
Self Organizing Sensors by Minimization of Cluster Heads
Using Intelligent Clustering

Kwangcheol Shin, Ajith Abraham*1 and Sang Yong Han*

Department of Computer Science & Engineering

University of Minnesota, Minneapolis, MN 55455, USA

*School of Computer Science and Engineering, Chung-Ang University

221, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea

Abstract
2

Minimization of the number of cluster heads in a wireless sensor network is a very important problem to

reduce channel contention and to improve the efficiency of the algorithm when executed at the level of

cluster-heads. This paper proposes a Self Organizing Sensor (SOS) network based on an intelligent

clustering algorithm which does not require many user defined parameters and random selection to form

clusters like in Algorithm for Cluster Establishment (ACE) [2]. The proposed SOS algorithm is compared

with ACE and the empirical results clearly illustrate that the SOS algorithm can reduce the number of

cluster heads.

1. Introduction and Related Research

Research in wireless sensor networks has been growing rapidly along with the development of low-cost

micro devices and wireless communication technologies [1]. Some of the research related to scientific,

medical, military and commercial usage has gone to the background [4].

Sensor networks are composed of hundreds to myriads of sensor nodes, which appear to be sprinkled

randomly by a car or airplane. Each node has strict limitation in the usage of electric power, computation

and memory resources. They typically utilize intermittent wireless communication. Therefore, sensor

networks should be well-formed to achieve its purposes. Clustering is a fundamental mechanism to design

scalable sensor network protocols. The purpose of clustering is to divide the network by some disjoint

clusters. Through clustering, we can reduce routing table sizes, redundancy of exchanged messages, energy

consumption and extend a network’s lifetime. By introducing the conventional clustering approach to the

sensor networks provides a unique challenge due to the fact that cluster-heads, which are communication

centers by default, tend to be heavily utilized and thus drained of their battery power rapidly. Algorithm for

Cluster Establishment (ACE) [2] clusters the sensor network within a constant number of iterations using

the node degree as the main parameter. Some of the weaknesses of ACE are: First, ACE randomly selects

candidate node in each iteration, which creates different results each time on the same sensor network.

Second, spawning threshold function is used in ACE to control the formation of new cluster by using two

manually adjusted parameters. ACE performance relies on these parameters which are usually manually

adjusted according to the size and shape of a sensor network.

In the literature, besides ACE, there are some related works on forming and managing clusters for sensor

networks. For examples, LEACH [5] rotates the role of a cluster head randomly and periodically over all

the nodes to prevent early dying of cluster heads. Guru et al. [6] consider energy minimization of the

1
Corresponding author email: ajith.abraham@ieee.org

network as a cost function to form clusters. Mhatre and Rosenberg [7] take into account not only the battery

of the nodes but also the manufacturing cost of hardware.

Krishnan and David Starobinski [14] used a message-efficient clustering, in which nodes allocate local

“growth budgets” to neighbors. The algorithm produce clusters of bounded size and low diameter, using

significantly fewer messages than the earlier, commonly used, expanding ring approach. They also

presented a new randomized methodology for designing the timers of cluster initiators. This methodology

provides a probabilistic guarantee that initiators will not interfere with each other.

Liu and Lin [15] introduce a re-clustering strategy and a redirection scheme for cluster-based wireless

sensor networks in order to address the power-conserving issues in such networks, while maintaining the

merits of a clustering approach. Based on a practical energy model, their simulation results show that the

improved clustering method can obtain a longer lifetime when compared with the conventional clustering

method.

When sensor nodes are organized in clusters, they could use either single hop or multi-hop mode of

communication to send their data to their respective cluster heads. Mhatre and Rosenberg [16] presented a

systematic cost-based analysis of both the modes, and provided guidelines to decide which mode should be

used for given settings. They also proposed a hybrid communication mode which is a combination of single
hop and multi-hop modes, and which is more cost-effective than either of the two modes.

