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Corso Garibaldi 107, 82100 Benevento, Italy

Received October 22, 1999; Revised June 20, 2000

This paper is concerned with the bifurcation analysis of linear dynamical systems with relay
feedback. The emphasis is on the bifurcations of the system periodic solutions and their sym-
metry. It is shown that, despite what has been conjectured in the literature, a symmetric
and unforced relay feedback system can exhibit asymmetric periodic solutions. Moreover, the
occurrence of periodic solutions characterized by one or more sections lying within the system
discontinuity set is outlined. The mechanisms underlying their formation are carefully studied
and shown to be due to an interesting, novel class of local bifurcations.

1. Introduction

Relay feedback is one of the most commonly used
control techniques in practical applications. The
idea of using a switching action to achieve heat con-
trol was studied already in 1887 by Hawkins, who
showed that a temperature control system tends to
oscillate under such discontinuous control [Hawkins,
1887]. Since then many engineering applications of
relay feedback have been presented in the literature.
Early examples come from mechanical and electro-
mechanical systems [Flügge-Lotz, 1953; Andronov,
et al., 1965; Tsypkin, 1984], while recent attention
has been motivated by variable-structure controllers
[Utkin, 1992], supervisory switched control [Morse,
1995], relay methods for tuning controllers in pro-

cess industry [Åström & Hägglund, 1995], hybrid
systems [Brockett, 1993] and delta-sigma convert-
ers in signal processing [Norsworthy et al., 1997].
Various mathematical methods have been pro-

posed to investigate the dynamics of relay feedback
systems. These systems tend to oscillate also with-
out external excitation, and particular interest has
been devoted to detect such self-oscillations; for
example, by using describing functions and other
frequency methods [Tsypkin, 1984; Atherton 1975].
Although relay systems have been studied for more
than a century, several problems remain unsolved.
For instance, the global stability of periodic solu-
tions is largely an open question [Åström, 1995;
Megretski, 1996; Johansson et al., 1999; Gonçalves
et al., 1999].
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It has been shown that even low-order relay
feedback systems can exhibit a number of quite
complicated self-oscillations. The existence of pe-
riodic solutions with sliding, here called sliding or-
bits, has been reported in [Johansson et al., 1999]
and independently in [Neimark, 1972; Fedosenko,
1976], where sliding refers to an infinite number of
relay switchings [Utkin, 1992; Filippov, 1988; Aiz-
erman & Pyatnitskii, 1974]. The existence of a simi-
lar type of periodic solution, but with an arbitrarily
large finite number of relay switchings per period,
is shown in [Johansson et al., 1997; di Bernardo
et al., 1998]. Quasiperiodic solutions in relay feed-
back systems with hysteresis as well as chaotic at-
tractors have also been detected and are discussed
in [Cook, 1985; Amrani & Atherthon, 1989; Gene-
sio & Tesi, 1990]. In [Holzhueter & Klinker, 1998],
it has been proposed that, under certain conditions,
these chaotic regimes can be explicitly used in the
control action.
The main aim of this paper is to study the

bifurcation scenarios leading to the formation of
asymmetric periodic solutions and sliding orbits in
relay feedback systems. We show that a symmetric
periodic solution can give rise to a pair of asymmet-
ric orbits through a symmetry-breaking bifurcation.
Thus, we present a counterexample to the com-
monly stated conjecture that asymmetric periodic
solutions cannot exist for relay feedback systems,
unless either an external forcing term is added to
the system or the relay device is made asymmetric
[Tsypkin, 1984]. Moreover, we uncover the bifurca-
tion mechanism, termed sliding bifurcation, through
which sliding motion can become an integral part of
a periodic solution for a relay feedback system. Fur-
ther analysis leads to the discovery of a whole new
class of bifurcations to more complex solutions such
as the so-called multisliding orbits, characterized by
more than one sliding section. These bifurcations
will be also related to those commonly observed in
general piecewise smooth dynamical systems, such
as the so-called border-collision and grazing bifur-
cations [Nusse & Yorke, 1994; Feigin, 1970, 1974;
Nordmark, 1991] which have been detected in sev-
eral systems of relevance in applications [Dankow-
icz & Nordmark, 2001; di Bernardo et al., 1998a;
di Bernardo et al., 1998b]. Numerical evidence of
possible chaotic regimes will also be presented.
The outline of the paper is as follows. Sec-

tion 2 introduces the equations describing an n-
dimensional relay feedback system and gives a brief
discussion on the occurrence of sliding motions. A

third-order relay feedback example, which will serve
as an illustrative example throughout the paper, is
then presented. Section 3 is devoted to the analy-
sis of periodic solutions in relay feedback systems.
An appropriate set of Poincaré maps is introduced
to study their existence and stability and is then
used to perform the subsequent bifurcation analy-
sis. In Sec. 4, the symmetry of the system orbits
is discussed. It is shown that asymmetric orbits
can indeed occur in the systems under investigation
and are generated through a symmetry-breaking bi-
furcation of symmetric periodic solutions. The oc-
currence of limit cycles with sliding is discussed in
Sec. 5 and the bifurcation underlying the transi-
tion from nonsliding to sliding orbits is presented
in Sec. 6. The bifurcations of these sliding solu-
tions is then discussed in Sec. 7 where the existence
of orbits characterized by multiple sliding segments
is outlined. It is suggested that these multisliding
orbits are generated through a peculiar bifurcation
scenario. Evidence of seemingly aperiodic attrac-
tors is finally given in Sec. 8 together with the con-
clusions and suggestions for further work.

