 2001, 2002; Pe-
saran et al., 2002). This component included synaptic short-term depres-

sion as described below. The second component represented more asyn-
chronous background activity of the surrounding network and other
cortical areas, unrelated to spike times of the neuron. It was modeled for
AMPA-, NMDA-, and GABAA-like input by Poisson processes with rates
of 20,000 – 40,000 Hz (representing, e.g., 4000 presynaptic neurons firing
at 5–10 Hz on average). In the noise-free cases (see Fig. 3A–D), this
component was substituted by constant synaptic conductances with the
same mean as the Poisson-like input.

In most model simulations and for derivation of the nullclines (see
Appendix, Derivation of nullclines), the NMDA current was linearized
by fitting a line to the relevant portion of INMDA between Vreset and Vth.
As shown in Figure 1 B, this describes INMDA reasonably well below the
firing threshold (approximately �45 mV), and simulation results with
the linear version of INMDA and the one given in Equation 5 were in close
agreement.

Synaptic short-term depression and facilitation were included in the
model according to formulas and parameters suggested by Tsodyks and
Markram (1997) (Markram et al., 1998; Tsodyks et al., 2000). In partic-
ular, synaptic short-term dynamics were determined by the available
synaptic efficacy ( R) and a utilization variable (u), which followed the
recursive relationship (for details, see Markram et al., 1998):

un�1 � unexp���tsp,n�1 � tsp,n�/�fac�

� USE�1 � unexp���tsp,n�1 � tsp,n�/�fac��

Rn�1 � Rn�1 � un�1�exp���tsp,n�1 � tsp,n�/�rec�

� 1 � exp���tsp,n�1 � tsp,n�/�rec�

a�tsp,n�1� � un�1Rn�1 , (6)

Table 1. Range of model parameters for line attractor configurations

Single-neuron
parameters

Minimum/maximum
value Synaptic parameters

Minimum/maximum
value

Cm 0.8/1.13 gAMPAmax (recur) 4/5.89
gleak 0.012/0.076 gAMPAmax (backgr) 2.8 � 10�6/2.1 � 10�3

Eleak �68/�65 EAMPA 0
Vth �48/�45 �AMPA�on 0.2

�AMPA�off 1
gAHPmax 2/6 USE 0.2/0.5
�AHP 5 �rec 800
EAHP Eleak �fac 800
gADPmax 0.078/0.2 gNMDAmax (recur) 0.05/0.29
EADP 35a gNMDAmax (backgr) 1.1 � 10�5/6.4 � 10�5

�ADP 35a ENMDA 0
�ADP 3.35/5.96 �NMDA�on 2.3
�ADP 0.68/1.02 �NMDA�off 94
ACa 0.08/0.133 USE 0.2/0.5
�Ca�on 1 �rec 800
�Ca�off 120 �fac 800
�x 10000 gGABAmax (recur) 0.2/5.6
�y 10 gGABAmax (backgr) 6.2 � 10�5/1.7 � 10�4

EGABA Eleak-5
�GABA�on 2
�GABA�off 20
USE 0.3/0.5
�rec 800
�fac 800

Units: capacitance (microfarads per square centimeter), conductances (millisiemens per square centimeter), poten-
tials (millivolts), time constants (milliseconds). ACa and all maximum synaptic conductances were multiplied with a
constant �on � �off/(�off � �on). Note that amplitudes of background (backgr) synaptic inputs are much smaller
than those of recurrent (recur) inputs, because they (1) were much higher in frequency and (2) did not involve
short-term depression. Note also that although �rec and �fac are quite slow, they do not contribute to the slowness
of climbing activity, because the recursive dynamics defined by Equation 6 reaches its steady state within just a
couple of EPSPs; hence, substituting Equation 6 by its steady-state form Equation 9 does not significantly affect the
slope of climbing activity (confirmed by simulations).
aValues are taken from Haj-Dahmane and Andrade (1999).
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where a(tsp) is the amplitude of the synaptic response (as used in Eq. 5
above) at presynaptic spike time tsp; USE is the resting relative amount of
synaptic efficacy used per synaptic pulse; and �rec and �fac are the recovery
(from depression) and facilitation time constants for synaptic efficacy.
Figure 1C illustrates EPSPs resulting from these equations during trains
of synaptic stimulation. With synaptic short-term depression, a rise in
the presynaptic firing rate causes a transient of synaptic current, which
falls off over time according to the equations given above (Abbott et al.,
1997; Tsodyks and Markram, 1997). In part, this mechanism was in-
cluded to demonstrate that smooth climbing activity can be achieved
even in the presence of such transients.

All model parameters were constrained within physiologically reason-
able ranges (Table 1). The whole system of equations was implemented
both as C-code and in MATLAB (The MathWorks, Inc., Natick, MA) and
integrated numerically using a fourth-order Runge–Kutta method or one
of the MATLAB ordinary differential equation solvers (mainly ode23s,
an implicit solver based on the Rosenbrock method; see Press et al., 1992)
using the inbuilt event detection function for spike detection. Relative
(error) tolerance was set to 10 �6 or 10 �5 (using smaller relative errors
did not lead to notable differences).

Figure 1 D shows the response of the single model neuron (without
synaptic currents) to current pulses of 5 and 250 msec. A brief current
pulse elicits a single spike followed by an afterdepolarizing potential
attributable to IADP. A longer current pulse triggers enough spikes to load
the cell with Ca 2� sufficient to move the cell into a persistent spiking
mode maintained by IADP, in accordance with empirical data (Andrade,
1991; Haj-Dahmane and Andrade, 1998; Egorov et al., 2002).

Construction of line attractors. Many of the figures presented here show
two-dimensional “state spaces” of the above system, spanned by the
instantaneous firing rate (FR) of the LIF model and by the interspike
interval-averaged ADP conductance (denoted 
gADP�). Linearization of

the NMDA current allowed writing of self-consistent equations for the
FR and 
gADP� nullclines of these state spaces. To find line attractor
configurations as required for climbing activity, the distance between
these nullclines was minimized over some range of firing rates through
optimization methods to yield an approximately continuous line of fixed
points. The details for derivation of nullclines and optimization are given
in Appendix, Derivation of nullclines.