Younis et al. [17] present a novel approach for energy-aware management of sensor networks that

maximizes the lifetime of the sensors while achieving acceptable performance for sensed data delivery. The

approach is to dynamically set routes and arbitrate medium access in order to minimize energy consumption

and maximize sensor life. The approach calls for network clustering and assigns a less-energy-constrained

gateway node that acts as a cluster manager. Based on energy usage at every sensor node and changes in the

mission and the environment, the gateway sets routes for sensor data, monitors latency throughout the

cluster, and arbitrates medium access among sensors.

Pan et al. [18] considered a generic two-tiered wireless sensor network (WSN) consisting of sensor clusters

deployed around strategic locations, and base-stations (BSs) whose locations are relatively flexible. Within

a sensor cluster, there are many small sensor nodes (SNs) that capture, encode, and transmit relevant

information from a designated area, and there is at least one application node (AN) that receives raw data

from these SNs, creates a comprehensive local-view, and forwards the composite bit-stream toward a BS.

Their research focus on the topology control process for ANs and BSs, which constitute the upper tier of

two-tiered WSNs. By proposing algorithmic approaches to locate BSs optimally, they maximized the

topological network lifetime of WSNs deterministically, even when the initial energy provisioning for ANs

is no longer always proportional to their average bit-stream rate. By studying intrinsic properties of WSNs,

authors established the upper and lower bounds of maximal topological lifetime, which enable a quick

assessment of energy provisioning feasibility and topology control necessity.

Clustering problems arise in many different applications too, such as data-mining, knowledge discovery

and pattern recognition. These use approaches based on randomization such as CLARA [8] and CLARANS

[9], methods based on self organizing maps [10], and techniques designed to scale for large databases,

including DBSCAN [11], BIRCH [12] and ScalKM [13].

In this paper, we propose a new clustering algorithm that does not require manually adjusted parameters

which could also provide identical results in each test on the same sensor network to overcome the

weakness of ACE. Rest of the paper is organized as follows. In Section 2, we present the clustering problem

followed by Section 3 wherein the new algorithm is illustrated. Experiment results are presented in Section

4 and some conclusions are also provided towards the end.

2. The Clustering Problem

Clustering problem can be defined as following. Assume that nodes are randomly dispersed in a field. At

the end of clustering process, each node belongs to only one cluster and be able to communicate with the

cluster head directly via a single hop [3]. Each cluster consists of a single cluster head and a bunch of

followers as illustrated in Figure 1. The purpose of the clustering algorithm is to form the smallest number

of clusters that makes all nodes of network to belong to one cluster. Minimizing the number of cluster heads

would not only provide an efficient cover of the whole network but also minimizes the cluster overlaps.

This reduces the amount of channel contention between clusters, and also improves the efficiency of

algorithms that executes at the level of the cluster-heads.

Figure 1. Clustering in a sensor network

3. Self Organizing Sensor (SOS) Networks by Minimization of Cluster Heads Using

Intelligent Clustering

This Section presents the proposed clustering algorithm in a global scale, and the following section

describes the algorithm at a node level.

3.1 Global level of clustering algorithm

The following steps illustrate an overview of the suggested algorithm.

1. Find the node (No), which has the maximum number of followers, and make a cluster with it.

2. Include clustered nodes into a clustered node set G.

3. Selects the next head node (Nf), which can communicate with a node in G and has the maximum

number of followers, and make a cluster with it.

4. If there exist an unclustered node or nodes then go to step 2

5. Else terminate the algorithm.

At first, it makes a cluster with the center node which has the maximum number of followers. We assume

that there is a coordinator which controls globally in the entire network (for easy understanding). So it does

not matter to locate the center node during step 1. In step 2, it includes the selected cluster head node and its

followers to the clustered node set G. And in step 3, it selects the node, which can communicate with a node

in G and has the maximum number of followers, and makes a cluster with it as a cluster head and include it

and its follower to set G. Figure 2 illustrates step 3. A node 'a' is No node and node 'b' is the node which can

communicate with the next head node (that is, node 'c'), which has the maximum number of followers. Then

it elects node 'c' as a next cluster head node and makes a cluster with it. The process is then repeated until all

the nodes are clustered.