2. Relay Feedback System

The class of relay feedback systems that we con-
sider consists of a single-input single-output lin-
ear time-invariant (LTI) system for which the
control variable is obtained via a unit negative feed-
back of the output variable. Thus, the relay feed-
back system under investigation has the state-space
representation:

ẋ = Ax+Bu , (1)

y = Cx , (2)

u = −sgn y , (3)

where A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n are
constant matrices. The input u and output y of
the linear part of the system are scalar functions,
while x = (x(1), x(2), . . . , x(n)) has n ≥ 1 compo-
nents. The sign function is defined as sgn y = 1 if
y > 0, sgn y = −1 if y < 0, and sgn y ∈ [−1, 1] is a
set-valued mapping.
A solution x : [0, ∞) 7→ Rn of (1)–(3) is inter-

preted in the sense of [Filippov, 1988], i.e. as any
absolutely continuous function that satisfies the sys-
tem equations. Note there may be nonunique solu-
tions. We say that a solution x∗ : [0, ∞) 7→ Rn of
(1)–(3) is periodic, if there exists T > 0 such that
x∗(t+ T ) = x∗(t) for all t > 0.
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If not stated otherwise, the so-called observer
canonical form is assumed, i.e. the system matrices
in (1) and (2) are assumed to have the following
structure:

A =



















−a1 1 0 . . . 0

−a2 0 1 0
...

. . .
...

−an−1 0 0 1

−an 0 0 . . . 0



















, B =



















b1

b2
...

bn−1

bn



















,

C =

















1

0
...

0

0

















T

, (4)

which corresponds to the transfer function

G(s) = C(sI −A)−1B

=
b1s
n−1 + b2s

n−2 + · · ·+ bn−1s+ bn
sn + a1sn−1 + a2sn−2 + · · ·+ an−1s+ an

.

For simplicity, we assume throughout the paper
that an 6= 0 so that A is nonsingular.
The system (1)–(3) switches from one LTI con-

figuration to the other whenever the output y
changes its sign, i.e. whenever the state x crosses
the switching hyperplane defined as:

S = {x ∈ Rn : Cx = 0} . (5)

Note that for every initial condition outside S,
the state trajectory will eventually cross S if the
steady-state gain G(0) is positive and G is stable
[Johansson et al., 1999].
Finally, note that relay feedback systems such

as (1)–(3) are instances of a wider class of piecewise
smooth dynamical systems of the form:

ẋ = F (x) =

{

f1(x), σ(x) < 0

f2(x), σ(x) > 0
(6)

with x ∈ Rn, f1, f2 : Rn 7→ Rn smooth vector
functions and σ being an odd function of x.
These systems are said to be symmetric if

f1(x) = −f2(−x) , (7)

f2(x) = −f1(−x) . (8)

In fact, if this is true, we have

F (x) = −F (−x) (9)

similarly to what is usually assumed for Z2-
symmetric smooth dynamical systems [Swift &
Wiesenfeld, 1984]. Thus, system (1)–(3) is also
symmetric.
It is worth mentioning here that (6) is used to

model a wide variety of other engineering systems
including DC/DC power converter [di Bernardo
et al., 1998a, 1998b], friction oscillators [Dankow-
ics & Nordmark, 2001; Popp & Shelter, 1990] and
many other devices.

2.1. Sliding motion

Under certain conditions, it has been shown that
relay feedback systems can exhibit solutions lying
within the system discontinuity set S [Johansson
et al., 1999; Neimark, 1972]. This peculiar type of
solution, known as sliding motion, can be heuris-
tically seen as associated with an infinite num-
ber of switchings between the two different system
configurations.
For the system evolution to be constrained onto

the switching hyperplane, S, the gradient of the
system vector field must point towards S itself on
both sides of it. Hence, by studying the gradient of
the vector field in a neighborhood of the switching
hyperplane, it is possible to isolate regions on S
where sliding motion can occur. In particular, the
state trajectories will point towards S if y > 0 and
ẏ < 0 or if y < 0 and ẏ > 0. By using the sys-
tem Eqs. (1)–(3), the equivalent reaching condition
yẏ < 0 can be rewritten as

CxC(Ax+Bu) < 0, ∀x ∈ R \ S . (10)

A system trajectory that hits S at a point where
this condition is satisfied on both of its sides is
then constrained to evolve along S itself. This gives
rise to a “sliding motion” which ends whenever the
direction of the vector field on one side of the switch-
ing hyperplane or the other changes.
A common approach for the analysis of a sys-

tem under sliding mode is the equivalent control
method by Utkin [1992]. The equivalent control
ueq ∈ (−1, 1) is defined as the control action that
keeps the state trajectory on the switching hyper-
plane. It is hence the control input that gives ẏ = 0
under the constraint y = 0. This means that, given
the assumption that CB = b1 6= 0,

ueq = −(CB)−1CAx . (11)
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By substituting (11) into (1), we obtain the system

ẋ = Âx (12)

where Â = [I − (CB)−1BC]A and I denotes the
n × n identity matrix. Using (4) and noting that
under sliding mode ẏ = Cẋ = ẋ(1) = 0, we get the
dynamical system















ẋ(2)

ẋ(3)

...

ẋ(n−1)

ẋ(n)















=

















−b2/b1 1 0 . . . 0

−b3/b1 0 1 0

...
. . .

...

−bn−1/b1 0 0 1

−bn/b1 0 0 . . . 0

































x(2)

x(3)

...

x(n−1)

x(n)

















.

(13)

This system describes the state evolution under
sliding motion. Note that its dynamics are deter-
mined by the parameters of matrix B in (1), i.e. by
the zero dynamics of the linear part of the relay
feedback system. The sliding dynamics is therefore
unstable if and only if the open-loop zeros of the
system are in the right half-plane. Note also that
the sliding trajectories are constrained to lie on a
codimension-1 hyperplane since Cx = x(1) = 0.
Therefore, the dynamical system (13) is of order
(n− 1). Higher-order sliding modes can be derived
similarly, see [Fridman & Levant, 1996].
The condition for existence of sliding, previ-

ously expressed in terms of the vector field, can
be reinterpreted in terms of the equivalent control
introduced above. It follows that a sliding mo-
tion continues only as long as |ueq| < 1, which is
equivalent to

|(CB)−1CAx| < 1 , (14)

with x ∈ S. In what follows we will refer to the
region Ŝ ⊂ S where (14) is satisfied as the sliding
region:

Ŝ = {x ∈ S : |CAx| < CB} . (15)

The sliding region is thus nonempty if CB > 0.

2.2. Third-order example

As an illustrative example, we will consider
throughout this paper a third-order relay feedback

system described by the matrices:

A =







−(2ζω + λ) 1 0

−(2ζωλ+ ω2) 0 1

−λω2 0 0






,

B =







k

2kσρ

kρ2






, C =







1

0

0







T

, (16)

which corresponds to the transfer function

G(s) = k
s2 + 2σρs+ ρ2

(s2 + 2ζωs+ ω2)(s + λ)
.