Tracking changes in intracellular Ca2� levels. For self-organized adap-
tation of the nullclines of the system, variables were introduced that
represent fluctuations in intracellular Ca 2� levels. First, intracellular
Ca 2� was low-pass-filtered by:

dxCa

dt
�

�Ca2�	i � xCa

�x
, (7)

where �x is in the range of seconds (usually 10 sec), and xCa approaches
the average Ca 2� level in the cell, filtering out faster variations (xCa might
represent the amount of some Ca 2�-buffering protein with a slow time
constant bound to Ca 2�). Now a dynamical variable was defined that
followed the squared temporal derivative of xCa:

d yCa

dt
�

1

�y
��dxCa

dt �
2

� yCa�, (8)

which approached the variance in intracellular Ca 2� levels (�y � 10
msec). Such a quantity might be computed through intracellular molec-
ular networks. The temporal derivative of intracellular Ca 2� or a related
variable might be encoded, for example, by Ca 2�-dependent proteins
such as calmodulin (CaM) (Franks et al., 2001). In turn, any downstream
protein, such as calmodulin-dependent protein kinase II (Kubota and
Bower, 2001), that requires cooperative binding or whose activation re-
quires some form of cooperativity, such that its activated steady state
satisfies an equation of the general form [X] � [CaM] � [CaM] � [Y]
might implement a multiplicative operation as assumed in Equation 8
(also see Discussion).

Results
The first part of Results discusses a single-neuron feedback loop
for generating climbing activity and predicting interval times.
The second part examines how the system might self-organize
into a biophysical configuration required for neural integration
(climbing activity).

Biophysical model for climbing activity
Figure 2 depicts a single-neuron feedback loop that could give
rise to climbing activity with variable slopes. This system was
modeled by a spiking LIF neuron that includes a Ca 2�-
dependent afterdepolarizing (inward) current (IADP) as it has
been described in prefrontal and entorhinal pyramidal cells (An-
drade, 1991; Haj-Dahmane and Andrade, 1997, 1998, 1999;
Egorov et al., 2002). In the presence of ACh, IADP in prefrontal
neurons in vitro can sustain spiking over many minutes without
additional synaptic or current input (Andrade, 1991; Haj-
Dahmane and Andrade, 1998; Egorov et al., 2002) (see Fig. 1D).
In addition, although not necessary for generating climbing ac-
tivity, AMPA-, NMDA-, and GABAA-like synaptic input was in-
cluded. Synaptic input simulated a cortical network environment
for the single neuron by providing (1) recurrent excitation and
inhibition (including short-term depression) phase-locked to the
spike times of the neuron, as it will occur during oscillatory and
synchronized network activity (Funahashi and Inoue, 2000; Con-
stantinidis et al., 2001, 2002; Pesaran et al., 2002), and (2) uncor-
related (Poisson-like) background activity.

The system can produce climbing activity through a finely
tuned positive feedback loop between spiking-mediated Ca 2�

influx and the Ca 2�-activated IADP (Fig. 2). The intracellular
Ca 2� level rises monotonically with output firing frequency (Fig.

Figure 1. Basic model properties. A, Accumulation of internal Ca 2� in the model cell at
different (output) spiking rates. The average level of [Ca 2�]i increases linearly with spike rate,
as found by Helmchen et al. (1996). B, INMDA as a function of voltage (solid line). Between Eleak

(�65 mV) and firing threshold (less than �45 mV), INMDA is well described by a linear fit
(dashed line). C, Train of EPSPs elicited by presynaptic stimulation at 20 Hz. EPSP amplitude
decreases over time as described by the model of Tsodyks and Markram (1997) and Markram et
al. (1998). D, Response of the model cell to brief (5 msec) or longer-lasting (250 msec) current
injections. A brief current pulse elicits a single spike followed by an afterdepolarizing potential
caused by gADP. Longer current pulses drive the cell into a persistent spiking up state maintained
by Ca 2�-activated gADP. (Note that spike generation is not explicitly modeled in an LIF-model,
and spikes were therefore added to the figure whenever Vm crossed Vth.)
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1A) as observed in vitro (Helmchen et al., 1996). Intracellular
Ca 2�, in turn, activates IADP, which provides additional depolar-
izing current and hence increases the firing rate. Figure 3 demon-
strates how this feedback loop produces climbing activity. The
black solid curves in Figure 3A–C (left, the FR nullcline) gives for
each instantaneous firing rate, defined here as the reverse of the
current interspike interval of the LIF neuron, the average amount
of ADP conductance ( gADP) that would be required to maintain
exactly that rate, where the average is taken across single inter-
spike intervals and denoted 
gADP�. Conversely, the dashed curve
(the 
gADP� nullcline) gives for each firing rate the actual amount
of average gADP produced at that rate. If these two curves precisely
overlap for a larger range of firing rates, then, within that range,
for any firing rate precisely the amount of 
gADP� is produced that
is required to maintain that rate; hence the cell has a continuum
of (stable) fixed points. This is called a line attractor.

In Figure 3A (left) the FR nullcline is actually shifted from its
line attractor position downward just a tiny bit (see Fig. 3A, in-
set). Thus, for each firing rate, the neuron receives slightly more
depolarizing current through gADP than would be needed to
maintain the current rate; hence the firing rate increases over
time. Because the difference in current provided and the one
required is very small, however, the firing rate increases very
slowly after a brief stimulus (Fig. 3A, right), over tens of seconds
(as observed by Quintana and Fuster, 1999), approximately two
orders of magnitude slower than the slowest intrinsic time con-
stant determining temporal dynamics of the LIF neuron (�120
msec). In fact, the increase in firing rate could (ideally) be made
arbitrarily slow as the distance between the FR and the 
gADP�
nullcline is made arbitrarily small (a phenomenon known in

nonlinear dynamics as the ghost of a line attractor). The gray line
in Figure 3A (left) shows how the firing rate and 
gADP� change
together over time; i.e., it shows the trajectory of the system in the

gADP�/FR state space corresponding to the time graph in Figure
3A (right). As the FR nullcline is further shifted downward (Fig.
3B,C, left), parallel to the 
gADP� nullcline, the slope of climbing
activity becomes steeper and steeper (Fig. 3B,C, right). In Figure
3A–C, the parallel shift was achieved by increasing the strength of
recurrent excitatory synapses, as might be accomplished through
synaptic learning (see Discussion), but other parameter changes
that provide the neuron with more depolarizing input (which is
relatively constant across rates) or increase its general excitability
will work as well. Thus, by shifting the FR nullcline in parallel to
the 
gADP� nullcline through manipulation of synaptic weights,
the slope of climbing activity can be varied within an ideally
almost unlimited range, largely independent of the intrinsic time
constants of the system.