Figure 2. Clustering example

3.2 Node level of Clustering Algorithm

Node level algorithm is mainly divided into two parts, first part for finding out a node which has the most

number of followers and makes it as the first cluster head, and the second one for the actual clustering

process.

Message Structure: (command, data, node_id)
Methods description :
 broadcast(message) : send a message to everyone which it can communicate with

 send(message, destination) : send a message to a destination

Figure 3. Message and methods

To implement the algorithm, we introduce ‘message’ which has three parts, (command, data, node_id) and

two methods which are used frequently, broadcast (message), which sends a message to everyone, to which

it can communicate with and send (message, destination) which sends a message to a destination. The

concept of message and methods is illustrated in Figure 3.

We also define two concepts:

Super-node: The node which is selected as a head of first cluster, to decide which node will be the new

cluster head (for example, node 'a' in Figure 2). This algorithm is illustrated in Figure 4.

Linker node: The node which communicate between two cluster heads. This node is included in two

clusters which it connects (for example, node 'b' in Figure 2).

myState := Super_Head
n := number of my neighbors
c := myID
while (myState is Super_Head and c is not 0)
 c := c -1
 if (notEmpty(msgQueue)
 message := find_best_one(msgQueue)
 if(message.data >= n)
 myState := Unclustered
 broadcast(message)
if (myState is Super_Head) broadcast((,n,))
d := n
t := sufficient time + myID
While (t is not 0)
 t := t-1
 message := wait_for_a_message()
 if (message.data > n)
 myState := Unclustered
 if(d < message.data)
 d := message.data
 broadcast(message)
if (myState is Super_Head) broadcast(("recruit", ,myID))
Purge(msgQueue)

Figure 4. Algorithm for finding the super-node

3.2.1 Discovery of nodes which has the most followers

To find the node which has the maximum number of followers, we suggest a method as illustrated in Figure

5. In the first stage, state of every node is considered as a super-head. Each node counts the number of its

neighbors and it sets variable c as its unique Identification number (ID) to execute the algorithm one by one

without collisions. This unique ID for the individual sensors is decided when the sensors are spread.

Figure 5. Illustration for finding the super-node

For the sensor network illustrated in Figure 5 (the number in each circle is a unique ID for each sensor), we

present how the proposed algorithm could set up node 4 as a super-node. It is important to remember that

each node performs its own algorithm operation independently to setup the super-nodes. At first, node 1

sends message to its neighbors and nodes 5, 4 and 9 will receive the message which node 1 sent. Message

queue of nodes 5, 4 and 9 are shown in Figure 6 and node 1 will get into the state of waiting for a message.

After that, node 2 broadcasts its number of neighbors to its neighbor node 10, and node 3 to nodes 7, 9 and

10. Node 2 and 3 will also get into the state of waiting for a message as shown in Figure 7.

Figure 6. Message queue of nodes 5, 4 and 9 after node 1 broadcasts

Figure 7. State after nodes 2 and 3 broadcast a message

Figure 8. After node 4 broadcasts a message

Figure 9. After node 1 broadcasts a message which it received

By turn, node 4 performs its operation and its message queue is not empty. So, node 4 finds the message,

which has the biggest data value, in its message queue and compares it with its number of neighbors. In this

case, node 4's number of neighbors is 4 and the biggest one in message queue is 3, so node 4 broadcasts its

number of neighbors as shown in Figure 8. Node 1 will now receive the message, which node 4 sent, and it

changes its status as unclustered since arrived 'message.data' is bigger than its number of neighbors and

broadcast arrived 'messagedata' again. The procedure is illustrated in Figure 9. Node 5 executes its

algorithm and the number of its neighbors is 3 and the biggest one in message queue is 4, so it changes its

status as unclustered and broadcasts 'message.data', which is 4. Node 6 executes its algorithm and its

number of followers is smaller than the biggest one in queue, and it changes its status as unclustered and

broadcasts the biggest 'message.data'. After doing all of procedures, node 4 will remain as super-node and

all of rest will be unclustered status. And finally, node 4 broadcasts a recruit message to its neighbors to

make a cluster with node 4 as cluster head.