Here ω and ζ denote the natural frequency and the
damping of the complex pair of poles while ρ and σ
represent the corresponding quantities for the com-
plex pair of zeros; −λ is the location of the real
pole; and kρ2/(ω2λ) is the steady-state gain. We
assume that k and λ are positive. Despite its sim-
ple structure, this system will be shown to exhibit
a particularly rich dynamical behavior.
From (16), it follows that the necessary condi-

tion for sliding given in (14) is simply

|x(2)| < k . (17)

The sliding region (15) is thus given by Ŝ = {x ∈
R3 : x(1) = 0, |x(2)| < k}, which is a strip on the
switching hyperplane S.
Moreover, the reaching condition (10) becomes

x(1)[−(2ζω + λ)x(1) + x(2) + ku] < 0 . (18)

Note that Eq. (18) does not depend on x(3),
hence the projections of the reaching regions on the
plane (x(1), x(2)) are given by:

R1={(x(1), x(2)) : x(1)>0, x(2)< [(2ζω+λ)x(1)+k]},

and

R2={(x(1), x(2)) : x(1)<0, x(2)> [(2ζω+λ)x1−k]}.

Unless stated otherwise, the parameter values
are set to be ρ = ω = ζ = λ = κ = −σ = 1.
As illustrated in Fig. 1, for these parameter val-
ues, we have R1 = {x(1) > 0, x(2) < x(1) + 1}
and R2 = {x(1) < 0, x(2) > x(1) − 1}. Figure 1
also shows that the sliding region corresponds in
this case to the strip |x(2)| < k = 1. Within this
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Fig. 1. Projection of the reaching regions and of the sliding
strip in the (x(1), x(2)) plane for the third-order example. Ar-
rows indicate whether or not the trajectory point towards the
switching hyperplane. The switching hyperplane S is marked
by a dashed–dotted line and the sliding strip Ŝ with contin-
uous line. The reaching regions R1 and R2 define where a
solution may enter the sliding strip and they are defined by
S and the dashed lines. Note that the solutions leave the
strip as |x(2)| = k = 1.

region the system evolution is described by a
reduced-order model of the form, according to (13):

(

ẋ(2)

ẋ(3)

)

=

(−2σρ 1

−ρ2 0

)(

x(2)

x(3)

)

. (19)

Note that the dynamics of (19) depends on the
position of the zeros of the linear part of the re-
lay feedback system (i.e. depend on the parameters
of B in (16)). Hence, the sliding dynamics are un-
stable if the product σρ is negative. Unstable zero
dynamics will be shown to play an important role
in the formation of periodic solutions with sliding.

3. Periodic Solutions

Relay feedback systems typically exhibit self-
oscillations [Tsypkin, 1984]. Namely, the system
evolution is attracted to a stable limit cycle which
is commonly characterized as follows (see Fig. 2
for a numerical example). Starting from a point

x0 ∈ S \ Ŝ the state trajectory crosses the switching
plane at a point x1 ∈ S\Ŝ. Here the system changes
its configuration and then evolves on the other side
of the switching hyperplane until reaching again the
point x0.

Fig. 2. Simple orbit for the third-order example with ρ = 3.
The orbit does not intersect with the sliding strip Ŝ, which
is indicated as a rectangle.

Consider a solution of the relay feedback sys-
tem (1)–(3) that starts at x0 with Cx0 = 0 and
CAx0 > CB. Solving the system equations, the
next switching plane intersection is then given by:

x1 = e
Aδ01x0 − (eAδ01 − I)A−1B , (20)

where the switching time δ01 depends on x0 and
is defined as the smallest positive value such that
the right-hand side of (20) is orthogonal to S,
i.e. Cx1 = 0. Assume that CAx1 < −CB. The
next intersection is then given by

x2 = e
Aδ12x1 + (e

Aδ12 − I)A−1B , (21)

with Cx2 = 0. Similarly, under the assumption that
|CAxk| > CB, we define the intersection xk+1 and
switching time δk,k+1 for all k ≥ 0.
This type of trajectory is a periodic solution

of the relay feedback system under investigation if
there exists a positive integer P such that x2P = x0.
An orbit is called one-periodic if x2 = x0, two-
periodic if x4 = x0, but x2 6= x0 etc. A peri-
odic solution of period T is symmetric if x∗(t) =
−x∗(t + T/2) for all t > 0. In what follows, one-
periodic solutions evolving outside of the sliding
region will also be called simple orbits.

3.1. Poincaré maps

In order to characterize the existence and stability
of simple orbits, we now introduce some appropriate
discrete-time maps.
The upper switching map is defined as the map

Π+ : S \ Ŝ 7→ S that describes the system dynamics
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from x0 to x1 as discussed previously. This map is
thus given by

Π+(x0) = N(δ01)x0 −M(δ01) , (22)

where

N(δ) = exp(Aδ) ,

M(δ) = [N(δ) − I]A−1B ,

and δ01 = δ01(x0) is the smallest solution of the
switching condition:

C[N(δ01)x0 −M(δ01)] = 0 . (23)

Note that the value set of Π+ is the whole switching
hyperplane S.
Similarly, the lower switching map Π− : S\Ŝ 7→

S is defined as the map

Π−(x1) = N(δ12)x1 −M(δ12) , (24)

that describes the system evolution from x1 to x2.
Finally, we define the switching map as the compo-
sition of Π+ and Π−:

Π = Π− ◦ Π+ .

This Poincaré map is an (n − 1)-dimensional
mapping of the switching hyperplane back to it-
self. Analytically, (22) and (24) are given in terms
of the n-dimensional state vector x with the ad-
ditional constraints defining the switching inter-
sections. Since the first component of the state on
S is identically zero, these equations will implicitly
define an (n− 1)-dimensional map as expected.