Figure 3D illustrates how this system could predict the time of
occurrence of an expected stimulus and could initiate a response
aligned to the predicted time. Responses could be initiated
through neurons postsynaptic to the climbing neuron that be-
come active whenever the rate of the climbing neuron crosses a
certain threshold (e.g., 70 Hz; Hanes et al., 1998; Komura et al.,
2001). The response unit (Fig. 3D, dashed curves) was modeled
by LIF equations including the same mechanisms as for the
climbing neuron (solid curves). It receives excitatory input from
the climbing neuron and returns inhibition to it via facilitatory
synapses (Markram et al., 1998). The parameters were adjusted
such that the response unit experiences a sharp rise in firing rate
when the climbing neurons exceed �70 Hz (through a saddle
node bifurcation mechanism similar to the one causing spike
initiation in cortical neurons; Wilson, 1999), and it shuts down
activity of the climbing system once fully activated, as observed in
vivo (Hanes et al., 1998; Komura et al., 2001). Such a response
unit could represent the readout of the climbing unit by signaling
the expected time of occurrence. This signal could also be used to
compute the temporal difference error between the predicted
time of occurrence and the actual time of occurrence, which
might promote synaptic learning required to adjust the slope of
climbing activity to the actual time of occurrence (see Fig. 8).

Figure 3E demonstrates that climbing activity still works in the
presence of moderate noise, induced by Poisson-like synaptic
background activity, as necessary for the self-organization pro-
cess discussed next.

Self-organized adjustment of 
gADP�/FR space geometry for
climbing activity
In the preceding section, it was shown how a cell could represent
different interval times by adjusting the slope of climbing activity
through parallel shifts of the FR and 
gADP� nullclines. How,
though, could a cell learn to become a timer, assuming the
nullclines are not parallel to begin with? It would have to rotate
both or one of its nullclines into a parallel position, because this is
the precondition for producing linearly climbing activity. Note
that this is a more general question applying to all models based
on line attractors (Seung, 1996; Seung et al., 2000).

An answer to this question might be derived from the obser-
vation that the rotation angle between the 
gADP� and FR
nullclines will affect how the system behaves in the vicinity of its
steady states (stable fixed points). Suppose the FR nullcline and
the 
gADP� nullcline are not parallel but intersect at some point (as
in Fig. 4A), which therefore is a fixed point. First note that the
firing rate of a neuron could only be stable if the FR nullcline were

Figure 2. Positive feedback loop generating climbing activity. Membrane depolarization (1)
triggers spiking (2), which induces opening of high-voltage-activated Ca 2� channels (ICa ) via
dendritic back-propagating spikes (3) leading to Ca 2� influx. Inflowing Ca 2� in turn activates
Ca 2�-dependent cation currents (IADP ; 4), which cause further membrane depolarization (1)
and spiking. Albeit not necessary for generating climbing activity (Egorov et al., 2002), the
model also included recurrent and feedforward synapses as indicated by dashed lines.
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steeper (or at least not flatter) than the

gADP� nullcline at the intersection, be-
cause otherwise the LIF neuron would re-
ceive less gADP-mediated depolarization
than required for firing rates slightly lower
than within the fixed point and more than
required for firing rates slightly higher;
hence the firing rate would continue to de-
crease or to increase if slightly perturbed
into the negative or positive direction.

Now suppose the cell has settled into a
stable firing rate from which it is perturbed
with current steps as illustrated in Figure
4A–C. Figure 4A–C (left) depicts the FR
nullcline (black, solid) together with three
different 
gADP� nullclines (dashed) inter-
secting the FR nullcline at different angles.
Superimposed are the trajectories (gray,
solid) for the three different parameter
configurations corresponding to the three

gADP� nullclines, caused by 300 msec de-
polarizing or hyperpolarizing current
steps that perturb the system to the right
(increasing firing rate) or to the left (de-
creasing firing rate), respectively. Notice
that with decreasing angles between the
nullclines, same-sized current steps take
the state of the system further and further
away from the steady state. That is, the
smaller the mismatch between the 
gADP�
level required to maintain some rate and
the actual amount produced at that rate in
the vicinity of the steady state, the larger
the conjoint changes in firing rate and

gADP� caused by perturbations. Moreover,
the smaller this mismatch, the longer it
takes for the firing rate to return to its
steady state, as shown in Figure 4A–C
(right). Hence, successive perturbations
would be integrated more effectively, tak-
ing the system potentially even further
away from its steady state. Thus, the total
length and return time of trajectories in

gADP�/FR space caused by perturbations
contain information about the alignment
of the nullclines, with a maximum being
reached when the nullclines are perfectly
aligned.

How would a neuron know about the
length and return time of its trajectories?
In a noisy neural environment, this infor-
mation is encoded in fluctuations of the
firing rate and the ADP conductance
caused by the noise. Noisy background
synaptic input will cause the system to per-
manently fluctuate around its stable fixed
points where the size and time course of
the fluctuations will depend on the alignment of the nullclines.
This is shown in Figure 5. In Figure 5A, three representative

gADP� nullclines (dashed) with different slopes (rotation angles)
are shown together with the FR nullcline (solid). The slope of the

gADP� nullcline was varied by changing the slope �ADP of the
Boltzmann function (Eq. 3) that determines the Ca 2� depen-

dence of gADP. The three cases shown in Figure 5A exemplify a

gADP� nullcline with a very flat slope (�ADP � 1, yielding a single
steady state), the 
gADP� nullcline aligned closest to the FR
nullcline over the range of 30 – 60 Hz (�ADP � 4, line attractor),
and a 
gADP� nullcline steeper than the FR nullcline at the center
fixed point (�ADP � 10), where the center fixed point therefore is

Figure 3. Climbing activity in the LIF model based on the positive feedback loop illustrated in Figure 2. A, Left, State space
spanned by the instantaneous FR of the LIF neuron and the gADP conductance averaged across interspike intervals (
gADP�). The