3.2.2 Self Organizing Sensor (SOS)Clustering Algorithm

Figure 10 illustrates the pseudo code of the SOS clustering algorithm and it consists of 5 parts.

myHead := NONE // my cluster head

nextHead := NONE // for linker node, which has two head

// for unclustered node

while (myState is Unclustered)

 message := wait_for_a_message()

 if (message.command is "survey")

 uf := calculate_number_of_followers(myID)

 send(("report",uf,myID),message.node_id)

 if (message.command is "recruit")

 myHead := message.node_id

 myState := Clustered

 if (message.command is "notify" and message.node_id is myID)

 myState := Cluster_Head

 broadcast(("recruit", ,myID))

// for clustered node

while (myState is Clustered)

 message := wait_for_a_message()

 followers := NONE // array for follower nodes

 if (message.command is "survey")

 followers := update_my_followers(myID)

 if(followers is not NONE)

 send(("survey", ,myID),followers)

 msgQueue := wait_for_followers_reports()

 nodeBest := find_best_node(msgQueue)

 message := (message.command,message.data,myID)

 send(nodeBest,myHeader)

 purge(msgQueue)

 else

 send(("report",NONE,NONE),myHead)

 terminate()

 if (message.command is "notify" and message.node_id is myID)

 myState := Linker

 nextHead := nodeBest.node_id

 send(message,nodeBest.node_id)

// for super-head

while (myState is Super_Head)

 broadcast(("survey", ,))

 msgQueue := wait_for_followers_reports()

 networkBest := fine_best_node(msgQueue)

 if(networkBest.node_id is NONE) terminate()

 else broadcast_to_follwers(("notify",,networkBest.node_id))

 purge(msg_queue)

// for cluster head

while (myState is a Cluster_Head)

 message := wait_for_a_message()

 if (message.command is "survey")

 broadcast_to_followers("survey", ,myID)

 msgQueue : = wait_for_followers_reports()

 clusterBest := find_best_node(msgQueue)

 send(clusterBest,message.node_id)

 if (clusterBest.node_id is NONE) terminate()

 purge(msgQueue)

 if(message.command is "notify" and message.node_id is clusterBest.node_id)

 broadcast_to_followers(message)

// for linker

while (myState is a Linker)

 message := wait_for_a_message()

 if (message.command is "survey")

 message.node_id = myID

 send(message, nextHead)

 if (message.command is "notify") send(message, nextHead)

 if (message.command is "report")

 send(message, myHead)

 if(message.node_id is NONE) teminate()

Figure 10. SOS clustering algorithm

The clustering process is illustrated in Figures 11-13. Every node, whose status is unclustered, waits for a

message. The super-node (node ‘a’ in Figures 11-13) broadcasts 'survey' message to its followers. Every

node, which receives 'survey' message from its cluster head (include super-node), investigates that how

many unclustered nodes exist within the area of its communication range. If there are no existing nodes that

can communicate with, then it reports it to their head and terminates its algorithm. If some nodes exist, it

send 'survey' message to every follower and waits for its 'report' messages. When every follower reports

about it, the node selects follower's ID, which has the biggest number of neighbors, and save that follower's

ID and sends a 'report' back to its head recursively (Figure 8). This works in a recursive way and every