3.2. Existence and local stability

Using the map defined above, a necessary condition
for the existence of a simple symmetric orbit is that

Π+(x0) = −x0 , (25)

which is equivalent to

N(δ01)x0 −M(δ01) = −x0 . (26)

Hence, the necessary conditions of existence of a
symmetric simple orbit is that there exists δ > 0
solving the scalar equation

C[I +N(δ)]−1M(δ) = 0 . (27)

This condition is not sufficient, because Eq. (27)
can have solutions that do not correspond to ac-
tual orbits of the system. Note that because of the
symmetry a condition equivalent to (27) is obtained
if the same argument is repeated using the lower
switching map Π− instead of Π+.
Consider a solution δ̄ of (27) that corresponds

to an actual symmetric simple orbit of the system
and let x̄0 be the corresponding fixed point of the
upper switching map Π+. The local stability prop-
erties of the orbit are then given by the eigenvalues
of the Jacobian of Π+ for δ = δ̄ and x0 = x̄0. Using
implicit differentiation this Jacobian can be derived
as

DΠ+ = N̄

(

I − ẋ
+
0 CN̄

Cẋ−1

)

, (28)

where N̄ = N(δ̄), ẋ+0 = Ax̄0 − B and ẋ−1 = N̄ ẋ+0 .
Compare similar derivations in [di Bernardo &
Vasca, 1999; Åström, 1995; Johansson et al., 1999].
Asymmetric one-periodic orbits may also be

studied in a similar way by replacing condition (25)
with the more general one:

Π(x0) = (Π
− ◦Π+)(x0) = x0 . (29)

The necessary condition of existence, corre-
sponding to (27), follows in this case from (29) to-
gether with the constraints Cx0 = 0 and Cx1 = 0.
Specifically, we get the condition that there should
exist δ01, δ10 > 0 such that

C[I −N(δ01 + δ10)]−1[N(δ01 + δ10)
−2N(δ01) + I]A−1B = 0 , (30)

C[I −N(δ01 + δ10)]−1[N(δ01 + δ10)
−2N(δ10) + I]A−1B = 0 . (31)

The stability of a generic orbit is then given by the
Jacobian

DΠ = DΠ− ·DΠ+ . (32)

From the symmetry of the relay feedback
system discussed in Sec. 2, it follows that asymmet-
ric orbits come always in pairs. This can be shown
using the following argument. If x∗ : [0, ∞) 7→ Rn
is a periodic solution of the system, then x∗ sat-
isfies equations (1)–(3), i.e. it satisfies ẋ = Ax −
B sgn (Cx). If this is true, then

−ẋ∗ = A(−x∗)−B sgn (C(−x∗))
= −[Ax∗ −B sgn (Cx∗)] , (33)
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thus also −x∗ satisfies the system equations and
hence is a periodic solution of (1) and (2). Hence,
for each asymmetric orbit, x∗, there is another
asymmetric solution, x̂ = −x∗, which can be ob-
tained by reflecting each point of x∗ around the
origin. If the first orbit intersects the switching hy-
perplane in x0 and x1, say, the second orbit will
then have intersections −x0 and −x1. From a simi-
lar argument, it also follows that every one-periodic
orbit is symmetric if x1 = −x0.
The existence and stability conditions reported

above can be easily generalized to P -periodic orbits
with P > 1.

4. Symmetry-Breaking Bifurcation

It has been often assumed in the control literature
that self-oscillations of symmetric, unforced relay
feedback systems such as (1) and (2) are also sym-
metric. Specifically, it is usually conjectured that
asymmetric periodic solutions in these systems can
only exist either by means of some type of exter-
nal forcing term acting on the system or because
of an intrinsic asymmetric relay characteristic (see
e.g. [Tsypkin, 1984], p. 179).
Given that the relay feedback systems under

investigation are unforced and symmetric, it is quite
tempting to conclude that asymmetric orbits can-
not exist. Unexpectedly, this is only true for a re-
stricted class of relay systems. For instance, in the
appendix it is shown that relay feedback systems
with linear dynamics having real stable poles and
no zeros do not have asymmetric orbits.
In what follows we show via a counterexample

that, contrary to what is usually assumed, symmet-
ric and unforced relay feedback systems can indeed
exhibit asymmetric periodic solutions. This is done
by locating a symmetry-breaking bifurcation point
of a symmetric simple orbit. As reported in the
literature [Kuznetsov, 1995], the transition from a
symmetric solution to a pair of conjugate asymmet-
ric orbits is, in fact, observed at this bifurcation
point.
As pointed out by Kuznetsov [1995], the possi-

ble bifurcations of the symmetric periodic solutions
exhibited by a symmetric system cannot be studied
using the global Poincaré map from the switching
plane back to itself along the entire orbit. For sym-
metric systems, this map is, in fact, the composi-
tion of two identical submappings or equivalently

the second iterate of the same map. This has been
proven for smooth dynamical systems in [Swift &
Wiesenfeld, 1984] and is here extended to the case
of relay feedback systems.
Consider a simple periodic limit cycle of pe-

riod 2δ and the previously defined global map Π =
Π− ◦ Π+, where Π− and Π+ are the mappings de-
scribing the system evolution above and below the
switching hyperplane, respectively. Because of the
symmetry of the system, it is easy to verify that

Π− = (−I) ◦ Π+ ◦ (−I) . (34)

Hence, we get

Π = (−I) ◦Π+ ◦ (−I) ◦ Π+

= (−I ◦ Π+)2 := (Π̃)2 . (35)

Note that any one-periodic solution corre-
sponds to a fixed point of Π, while only symmetric
orbits correspond to fixed points of the half-map Π̃.
Thus, a symmetric solution undergoes a symmetry-
breaking bifurcation when Π̃ undergoes a flip bi-
furcation, i.e. when the Jacobian of Π̃ has a mul-
tiplier at −1. When this occurs, the symmetric
orbit associated with a fixed point of Π̃ bifurcates
into an asymmetric solution associated with a two-
periodic cycle of Π̃. This in turn corresponds to a
one-periodic asymmetric orbit of the relay feedback
system and hence a fixed point of the global map Π.
To locate the symmetry-breaking bifurcation

point we need the Jacobian DΠ̃. This can be
obtained using the method presented above. For
third-order examples, the bifurcation point can be
derived from the necessary condition of existence
for a simple symmetric limit cycles (27) together
with the condition for a flip bifurcation [Kuznetsov,
1995]

det(LDΠ̃) + tr(LDΠ̃) + 1 = 0 , (36)

where L is a projection matrix, which extracts the
two-dimensional nontrivial matrix from the Jaco-
bian DΠ̃. This analytical set of conditions can then
be solved w.r.t. the system parameters to obtain the
exact value at which the symmetry-breaking bifur-
cation occurs.
We will now detail this procedure to the case of

the third-order relay feedback system described in
Sec. 2.2.
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4.1. Asymmetric orbits of an
unforced, symmetric relay
feedback system

Consider the third-order system described in Sec. 2.