gADP� nullcline (dashed) is the curve that gives for each firing rate the level of 
gADP� generated at that rate. The FR nullcline
(black, solid) gives for each firing rate the amount of 
gADP� that would be required to maintain exactly that rate. Wherever these
curves intersect or overlap, the neuron receives exactly what it needs to maintain the corresponding firing rate. Here the FR
nullcline is just slightly below the 
gADP� nullcline from �10 to 75 Hz, such that the neuron over this range receives slightly more
ADP current than would be needed to maintain any of these rates. Inset, Magnified area of the graph within the box, to better
visualize the distance between nullclines. The gray line is the trajectory that the system takes through 
gADP�/FR space when
briefly excited by afferent inputs. The small bump in the trajectory is caused by the brief stimulus. Right, Time graph corresponding
to the left side. After a brief stimulation at 5 sec (Stim), the instantaneous firing rate slowly climbs over tens of seconds. B, C, Same
as A for configurations in which the FR nullcline is shifted further downward (left) such that climbing activity rises faster (right). D,
Climbing activity in an LIF neuron (solid traces) coupled to a response neuron (dashed traces) from which it receives feedback
inhibition. Traces for two different synaptic input weights producing very slow or faster climbing activity are shown. Note that the
system was adjusted to maintain a basal firing rate at �10 –20 Hz, as observed in thalamus (Komura et al., 2001) and some
prefrontal cortex neurons (Quintana and Fuster, 1999; Rainer et al., 1999), from which climbing activity smoothly emerges at the
time of cue presentation. The slight parallel dislocation of the nullclines such that the line attractor vanishes and the system starts
climbing was achieved in this case by injecting a small depolarizing current (or by stimulating excitatory external synapses) with
trial onset. In a working memory or prediction task, such a stimulation might originate from neurons with plateau-like delay
activity that are turned on by the cue stimulus (Fuster, 1973, 2000; Funahashi et al., 1989; Durstewitz et al., 2000). E, Climbing
activity is still preserved in the presence of noise from background synaptic input.
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unstable, as explained above, and is replaced by two new stable
fixed points given by the lower and upper intersections of the
nullclines (i.e., the neuron becomes bistable). Figure 5B shows for
a range of different gADP slopes (1 � �ADP � 10) the average firing
rates that are stable in the presence of noise. Beyond the line
attractor configuration where the 
gADP� slope becomes steeper
than that of the FR nullcline (�ADP � 4) and the center fixed point
becomes unstable, the average firing rate of the neuron settles at
either a lower or higher rate, corresponding to the lower and
upper intersections of the nullclines for which �ADP � 4 (see Fig.
5A, curve for �ADP � 10).

Figure 5C shows activity traces for the configurations with the
gADP slopes shown in Figure 5A. The activity trace for the config-
uration closest to a line attractor (�ADP � 4) sticks out immedi-
ately by the higher variance and presence of slower frequency
components. Figure 5D summarizes the data for a 10-fold range
of gADP slopes. The smaller the rotation angle between the 
gADP�
and FR nullclines, the higher the variance in firing rate (	FR

2),
with a sharply peaked maximum at the line attractor configura-
tion. For gADP slopes larger than that of the line attractor config-
uration, this holds true for whether the system settles in the low
state (solid lines) or in the high state (dashed lines). Moreover,
the variance in intracellular [Ca 2�] ([Ca 2�]i) fluctuations (Fig.
5D, gray curves) and the variance of the gADP conductance (data

not shown) also attain a maximum at the line attractor configu-
ration. Hence, by maximizing the variance in these variables, a
neuron would approach a line attractor configuration. A neuron
might want to achieve a high variance in interspike intervals,
because this would also allow the maximum amount of informa-
tion to be encoded in the spike train (Rieke et al., 1997; Stemmler
and Koch, 1999), and the Poisson-like nature of cortical spike
trains might reflect this fact (Softky and Koch, 1993). In any case,
[Ca 2�]i fluctuations and through gADP possibly also fluctuations
in submembrane levels of other ionic species provide an intracel-
lularly accessible signal that could be used to drive the system
toward a line attractor configuration. The amount of noise used
for the simulations in Figure 3E, i.e., an amount that is compat-
ible with reasonable climbing performance and variance ob-
served in behavioral data (Gibbon and Church, 1990; Gallistel
and Gibbon, 2000), is completely sufficient to bring out this
property.

In general, the size of fluctuations does not solely depend on
the angle between the 
gADP� and FR nullclines. It also depends on
where in 
gADP�/FR space the fixed point is located around which
perturbations are measured; for instance, on the local slope of the
FR nullcline and on the state and dynamics of other variables of
the system (e.g., those determining synaptic short-term depres-
sion) within that region of state space. Moreover, the variance in

Figure 4. Length and return time of trajectories caused by perturbations increase as the
angle between the FR and 
gADP� nullcline decreases. A, Left, State space with FR nullcline
(black, solid), 
gADP� nullcline (dashed), and a trajectory (gray, solid) around the stable fixed
point caused by 300 msec depolarizing and hyperpolarizing current pulses (for briefer current
steps, the perturbation in instantaneous firing rate would also depend very much on the relative
phase of the interspike interval at which the step arrives). Right, Time graph of the instanta-
neous firing rate corresponding to the trajectory on the left. B, C, Same as A for decreasing angles
between nullclines. The closer the system is to a line attractor configuration, the farther pertur-
bations take the system away from the fixed point (left), and the slower the decay back to the
steady state firing rate (right).

Figure 5. Variance in output firing rate and [Ca 2�]i increases as the angle between the FR
and 
gADP� nullclines decreases. A, Variation of angles between the 
gADP� nullcline (dashed)
and the FR nullcline (solid). Three representative 
gADP� nullclines are shown for which �ADP �
1 (single stable fixed point), 4 (line attractor), and 10 (bistable neuron). B, Stable firing rates of
model neurons in the presence of synaptic noise for a range of different gADP slopes including the
cases illustrated in A. Beyond the line attractor configuration (�ADP � 4), neurons exhibit two
different stable firing modes corresponding to the top and bottom intersections of the nullclines
as for �ADP � 10 in A. The gap in the top curve results from the fact that for gADP slopes only
slightly larger than that of the line attractor configuration, the top fixed points are not stable in
the presence of noise (because their basins of attraction might be too small and flat). C, Firing
rate as a function of time for the three representative configurations shown in A, labeled by their
gADP slopes (�ADP ). For the largest gADP slope (10), activity is shown for the system being either
in its higher or lower stable activity mode (see B). Note that activity for the line attractor
configuration (�ADP � 4) is clearly distinguished by its high variance and more prominent slow
frequency components. D, Variance in firing rates (	FR

2; black) and in intracellular Ca 2� con-
centration (	Ca

2; gray) as a function of the slope of the 
gADP� nullcline (�ADP ). Both signals
increase sharply as �ADP approaches the line attractor configuration.
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[Ca 2�]i depends on the average firing rate to some degree (com-
pare Fig. 1A) which might become a significant factor if noise is
smaller than depicted in Figure 3E. On the other hand, if the noise
is much larger (in fact, so large that it would corroborate climbing
activity), it might switch bistable cells (those for which �ADP � 4
in Fig. 5) back and forth between their two stable states, causing
large fluctuations in the firing rate.