'report' message arrives in super-node. If super-node get all report from every follower, then it selects a

message contains the follower's id, which has the biggest number of neighbors, and broadcasts 'notify'

message with that follower's ID to its followers (Figure 9). Every clustered nodes, which receive 'notify'

message, compares 'notify.node_id' with saved id and if it is same, then it changes its status as 'linker' and

set its next-head as saved node id, and sends a 'notify' message to its next-head. If cluster-head received a

'notify' message, then it compares ‘notify.node_id’ with stored ID and if it is same then it broadcasts

otherwise just drop it. If unclustered node received 'notify' message then it changes its status as cluster-head

and broadcasts a 'recruit' message to its followers to make a cluster with it. If super-head get every 'report'

message with 'none' then it terminates its algorithm.

Figure 11. Illustration of ‘survey’ process

Figure 12. Illustration of ‘report’ process

Figure 13. Illustration of ‘notify’ process

4. Test Results

The proposed SOS algorithm was implemented and compared with the ACE algorithm. We randomly

scattered 2500, 5,000 and 10,000 nodes in 500*500, 700*700, 700*700 rectangle spaces respectively.

Tables 1, 2 and 3 illustrate the performance results for 2,500, 5,000 and 10,000 nodes respectively. For

comparison purposes, we set the communication range of each node as 30, 50, 70 and 100. In case of ACE,

we manually adjusted k1 and k2 to achieve the best results. As shown in Tables 1, 2 and 3, the number of

cluster heads could be reduced by about 11.97%, 11.65% and 7.84% (average) for 2,500, 5,000 and 10,000

nodes respectively when compared to the ACE approach. The efficiency of the SOS algorithm is

graphically depicted in Figure 14. By using the SOS approach, we can efficiently reduce the routing table

sizes, redundancy of exchanged messages, energy consumption and extends the network’s lifetime.

Figure 14. Comparison of the performance for the SOS algorithm.

Case of 2500 nodes (500*500 rectangle space)

Number of generated clusters
Communication

distance of a node ACE

(k1=2.3,k2=0.1)
SOS

Improvement

((ACE-SOS)/ACE)

30 308 255 17.21%

50 126 114 9.52%

70 68 59 13.24%

100 38 35 7.89%

Average 11.97%

Table 1. Test results for 2500 nodes

Case of 5000 nodes (700*700 rectangle space)

Number of generated clusters
Communication

distance of a node ACE

(k1=2.3,k2=0.1)
SOS

Improvement

((ACE-SOS)/ACE)

30 329 282 14.29%

50 133 120 9.77%

70 74 63 14.86%

100 39 36 7.69%

Average 11.65%

Table 2. Test results for 5000 nodes

Case of 10000 nodes (700*700 rectangle space)

Number of generated clusters
Communication

distance of a node ACE

(k1=2.3,k2=0.1)
SOS

Improvement

((ACE-SOS)/ACE)

30 352 321 8.81%

50 137 128 6.57%

70 75 68 9.33%

100 45 42 6.67%

Average 7.84%

Table 3. Test results for 10000 nodes

5. Conclusions

In this paper, we presented a new clustering algorithm for minimizing the number of cluster heads. The

proposed algorithm produces identical results every time for same network without using any network

dependent parameters. Empirical results clearly show that the SOS algorithm could reduce the number of

cluster heads by about 11.97%, 11.65% and 7.84% (average) for 2,500, 5,000 and 10,000 nodes

respectively when compared to the ACE approach.

Although our algorithm efficiently formulated the required clusters, there are several things to consider

such as problems related to fast dying cluster heads and so on. We are also planning to incorporate more

heuristic techniques to make the clustering process more efficient.

6. Acknowledgements

First author was supported by the Post-doctoral Fellowship Program of Korea Research Foundation (KRF).

Second author was supported by the International Joint Research Grant of the IITA (Institute of Information

Technology Assessment) foreign professor invitation program of the MIC (Ministry of Information and

Communication), South Korea.