We restrict our attention to the codimension-one
bifurcations observed when the parameter ρ is var-

ied, while the other parameters are kept constant

at ω = −ζ = −λ = k = σ = 1.
The analytical necessary condition for the ex-

istence of a simple orbit (27) and the flip condition

for Π̃ (36) were solved with respect to the parameter

ρ, using the algebraic manipulation package Maple.

The flip bifurcation of the half-map was located at
ρ ≈ 0.694. At this point the Jacobian of Π̃ has a
multiplier crossing the unit circle at −1. Therefore,
the orbit undergoes a symmetry-breaking bifurca-
tion. This is in perfect agreement with the numeri-

cal simulations, which are presented next.

An example of an asymmetric orbit is depicted

in Fig. 3, where the orbit for ρ = 0.6 is given. The
corresponding plot in the time domain is shown in

Fig. 4. As outlined above, each asymmetric orbit is

characterized by a corresponding two-periodic cycle

(x0, x1) of Π̃. For ρ = 0.6, we have

x0 ≈







0

1.779

−1.194






, x1 ≈







0

−1.027
−1.343






.

The periodic solution spends δ01 ≈ 0.915 in the
lower section of the phase space and δ10 = δ12 ≈
2.808 in the upper part, with T = δ01+ δ10 = 3.723

being the period of the orbit.

Figure 5 shows that, as predicted by the the-
ory, the bifurcation point is indeed at ρ ≈ 0.69. In
this figure the values of δ01 and δ10 are presented

for different values of ρ. We see that the system
spends the same amount of time above and below

the switching hyperplane when ρ > 0.694. As ρ is

decreased past the symmetry-breaking bifurcation,

symmetric solutions branch out into asymmetric or-
bits. Note that the period of the orbit T = δ01+δ10
increases as ρ is decreased. Also, a sudden change in

the rate of change of T can be observed, as ρ passes

through the bifurcation point, see Fig. 6. Details
of the symmetry-breaking bifurcation are given in

Table 1, where the switching times δ01 and δ10 are

given together with the first two components of the
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Fig. 3. Asymmetric simple orbit for ρ = 0.6. This orbit ap-
pears as ρ is further decreased after the symmetry-breaking
bifurcation has taken place ρ ≈ 0.694. The orbit is unstable.
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Fig. 4. Time evolution of the asymmetric periodic solution
shown in previous figure.

hyperplane intersections (x
(2)
0 , x

(3)
0 ) and (x

(2)
1 , x

(3)
1 ),

as functions of the bifurcation parameter ρ.
Because of the symmetry of the system, follow-

ing the argument presented in Sec. 3, it is possi-
ble to show that for each asymmetric solution there
also exists a corresponding conjugate solution. The
structure of these solutions is, of course, identical.
The only difference is that their intersection points
with the switching plane are reflected around the
origin.
Note that the asymmetric solutions we ana-

lyzed originate at a symmetry-breaking bifurcation
of an unstable periodic solution. Thus, they are also
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Fig. 5. Bifurcation diagram illustrating how the symme-
try breaks at ρ ≈ 0.694. The switching time δ01 (circles)
spent by the system below the switching hyperplane and time
δ10 (crosses) spent above are shown as functions of ρ. For
decreasing values of ρ, we notice that after the symmetry-
breaking bifurcation at ρ ≈ 0.694 a clear separation of the
two components of the period time T = δ01 + δ10 can be ob-
served. The diagram agrees with the theoretical argument
reported in the paper.
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Fig. 6. Period time T = δ01 + δ10 corresponding to the bi-
furcation diagram in previous figure. Note that to the left of
the symmetry-breaking bifurcation a steeper increase of the
period can be observed for decreasing values of ρ than to the
right of the point.

unstable. Instances of stable asymmetric solutions
will be reported later in the paper (see for instance
Fig. 16).

5. Sliding Orbits

Recently, relay feedback systems have been shown
to exhibit periodic solutions lying partly within the

Fig. 7. Sliding orbit for ρ = 1. Note how the solution enters
the sliding strip when x(1) = 0 and |x(2)| < k = 1 and leaves
the strip at its boundary.

sliding region Ŝ = {x ∈ S : |CAx| < CB}. An
example of such a sliding orbit for the example
described in Sec. 2.2 is shown in Fig. 7.
A general relay feedback system with sliding

orbits can be analyzed by the introduction of an
additional Poincaré map which we term as sliding
map. In what follows, we first define this map and
then detail its application to characterize the exis-
tence and stability of sliding orbits. As shown in
Sec. 6, this map is also an invaluable tool to under-
stand the bifurcation scenario through which these
solutions are formed.

5.1. Sliding map

Consider a relay feedback system (1)–(3) with

nonempty sliding strip Ŝ and with unstable zero
dynamics and define the boundary ∂Ŝ of Ŝ as:

∂Ŝ = {x ∈ S : |CAx| = CB} . (37)

Then the solution through a point x̂0 ∈ Ŝ \ {0} will
eventually end up on the boundary of Ŝ in a point
x1, say. The sliding map Σ : Ŝ 7→ ∂Ŝ can be de-
fined as the map from x̂0 ∈ Ŝ to x1 ∈ ∂Ŝ. This
can be derived analytically using the reduced-order
model (13) describing the system dynamics within
the sliding region. The map is given by

Σ : x̂0 7→ x1 = exp(Âδs)x̂0 . (38)

Note that x(1) ≡ 0 during sliding and the time
δs > 0 is the time for the trajectory to reach the
boundary of the sliding strip, i.e. from (14), the
smallest solution to the equation

CA exp(Âδ)x̂0 ± CB = 0 . (39)
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Table 1. The characteristics of an unstable simple orbit undergoing a symmetry-breaking bifurcation at ρ ≈
0.69399. The table presents the bifurcation parameter ρ; the switching times δ01 and δ10 spent by the system
below and above the switching hyperplane, respectively; and the coordinates of the switching plane intersections
(x
(2)
0 , x

(3)
0 ) and (x

(2)
1 , x

(3)
1 ). For ρ > 0.69399, it holds that δ01 = δ10 and x1 = −x0, so the orbit is symmetric.