However, there is evidence that neurons try to maintain some
optimal range of average output firing rates through adjusting
properties of intrinsic voltage-gated and synaptic ion channels
(Desai et al., 1999; Abbott and Nelson, 2000; Nick and Ribera,
2000; Buzsaki et al., 2002). Thus, assuming that in the long run,
the average firing rate is quite constant, then for any fixed orien-
tation of the FR nullcline and all other parameters being equal,
the maximum firing rate and Ca 2� variance will occur for con-
figurations in which the 
gADP� nullcline overlaps with the FR
nullcline. To show this, six different parameter configurations
were generated, which had different stable firing rates (within the
range of 25– 60 Hz; configurations could differ in all parameters
except for time constants and most reversal potentials; see Table
1). For each of these six configurations, 100 different collections
of the three gADP parameters �ADP (see above), �ADP, and gADPmax

were generated at random but with the constraint that all 
gADP�
and FR nullclines must yield a stable fixed point at the same
location in 
gADP�/FR space. �ADP is the half-maximum activation
value of the Boltzmann function (Eq. 3) that gives the Ca 2� de-
pendence of gADP; higher values will shift the 
gADP� nullcline to
the right. gADPmax, the maximum ADP conductance factor (see
Eq. 3), scales the 
gADP� nullcline along the 
gADP� dimension.
From these 100 possible gADP parameter settings, 6 were then
hand-selected to ensure some range of possibilities, and another
13 were drawn at random. Together with the gADP configuration
that gives the line attractor, this made a total of 20 different gADP

parameter settings for each of the six basis configurations.
In Figure 6, the results from one of these six basic configura-

tions are shown (the basic results were the same for all six config-
urations). Figure 6A shows the state space with 
gADP� nullclines
for the line attractor configuration and for the six hand-selected
settings. Figure 6B shows activity traces for the line attractor
configuration (gray) and for one other gADP parameter setting
(black; all settings having approximately the same average rate
now, �42 Hz). Figure 6C summarizes the data from all 20 gADP

parameter settings averaged over 12 simulations with different
random seeds. The highest variance in firing rate clearly occurs
for the line attractor configuration. As another check of the re-
sults, Figure 6D depicts for all 19 gADP parameter settings drawn
at random (i.e., excluding the line attractor configuration) plus
another 20 random settings the variance in firing rate as a func-
tion of the average (Euclidian) distance between the 
gADP� and
FR nullclines, averaged across a 20 Hz range around the steady
state. Figure 6D reveals that configurations for which the 
gADP�
and FR nullclines are more closely aligned yield a higher variance
in the output firing rate. Thus, for a given average firing rate, the
cell would maximize its firing rate variance by bringing the 
gADP�
and FR nullclines to overlap. Again, the same picture was ob-
tained for the variance in [Ca 2�]i and gADP (data not shown).

Therefore, in principle, it should be possible to use the Ca 2�

or gADP variance (	gADP
2) as a learning signal in a self-organizing

process to adjust the slope of gADP in a way that yields a line
attractor. To show this, variables were introduced into the system
that track changes in intracellular Ca 2� levels (see Materials and
Methods). A dynamical variable ( yCa) was made to approach the
squared temporal derivative of low-pass-filtered [Ca 2�]i, a com-

putation that might be performed by intracellular molecular net-
works (see Materials and Methods and Discussion). Whatever
the molecular mechanism that could underlie such a computa-
tion, the aim here was just to demonstrate that an intracellular
quantity accessible to the computational machinery of the cells
could be used to adjust the nullclines of the system. The average
level of yCa as defined by Equation 8 was in close agreement
(except for scaling) with the [Ca 2�]i variance.

Learning might now proceed by iteratively adjusting the slope
of the gADP nullcline (�ADP) according to the gradient dyCa/d�ADP

or d	gADP
2/d�ADP (the gradient of the curve in Fig. 5D), a proce-

dure called gradient ascent (or “hill climbing”). However, two
potential difficulties arise for a learning procedure using 	gADP

2

or yCa, because (1) these signals increase exponentially with the
gADP slope toward the maximum (Fig. 5D), implying the danger
of missing the maximum by stepping across it; and (2) these
signals are inherently noisy by nature. To accommodate the first
problem, changes in slope were made proportional to d�ADP/dyCa

instead of dyCa/d�ADP; i.e., the relationship was reversed such that
the region around the peak flattened out, whereas the biggest
changes were now being made for the most extreme slopes. To
alleviate the second problem, 	gADP

2 or yCa, respectively, was
averaged (integrated) over some period after a change in gADP

Figure 6. Variance in firing rates for neurons with the same average rate is maximal if these
are in a line attractor configuration. A, State space with FR (gray, solid) and 
gADP� (dashed)
nullclines, illustrating a representative subset of the different configurations used for simula-
tions. The 
gADP� nullcline for the configuration closest to a line attractor almost completely
covers the (gray) FR nullcline. B, Firing rate as a function of time for a neuron in the line attractor
configuration (gray) compared with a neuron with randomly selected gADP parameters and a
firing rate variance somewhere within the range shown in D (black). C, Variance in firing rates
for 20 randomly selected configurations (see Results), averaged over 12 simulations with dif-
ferent random seeds (error bars indicate SD). Configuration 1 with the highest variance is the
line attractor configuration. Note that for the line attractor configuration, also the variance of
the variance of the firing rates becomes largest. D, Correlation between the magnitude of the
variance in firing rates and the average distance of the 
gADP� and FR nullclines in state space for
39 randomly selected configurations (excluding the line attractor). The smaller the average
distance between nullclines, the larger the variance in firing rates. Euclidian distance was mea-
sured at different, equally spaced points within a �10 Hz range around the fixed point and
averaged across these points.
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slope. The learning algorithm (see Appendix, Learning algo-
rithm) proceeded in fixed (discrete) time steps of 5–30 sec in
which the maximum change of the gADP slope per averaging step
was limited to �2, and the minimum change was limited to
�0.02, assuming that there are natural physiological bounds on
resolution and on the maximum change possible per time step. In
addition, an annealing factor (Aarts and Korst, 1989) decreased
the size of the changes in the gADP slope over time (see Appendix,
Learning algorithm). It should be pointed out that this learning
procedure was not intended as a physiological implementation
but just as a simple demonstration that, in principle, cells could
use gradient ascent on yCa or 	gADP

2 to move into a line attractor
configuration. [Note, however, that single cells are capable of
deriving chemical gradients from temporally consecutive mea-
surements as, e.g., in bacterial chemotaxis (MacNab and Ko-
shland, 1972).]

Figure 7 gives the results of this procedure. Figure 7A shows an
example for the convergence of the gADP slope to its optimal value
over time, starting with either a very flat (�ADP � 1; solid) or a
very steep (�ADP � 10; dashed) gADP nullcline and, for compari-
son, starting at the already optimal value of �ADP � 4 (dotted).
Figure 7, B and C, plots the transition of the gADP nullcline in

gADP�/FR space (dotted lines) from its initial condition to its final
position (dashed line). Figure 7D summarizes the results from 10
simulations with different random seeds and for yCa versus
	gADP

2 as a learning signal. This confirms that neurons can self-
organize into a line attractor configuration solely on the basis of
intracellular variables in principle accessible to the cell.