Authors would like to thank the anonymous reviewers for the constructive comments which helped to

improve the clarity and presentation of the paper.

7. References

[1] J.M. Kahn, R.H. Katz and K.S. Pister, Next Century Challenges : Mobile Networking for "Smart Dust",

Proceedings of Mobicom, August 1999.

[2] H. Chan, A. Perrig, ACE: An Emergent Algorithm for Highly Uniform Cluster Formation. In 2004

European Workshop on Sensor Networks. pp. 154-171.

[3] Younis and S. Fahmy. Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid, Energy-Efficient

Approach. In Proceedings of IEEE INFOCOM, March 2004.

[4] I.F. Akyildiz, W. Su, Y. Sankarsubramaniam and E. Cayirci, “Wireless Sensor Networks : a survey”,

Computer Networks, Vol. 38, pp. 393-422, March 2002.

[5] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, “An Application Specific Protocol

Architecture for Wireless Microsensor Networks,” IEEE Transactions on Wireless Communications,

Vol. 1, No. 4, October 2002.

[6] S. M. Guru, A. Hsu, S. Halgamuge, S. Fernando, “An Extended Growing Self-Organizing Map for

Selection of Clusters in Sensor Networks”, International Journal of Distributed Sensor Networks,

Volume 1, Number 2 / April-June 2005

[7] V. Mhatre and C. Rosenberg, “Homogeneous vs. Heterogeneous Clustered Sensor Networks: A

Comparative Study”, 2004 IEEE International Conference on Communications (ICC 2004), Paris

France, June 2004.

[8] L. Kaufman and P.J. Rousseeuw, “Finding Groups in Data: An Introduction to Cluster Analysis”, New

York: John Wiley & Sons, 1990.

[9] R.T. Ng and J. Han, “Efficient and Effective Clustering Methods for Spatial Data Mining”, Proc. 20th

Int'l Conf. Very Large Databases, pp. 144-155, Sept. 1994.

[10] T. Kohonen, “Self-Organization and Associative Memory”, third ed. New York: Springer-Verlag,

1989.

[11] M. Ester, H. Kriegel, and X. Xu, “A Database Interface for Clustering in Large Spatial Databases”,

Proc. First Int'l Conf. Knowledge Discovery and Data Mining (KDD-95), pp. 94-99, 1995.

[12] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: A New Data Clustering Algorithm and Its

Applications”, Data Mining and Knowledge Discovery, vol. 1, no. 2, pp. 141-182, 1997.

[13] P.S. Bradley, U. Fayyad, and C. Reina, “Scaling Clustering Algorithms to Large Databases”, Proc.

Fourth Int'l Conf. Knowledge Discovery and Data Mining, pp. 9-15, 1998.

[14] Rajesh Krishnan and David Starobinski, Efficient clustering algorithms for self-organizing wireless

sensor networks, Ad Hoc Networks, Volume 4, Issue 1, pp. 36-59, 2006.

[15] Jain-Shing Liu and Chun-Hung Richard Lin, Energy-efficiency clustering protocol in wireless sensor

networks, Ad Hoc Networks, Volume 3, Issue 3, pp. 371-388, 2005.

[16] Vivek Mhatre and Catherine Rosenberg, Design guidelines for wireless sensor networks:

communication, clustering and aggregation, Ad Hoc Networks, Volume 2, Issue 1, pp. 45-63, 2004.

[17] Mohamed Younis, Moustafa Youssef and Khaled Arisha, Energy-aware management for

cluster-based sensor networks, Computer Networks, Volume 43, Issue 5, pp. 649-668, 2003.

[18] Pan, J., Cai, L., Hou, Y.T., Shi, Y., Shen, S.X., Optimal base-station locations in two-tiered wireless

sensor networks, IEEE Transactions on Mobile Computing, Volume: 4, Issue: 5, pp. 458 – 473, 2005.