After the symmetry-breaking bifurcation, for ρ < 0.69399, the switching times become distinct and x1 6= −x0.
For ρ < 0.58, the asymmetric orbit intersects with the switching plane, forming asymmetric sliding orbits. This
follows from that x

(2)
0 becomes greater than −1.

ρ δ01 δ10 (x
(2)
0 , x

(3)
0 ) (x

(2)
1 , x

(3)
1 )

0.74 1.334136107 1.334136107 [−1.596828217, −0.1684077405] [1.596828217, 0.168407742]

0.73 1.341117136 1.341117136 [−1.592698541, −0.1591870604] [1.592698545, 0.159187054]

0.72 1.348187453 1.348187453 [−1.588545257, −0.1500066710] [1.588545255, 0.150006673]

0.71 1.355348998 1.355348998 [−1.584368094, −0.1408669791] [1.584368092, 0.140866979]

0.70 1.362603774 1.362603774 [−1.580166783, −0.1317683720] [1.580166780, 0.131768378]

0.69399 1.361100308 1.372957117 [−1.574129658, −0.139084707] [1.581109276, −0.113557108]

0.69 1.196769423 1.583473016 [−1.453488234, −0.5303070661] [1.67662885, −0.282994287]

0.68 1.084698576 1.809028995 [−1.337481777, −0.8368945855] [1.735794026, −0.602322690]

0.67 1.027580879 1.976736076 [−1.262674373, −1.004213892] [1.761227586, −0.781650870]

0.66 0.9908473568 2.121537901 [−1.206147750, −1.114831359] [1.774553344, −0.9036940843]

0.65 0.9653958793 2.252856916 [−1.161093080, −1.192307961] [1.781562918, −0.9921305228]

0.64 0.9472370999 2.374959760 [−1.124181633, −1.247637785] [1.784773662, −1.058047930]

0.63 0.9342215855 2.490238664 [−1.093434391, −1.287055716] [1.785508850, −1.107757003]

0.62 0.9250466930 2.600211120 [−1.067542063, −1.314503950] [1.784541557, −1.145262008]

0.61 0.9188598450 2.705921692 [−1.045578327, −1.332655773] [1.782355099, −1.173287554]

0.60 0.9150717832 2.808132799 [−1.026856953, −1.343415168] [1.779266241, −1.193780454]

0.59 0.9132583337 2.907426174 [−1.010852259, −1.348188629] [1.775489965, −1.208183220]

0.58 0.9131043811 3.004261512 [−0.9971511027, −1.348045022] [1.771176121, −1.217595222]

0.57 0.9143698824 3.099012607 [−0.9854221520, −1.343815332] [1.766431382, −1.222873441]

0.56 0.9168682213 3.191990793 [−0.9753952677, −1.336157832] [1.761332985, −1.224698431]

0.55 0.9204518658 3.283460791 [−0.9668471353, −1.325602282] [1.755937649, −1.223619127]

Simple orbits with no sliding are described by
Π = Π− ◦Π+, as discussed in Sec. 3. Sliding orbits,
as the one depicted in Fig. 7, are instead described
by a suitable composition of Π+, Π− and Σ. The
composition is given by the map Ξ defined as

∂Ŝ 7→ ∂Ŝ (40)

defined as:

Ξ = Ξ− ◦ Ξ+ = (Σ ◦ Π−) ◦ (Σ ◦ Π+) , (41)

with the constraint that the value sets of Π+ and
Π− are restricted to Ŝ. For example, starting from
a point x0 ∈ S \ Ŝ we have Π+ : x0 7→ x̂0, with
x̂0 ∈ Ŝ \ {0} and Σ : x̂0 7→ x1, with x1 ∈ ∂Ŝ. Thus,
we have

Ξ+ :x0 7→ x1 = exp(Âδs)[N(δ01)x0−M(δ01)], (42)

where the variables δ01 and δs are given as in (23)
and (39), respectively.

5.2. Existence and local stability

The map Ξ and its submappings Ξ− and Ξ+ can
be used to derive necessary conditions for existence
of sliding orbits, similarly to what done with the
switching map Π for orbits without sliding. For
example, fixed points of −I ◦ Ξ+ define symmetric
one-periodic orbits with sliding. These are obtained
by solving the equation Ξ+(x0) = −x0 with the con-
straint that Cx̂0 = 0. This yields that δ01, δs > 0,
as given by (23)–(39), should fulfill the necessary
conditions:

C[exp(Âδs)N(δ01) + I]
−1 exp(Âδs)M(δ01) = 0 ,

(43)
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CA[exp(Âδs)N(δ01) + I]
−1 exp(Âδs)M(δ01)

±CB = 0 . (44)

Stability of sliding orbits can be studied by
computing the Jacobian of the mapping Ξ simi-
larly to what done for Π in the nonsliding case (see
Sec. 3). The only difference is that now Ξ is the
composition of Π+, Π− and the sliding map Σ and
thus one must consider the contribution of the slid-
ing map in the Jacobian derivation. P -periodic or-
bits with sliding are identified by fixed points of
(Ξ+ ◦ Ξ−)P .