Discussion
The main findings of the present study are as follows. First, climb-
ing activity can be generated through a single-cell positive feed-
back loop among the firing rate, Ca 2� influx, and a Ca 2�-
activated inward current (IADP). Once this feedback loop has
been finely adjusted to yield a line attractor, the slope of climbing
activity can be adapted to arbitrary time intervals by changing the
strength of incoming synapses. Second, the variance of [Ca 2�]i or
Ca 2�-dependent molecules provides an intracellular signal for
guiding the fine adjustment toward a line attractor configuration,
shaping single cells into temporal integrators.

Biophysics of climbing activity and line attractors
The concept of a line attractor has been proposed by Seung et al.
(2000) (Seung, 1996) to explain how an oculomotor network can
keep stable arbitrary eye positions even in the absence of sensory
feedback. In the model of Seung et al. (2000), the term line attrac-
tor refers to the fact that the system possesses (ideally) a contin-
uum of stable firing rates corresponding to eye position. To ex-
plain climbing activity with arbitrary slow rise times, it is, in
addition, important to note that as a neural system is slightly
dislocated from its line attractor configuration, the speed of ac-
tivity changes grows only gradually from zero to higher levels
such that the temporal gain of climbing activity can be adjusted
almost independently of the intrinsic time constants. Starting
from a continuum of fixed points will ensure that the slope of
climbing activity will be approximately constant over time as
required for a temporal integrator (compare Fig. 3). A recent
network model by Wang (2002) makes use of a similar dynamical
phenomenon to explain the time course of cortical activity dur-
ing decision-making tasks. The temporal periods considered by
Wang (2002) were, however, relatively brief (�1 sec) compared
with those used here and in many behavioral and in vivo studies
(Gibbon and Church, 1990; Quintana and Fuster, 1999) and
hence did not require very precise tuning of network parameters.

Here it was furthermore assumed that line attractors are es-
tablished on the single-neuron level rather than on the network
level, involving positive feedback from Ca 2�-activated inward
currents. Ca 2�-dependent inward currents can, in the presence
of ACh, maintain spiking in prefrontal neurons for minutes (An-
drade, 1991; Haj-Dahmane and Andrade, 1998). Furthermore,
very recently it has been demonstrated in entorhinal cortex slices
that the cellular feedback loop described here might indeed es-
tablish a line attractor on the single-cell level (Egorov et al., 2002).
These authors found that synaptically isolated pyramidal neu-
rons under muscarinergic modulation could (independently)
maintain a range of different firing rates between which the cell
could be switched by depolarizing or hyperpolarizing current
pulses. Moreover, the authors could show that this cellular mul-
tistability depended on a Ca 2�-activated cation current, provid-
ing strong support for the existence of cellular mechanisms of the
kind described here.

Robustness and self-organized adjustment of line attractors
A potential problem with the line attractor configuration is that it
needs very precisely tuned parameters to maintain the contin-
uum of steady states (Seung et al., 2000). Recently, Koulakov et al.
(2002) demonstrated that robust line attractors can be con-
structed by using bistable units as building blocks, ensuring a
range within which perturbations will not destroy the line attrac-
tor. However, the experimental evidence cited above suggests
that a line attractor configuration could also be attained on the

Figure 7. Self-organization into a line attractor configuration by using the variance in inter-
nal Ca 2� or gADP as a signal (using the same parameters as in Fig. 5). A, The slope of the gADP

nullcline (�ADP ) quickly rotates toward the optimal region within a few sampling periods,
starting from different initial conditions, although its fine adjustment might take more time.
	gADP

2 was used as learning signal (for yCa as a signal, learning usually takes longer; for details,
see Appendix, Learning algorithm). B, Rotation process of the 
gADP� nullcline (dotted lines)
toward its final position (dashed line) in state space with the FR nullcline (solid line), starting
from �ADP � 10. C, Same as B but starting from �ADP � 1. D, Final slope of the 
gADP� nullcline
relative to the optimal slope (dashed line) averaged over 10 simulations with different random
seeds, starting with a very small initial slope (�ADP � 1), with a slope close to the line attractor
(�ADP � 4), or with a very high initial slope (�ADP � 10) and using either 	gADP

2 or yCA as the
learning signal. Error bars indicate SD.
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single-cell level on the basis of a feedback loop involving IADP

(Egorov et al., 2002). Hence, the mechanisms described by Kou-
lakov et al. (2002) to achieve robustness on a network level can-
not be applied to the present system, because there must be some
solution that works for single neurons using the feedback loop
described here.

Here it was proposed that neurons might use the variance of
gADP or [Ca 2�]i as a learning signal to drive biophysical parame-
ters toward a line attractor configuration or to maintain it. Fluc-
tuations in [Ca 2�]i are a consequence of fluctuations in the firing
rate caused for example by synaptic noise present in cortex (Allen
and Stevens, 1994). Hence, spontaneous activity and noise were
essential ingredients without which the neuron could not detect
the appropriate setting of biophysical parameters. This might be
a more general principle applying to many behavioral learning
problems requiring exploration (Sutton and Barto, 1998) as well
as to cortical plasticity (Katz and Shatz, 1996).

The assumption that the variance of [Ca 2�]i or Ca 2�-
dependent molecules could be exploited for learning of course
ultimately remains to be demonstrated experimentally, but it
seems entirely reasonable given our current knowledge about
neural plasticity and molecular networks. Intracellular networks
possess enormous computational power that includes perform-
ing various operations such as filtering, integration, differentia-
tion, complex temporal decoding, and extracting the frequency
of [Ca 2�]i oscillations (De Koninck and Schulman, 1998; Bhalla
and Iyengar, 1999; Katz and Clemens, 2001; Kubota and Bower,
2001; Bhalla, 2002). As outlined in Materials and Methods, some-
thing akin to the [Ca 2�]i variance might be computed through
Ca 2�-dependent proteins such as calmodulin that capture the
temporal derivative of intracellular Ca 2� fluctuations (Franks et
al., 2001) and proteins further downstream that require some
form of cooperativity in calmodulin or related proteins for acti-
vation. However, “explicit” computation of a variance might not
even be necessary. Any intracellular process that is sensitive to the
magnitude of deviations of [Ca 2�]i from its average value, e.g., by
adapting to the average value, should be sufficient for detecting
the line attractor.

Furthermore, there is much evidence that the level of intracel-
lular Ca 2� after synaptic stimulation triggers specific synaptic
changes (Sjöström and Nelson, 2002). Moreover, there is accu-
mulating evidence that biophysical properties of intrinsic
voltage- or Ca 2�-gated ion channels are also changing with neu-
ral experience (Desai et al., 1999; Ganguly et al., 2000; Nick and
Ribera, 2000). For example, changes in intrinsic ion channel
properties have been shown to underlie activity regulation within
single cells, which seem to try to attain an optimal level of mean
output activity (Desai et al., 1999; Nick and Ribera, 2000). Like-
wise, neurons might try to achieve an optimal level of variance in
output activity (Stemmler and Koch, 1999), thereby also opti-
mizing discriminability, which could trigger convergence to a
line attractor configuration. Thus, single cells seem to be
equipped both with the molecular computational machinery re-
quired for processing the variance (or related quantities) in
[Ca 2�]i or other molecules and with the plasticity mechanisms
required for converting such a signal into appropriate changes of
Ca 2�-gated ion channels.

Time interval prediction and temporal difference errors
As described, the slope of climbing activity might be adjusted by
modifying synaptic weights, but what could drive these parame-
ter changes in the right direction? A possible learning signal is the
temporal difference error between the predicted time of occur-

rence and the actual time of occurrence, as illustrated in Figure 8.
A comparator system might receive inhibitory inputs from the
prediction system and excitatory inputs from sensory neurons
encoding actual stimuli. If the comparator neurons fire above
baseline, this could trigger increases in synaptic weights within
the prediction system, because it would indicate that the stimulus
occurred earlier than predicted, whereas below baseline firing
would indicate that the predicted time of occurrence was too
early. Note that the response properties of the postulated com-
parator are exactly the ones exhibited by dopaminergic midbrain
neurons (Schultz et al., 1997; Hollerman and Schultz, 1998;
Schultz and Dickinson, 2000). It has been pointed out previously
that these neurons could therefore signal a prediction error
(Montague et al., 1996; Schultz et al., 1997). Because this signal, in
addition, seems to be accurately timed (Schultz et al., 1997), it
could also be used to adjust the slope of climbing activity to the
to-be-predicted interval time. Such a signal alone would, how-
ever, not be specific enough to also drive a neuron into a line
attractor configuration as a basis for climbing activity.

Experimental predictions
One major prediction of the model that goes beyond the evidence
provided by Egorov et al. (2002) is the proposal that the variance
in firing rate (and intracellular Ca 2� levels) is maximal for pyra-
midal neurons with an optimized firing rate–[Ca 2�]i–IADP feed-
back loop. Because pyramidal cells in entorhinal and possibly also
prefrontal cortex seem to be close to a line attractor configuration
(Egorov et al., 2002), partially blocking IADP or buffering or en-
hancing intracellular Ca 2� should reduce the variance in spike
rate when a cell is perturbed in vitro under muscarinergic modu-
lation with noisy current inputs. Moreover, variance might in-
crease again over time as the cell tries to reorganize, such as to
achieve a line attractor configuration.

At the behavioral and in vivo electrophysiological level, the
present model suggests that interfering with climbing activity, in
particular through pharmacological manipulation of IADP,
should shift the predicted time of occurrence forth or back, de-
pending on whether IADP is enhanced or diminished. Such a shift
might be reflected in a shift of the time at which climbing activity

Figure 8. Hypothetical model for using a temporal difference error (TDE) to drive adjustment
of the slope of climbing activity. Climbing activity via response neurons (see Fig. 3D) inhibits a
population of comparator neurons at the predicted time of occurrence Tpred. Neurons coding for
the to-be-predicted stimulus event (at time Tevent ) in contrast excite the comparator neurons.
Thus, if Tpred � Tevent , comparator neurons will discharge below baseline, whereas they will fire
above baseline if Tevent � Tpred. Only if the predicted and the actual times of occurrence coin-
cide, the firing rate of the comparator neurons will not change, because incoming signals cancel
each other.
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suddenly drops, as it does if reward does not occur at the time
predicted (Komura et al., 2001) (see Fig. 3D), by an offset in the
normal time at which dopaminergic midbrain neurons are inhib-
ited (Schultz et al., 1997), or by behavioral measures such as
increased operant responding, which is time-locked to the ex-
pected event in fixed-interval schedules.

Appendix
Derivation of nullclines
The full single-neuron climbing activity model consists of two
coupled nonlinear ordinary differential equations with time-
dependent terms (synaptic currents and Ca 2� influx) plus two
dynamic variables for each synapse describing short-term
dynamics (u and R) given by the recursive relationship (Eq. 6).
To simplify the system, the NMDA current was linearized
[INMDA(t,Vm) � �gNMDA(t) � (0.29 Vm � 24); see Figure 1 B],
and u and R were substituted by their steady-state values for
interspike interval TISI:

u� �
USE

1 � �1 � USE�exp��TISI/�fac�
(9)

R� �
1 � exp��TISI/�rec�

1 � �1 � u��exp��TISI/�rec�

(Markram et al., 1998). To derive the FR nullcline, for any mean
ADP conductance level 
gADP�, where 
gADP� is the average over
an interspike interval TISI, the following linear differential equa-
tion has to be solved in a self-consistent manner:

V̇m � A�t�Vm � B�t�
(10)

with A�t� � ��gleak � gAHP�t� � 
gADP� � gAMPA�t�

� 0.29gNMDA�t� � gGABA�t��/Cm

and B�t� � �gleakEleak � gAHP�t�EAHP � 
gADP�EADP � 24gNMDA�t�

� gGABA�t�EGABA � Iinj�/Cm ,

where it was assumed that EAMPA � 0, and Vm � Vreset whenever
Vm � Vth from below. The interspike-interval TISI is the time it
takes for the membrane potential Vm to proceed from the initial
condition Vm(0) � Vreset to spike threshold Vm(TISI) � Vth. The
solution to differential Equation 10 is:

Vm�TISI� � Vth � exp��
0

TISI

A�t�dt� �

�Vreset ��
0

TISI

B�t�exp���
0

t

A�t��dt��dt	. (11)

To make this equation self-consistent, all conductances and
[Ca 2�]i have to be determined such that they return to their
initial values after time TISI. Double-exponential functions of the
form in Equations 4 and 5 can easily be transformed into a recur-
sive relationship in which gsyn(t) (or, equivalently, [Ca 2�](t), ex-
cept for synaptic depression terms) is given for any TISI by:

gsyn��t� � gmaxu��TISI�R��TISI�� e��t/�off

1 � e�TISI/�off
�

e��t/�on

1 � e�TISI/�on� ,

(12)

where �t is the time from onset of the interspike interval (i.e.,
�t/TISI is the relative phase). The FR nullcline (FR*) is then ob-
tained by solving Equation 11 for TISI given 
gADP� and taking the
inverse FR* � 1/TISI(
gADP�).