5.3. Numerical evidence

Consider again the third-order example with ω =
ζ = λ = k = −σ = 1. Sliding orbits exist for
several values of the bifurcation parameter ρ. The
stable sliding orbit observed when ρ = 1 is depicted
in Fig. 7. Here we see that the state evolution hits
the switching plane within the sliding strip, where
the necessary condition for sliding |x(2)| < 1 is satis-
fied. The state then evolves within the strip accord-
ing to the reduced-order model (19) until eventually

crossing the boundary of Ŝ at |x(2)| = 1. When
this occurs, the state evolution leaves the switch-
ing hyperplane. Thus, as shown in Fig. 7, a peri-
odic connection links the sliding region back with
itself, giving rise to a sliding orbit. Note that this is
possible because of the unstable sliding dynamics.
If the parameters were chosen so that the dynam-
ics (19) were stable, the sliding trajectory would
instead evolve towards the stable attractor in the
origin of the switching hyperplane and no periodic
connection would occur. In this case, the sliding
map Ξ is a one-dimensional map since the third-
order model under investigation is characterized by
a planar sliding region. This simplifies the analysis
of sliding orbits considerably.
In Table 1, we can see that sliding orbits exist

also for ρ ≤ 0.58. Specifically, the table shows that
the switching plane intersection of the orbit, x0,
moves towards the boundary of the sliding strip as ρ
decreases. At ρ ≈ 0.58 the orbit intersection enters
the boundary of the sliding strip (|x(2)0 | < 1). This
causes the formation of a periodic solution charac-
terized by a sliding section. As will be shown in
the next section, this mechanism represents a more
general bifurcation event, which we shall term as
“sliding bifurcation”.

6. Sliding Bifurcation

To uncover the mechanism underlying the forma-
tion of sliding orbits in relay feedback systems, we
now restrict our attention to the third-order exam-
ple presented in Sec. 2.2. Specifically, we focus onto
codimension-one bifurcations of simple periodic or-
bits of this system observed by fixing the parame-
ters ω = ζ = λ = k = −σ = 1 and varying ρ in a
neighborhood of the value ρ = 1 at which a sliding
orbit was observed (see Fig. 7).
The bifurcation diagram as ρ is varied from −1

to 3 is reported in Fig. 9, where the steady-state

Fig. 8. Simple orbit at the sliding bifurcation point, i.e. ρ =
2.1. Note how the intersections of the orbit with the switch-
ing plane lie as expected on the boundary of the sliding strip,
∂Ŝ. Any further parameter variation will cause the formation
of a sliding orbit.
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Fig. 9. Diagram showing sliding bifurcation, which takes
place at ρ ≈ 2.1 for decreasing values of ρ. The second com-
ponent of the switching plane intersection x

(2)
s is shown as a

function of ρ. The bars indicate sliding segments. For ρ > 2.1
the system shows a stable periodic solution without sliding
and for −1 < ρ < 0 there are no periodic solutions.
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intersections of the second state component with

the switching plane S, say x
(2)
s , are plotted against

ρ. The dots for negative values of ρ illustrate that
the origin is a global attractor, the bars for ρ in the
middle range shows the extension of the sliding seg-
ments of the orbits, and the circles for larger values
of ρ defines simple orbits (without sliding).
We see that as ρ decreases a nonsliding one-

periodic solution turns into a sliding orbit at ρ =
ρ∗ ≈ 2.1. As shown in Figs. 8 and 9, at this
specific parameter value the intesection of the orbit
with the switching hyperplane crosses the bound-

ary of the sliding region, i.e. |x(2)0 (ρ∗)| = 1. For
lower values of ρ, the system evolution is then con-
strained to “slide” within the strip until reaching
its boundary again because of the unstable dynam-
ics of the sliding model (σρ < 0 in (19)). This
transition, which we term “sliding bifurcation”, is
locally smooth in the sense that the local mapping
around the bifurcation point can be shown to be
smooth to arbitrary order and have continuous first
derivative [diBernardo et al., in preparation]. The
bifurcation only involves one of the eigenvalues of
the bifurcating simple orbit to become identically
zero (the eigenvalue associated with the eigenvec-
tor transversal to the switching plane). Hence, after
the bifurcation periodic solutions having the same
structure of the bifurcating simple orbits but with
an additional sliding section can be observed, see
Fig. 9. As ρ is further decreased, a branch of slid-
ing orbits characterized by longer and longer slid-
ing sections is detected until, at ρ = 0, the origin
becomes the only stable attractor.
In the parameter range ρ ∈ (0, 3), solving the

necessary conditions of existence of simple orbits
presented in Sec. 5 suggests that for each value of ρ
there exist two possible periodic solutions, one sta-
ble and the other unstable. By decreasing ρ, while
the stable solution undergoes the sliding bifurcation
at ρ ≈ 2.1 described above, the unstable one per-
sists until at ρ ≈ 0.69 a family of asymmetric unsta-
ble solutions is generated via a symmetry-breaking
bifurcation as the one analyzed in Sec. 4. These
asymmetric orbits also undergo a sliding bifurca-
tion. This is observed at ρ ≈ 0.58, as detailed in
Table 1. At this bifurcation point, an asymmet-
ric orbit enters the sliding strip, giving rise to an
asymmetric sliding orbit.
Further investigations of the system parameter

space reveals that the origin remains the only at-
tractor of the system for ρ ∈ (−9.4, 0), as shown in

Fig. 10. Then at ρ ≈ −9.4, the map Π̃ has a mul-
tiplier located at +1. Hence, this bifurcation can
be classified as a saddle-node bifurcation and the
creation of an unstable and a stable simple orbit
should be expected. This has been numerically ob-
served and Fig. 10 shows how the intersection of the
stable orbit evolves for ρ < −9.4.
The bifurcation mechanism outlined above can

also explain the formation of sliding orbits in n-
dimensional relay feedback systems (and more gen-
erally in piecewise smooth dynamical systems with
sliding). For these systems, we say that a sim-
ple orbit undergoes a sliding bifurcation when its
intersection with the switching hyperplane crosses
the boundary of the sliding region, as the system
parameters are varied. For instance, consider the
generic relay feedback system (1)–(3) and let ρ de-
note the parameter that is varied and x0 = x̄0(ρ) ∈
S be the fixed point of the switching map Π+ cor-
responding to a generic simple one-periodic orbit
of the system. A sliding bifurcation occurs then at
ρ = ρ∗ if x̄0(ρ