Unfortunately, the integrals on the right side of Equation 11
cannot be computed explicitly and were solved by quadrature
using the MATLAB quad (or quadl) function. In fact, rather than
solving Equation 11 for TISI given 
gADP�, it turned out to be easier
to determine the 
gADP� that satisfied Equation 11 for fixed
TISI. This was done through function minimization (MATLAB
fzero), minimizing the difference between the right and left
sides of Equation 11. This gave the FR nullclines depicted in
Figures 3–7.

The nullcline for the mean conductance level (
gADP�*) given
firing rates 1/TISI is obtained by solving differential Equation 3:

m�T� � e�T/�ADP�m0 ��
0

T et/�ADP

�ADP�1 � e�ADP��ADP��Ca	i�t���
dt�

with m0 � m�TISI�


gADP� � gADPmax
m� �
1

TISI
�

0

TISI

m�T�dT. (13)

The condition m0 � m(TISI) ensures the self-consistence of this
equation by requiring that m returns to its initial value after time
TISI. [Ca]i(t) � [Ca]i(�t,TISI) is determined as in Equation 12
(omitting synaptic depression terms). Again, the integral on the
right side cannot be solved explicitly, because it involves expo-
nentials of exponentials, which arise because the firing rate inter-
acts with the ADP conductance only via Ca 2� influx, which has to
be integrated over the period TISI. Note that by inserting Equa-
tion 13 (first line) into Equations 10 and 11, the whole system
could be collapsed into a single self-consistent equation, which
could be solved exactly.

For finding line attractor configurations, given the nullclines

gADP�* and FR*, constrained optimization was run on a selection
of system parameters [Cm, Vth, ACa, �ADP, and �ADP, as well as all
maximum conductances (except gAHPmax) and utilization vari-
ables USE] to minimize the following error function over a range
rE � 1/TISI of (instantaneous) firing rates:

Err�par,rE� � �
gADP�*(rE) � FR*�rE��. (14)

where par is the current parameter configuration, and ����� denotes
the norm of the vector. The fmincon function from the MATLAB
Optimization toolbox was used for minimization. Fmincon
performs constrained optimization of multivariate nonlinear
functions (all variables were constrained within physiologi-
cally reasonable ranges; see Table 1) using sequential qua-
dratic programming combined with line search.

Learning algorithm
The following procedure was taken for learning the slope of the
gADP nullcline (�ADP). The procedure started by changing �ADP

randomly by a small amount into one or the other direction to
obtain an initial estimate of the gradient. For all successive learn-
ing steps n, yCa (Eq. 8) was averaged over 
20 sec (during which
�ADP was held constant), or 	gADP

2 was calculated for 5 sec.
(Thus, as is the case for long-term synaptic plasticity, adjusting
the slope would be a relatively slow process compared with the
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neural dynamics, extending over at least tens of seconds over
which signals such as yCa have to be integrated.) �ADP was then
changed according to:

��ADP�n� � �1�2�
��ADP�n � 1�

�
yCa��n � 1�
. (15)

�1 is a general constant learning factor whose magnitude depends
on the variable used as a learning signal. �2 is an annealing factor
(Aarts and Korst, 1989), which was decreased by �2(n) � 
 �
�2(n � 1) with 0 � 
 � 1 at each step n (usually 
 � 0.94). The
general constant � took account of the difference in magnitudes
between changes in �ADP and changes in the learning signal used.
It was adjusted at the onset of learning during an initialization
period according to � � 2 * x/(�ADPmax � �ADPmin) and then held
constant during learning, where �ADPmax/�ADPmin is the maxi-
mum/minimum slope allowed, and x is the learning signal (e.g.,
x � yCa). The maximum and minimum changes ��ADP allowed
per time step n were limited to 2.0 and 0.02, respectively, and the
total maximum and minimum slopes that could be achieved were
limited to 15 and 0.5, respectively, assuming that there are natural
physiological constraints on these variables. The first 20% of the
signal sampling period of 5–30 sec were eliminated from the av-
eraging, because the discrete change in slope according to Equa-
tion 15 caused a significant transient if ��ADP was large (the
transient might partly be regarded as an artifact of changing �ADP

in discrete steps rather than continuously). Parameters used for
Figure 7 were �1 � 70, 
 � 0.945, and a sampling interval of 5 sec
for simulations with 	gADP

2 as a learning signal and �1 � 0.3,

 � 0.99, and a sampling interval of 30 sec for simulations with
yCa as a learning signal. For some reasonable configurations of
learning parameters using yCa as a signal, in a few cases, the algo-
rithm got stuck at a very high slope (�ADP � 10; �3% of cases
across different parameter configurations). This might be attrib-
utable to faster [Ca 2�]i fluctuations caused by the mere spiking
process (Fig. 1A), which are negatively correlated with mean fir-
ing rate and might become a prominent factor at extreme slopes
if synaptic noise is not large enough. 	gADP

2 seems, in general, to
be a better learning signal than yCa, because gADP filters out these
faster fluctuations not caused by variance in the firing rate (in
addition, especially low-frequency components increase toward
the line attractor configuration). Hence, learning might be fur-
ther improved by low-pass filtering [Ca 2�]i before subjecting it
to Equation 7.

As discussed in Results, this learning algorithm was not de-
signed as a physiological implementation; rather, the main goal
here was to demonstrate that yCa and 	gADP

2 could be used as
learning signals despite the difficulties arising from the particular
form of the learning landscape and the noisy nature of the signal.
Note, however, that the general procedure, taking temporally
consecutive measurements of a chemical concentration to per-
form gradient ascent, is quite akin to what bacteria do during
chemotaxis (MacNab and Koshland, 1972), although the sensors
and effectors are different here. In a more physiological version,
one would express Equation 15 as a continuous time differential
equation and would add additional dynamical variables that in-
tegrate the signal yCa or 	gADP

2 over some period. The maximum
and minimum gADP slopes allowed might be substituted by
smooth sigmoid functions continuously approaching the limits
�ADPmax and �ADPmin.

In general, the learning procedure would also have to be sup-
plemented by a mechanism that keeps the average firing rate of a
neuron within a certain range (see Results; as formalized, e.g., by

Van Rossum et al., 2000). A similar learning schema as used for
adjusting �ADP (Eq. 15) could then also be applied to other pa-
rameters of the ADP conductance.
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