∗) ∈ ∂Ŝ. This situation corresponds
to the condition

CAx̄0(ρ
∗)± CB = 0 , (45)

where Cx̄0(ρ
∗) = 0. Note that the system matri-

ces A, B and C can all depend on ρ in the general
case. For symmetric one-periodic orbits, it follows
from (27) and (45) that a necessary condition for a
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Fig. 10. Bifurcation diagram for −12 < ρ < −8, compare
previous figure. The diagram illustrates the saddle-node bi-
furcation at ρ ≈ −9.4, where an unstable and a stable simple
are formed for decreasing ρ. For ρ > −9.4, the origin is a
globally stable attractor, while for ρ < −9.4 there exists the
stable orbit shown here.
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sliding bifurcation to occur is that there should ex-
ist a δ∗ > 0 and ρ∗ such that

C[I +N(δ∗)]−1M(δ∗) = 0

CA[I +N(δ∗)]−1M(δ∗)± CB = 0 , (46)

where again the dependence on ρ∗ is hidden in the
system matrices.
For example, solving (46) for the third-order

relay system described in Sec. 2.2 w.r.t. to the
bifurcation parameter ρ yields ρ∗ ≈ 2.099. This
is is the same value at which the sliding bifurca-
tion of a simple orbit has been numerically detected
(see Fig. 9). Similar conditions can be obtained
for asymmetric orbits as well as for orbits of higher
periodicity.

7. Multisliding Orbits

We have seen that periodic solutions characterized
by sliding sections can be generated via a sliding bi-
furcation of simple orbits. We show now that these

sliding orbits can themselves undergo a class of
intricate bifurcations.
Consider, for instance, the third-order relay

feedback example with λ = k = −σ = ω = 1, ζ =
0.05 and set ρ = 1. With these parameter values,
the system evolves along the sliding orbit exhibited
in Fig. 11(a). If we now vary the natural frequency
ω while keeping all the other parameters fixed, we
see that, as ω is increased, the sliding orbit de-
tected for ω = 1, bifurcates into a periodic solution
characterized by an additional sliding section [see
Fig. 11(b)]. We will refer to this type of orbit as a
two-sliding periodic solution, i.e. an orbit character-
ized by two sliding sections per half-period. More
generally, we will say that a periodic solution is an
ℓ-sliding orbit when its evolution is characterized
by 2ℓ sliding sections per period. We will also re-
fer to these novel periodic solutions as “multisliding
orbits”.
In what follows we show that the transi-

tion from a sliding orbit to a multisliding solu-
tion described above is due to a novel type of

(a) (b)

(c) (d)

Fig. 11. State-space diagrams of multisliding orbits for varying values of ω. The cases are (a) ω = 5 and ℓ = 1 sliding segment
per half-period, (b) ω = 8 and ℓ = 2, (c) ω = 11 and ℓ = 3, and (d) ω = 25 and ℓ = 7. Note how part of the orbit tends to
the boundary of the switching hyperplane as ω increases.
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bifurcation which we shall term “multisliding bifur-
cation”. First, we show how the existence and sta-
bility properties of the resulting multisliding orbits
can be studied.

7.1. Existence and local stability

As for simple and sliding orbits, the existence and
stability of multisliding solutions can be studied us-
ing an appropriately defined Poincaré map. The
multisliding map can be defined as the mapping
Υ : ∂Ŝ 7→ ∂Ŝ. For a multisliding orbit with ℓ > 0
sliding segments per half period, this is given by

Υ = (Ξ−)ℓ ◦ (Ξ+)ℓ = (Σ ◦Π−)ℓ ◦ (Σ ◦ Π+)ℓ .

The sliding map introduced in Sec. 5 corresponds
to ℓ = 1. A (possibly asymmetric) one-periodic
multisliding orbit defines a fixed point of Υ. The
algebraic condition is readily derived as in the slid-
ing orbit case reported in Sec. 5. For example, sym-
metric one-periodic multisliding orbits are found by
solving the equation (Ξ+)ℓ(x0) = −x0 constrained
by the condition that each iteration of the map Ξ+

must fulfill.
The local stability properties of a multisliding

orbit can be derived using the Jacobian DΥ.

7.2. Multisliding bifurcation

Using the third-order model presented in Sec. 2.2 as
a representative example, we will now summarise
the features of the multisliding bifurcation which
describes the transition from a sliding orbit into a
multisliding solution. Careful numerical computa-
tions indicate that the key to characterize this bi-
furcation is to look at the behavior of the sliding
part of the bifurcating sliding orbit, i.e. the part
of the orbit lying within the sliding region. Specif-
ically, we found that a multisliding bifurcation oc-
curs when the sliding part of the bifurcating orbit
hits tangentially the boundary of the sliding region.
An example is reported in Fig. 12. Here we

see that, as the system parameters are varied, the
sliding section of the orbit moves towards the
boundary of the sliding strip. When ω ≈ 7.175
the orbit then grazes the boundary of the sliding
strip x(2) = ±1 and, for further parameter varia-
tions, eventually “escapes” from the sliding region.
Thus, past the bifurcation point, we observe the
formation of an additional lobe in the nonsliding
part of the system solution. Correspondingly the

appearance of a further sliding section in the orbit
is observed [see Fig. 12(e)] and a two-sliding orbit
is so generated.
When the parameter ω is further varied, this

two-sliding solution can be shown to undergo a sim-
ilar bifurcation, as shown in Fig. 13 thus giving
rise to a three-sliding periodic solution. More gen-
erally, as shown in Fig. 14, for the system under
investigation an entire cascade of multisliding bi-
furcations can be detected. This “sliding-adding
scenario” describes the formation of periodic so-
lutions characterized by an increasing number of
sliding sections. Four examples of such multislid-
ing orbits are shown in Fig. 11. Note the geomet-
ric twists that the trajectory undergoes outside the
switching plane. These are visible as oscillations
in the time-domain diagrams plotted in Fig. 15 and
are due to the complex conjugate poles of the linear
part of the system. Recall that these poles are lo-
cated in −ωζ± iω√1− ζ, where i =

√
−1. Because

ζ = 0.05 is small, the step response of the linear
system is quite undamped. Therefore, since a re-
lay switching can locally in time be interpreted as
a step response with nonzero initial conditions, the
responses observed in Figs. 11–15 contain segments
of fast oscillations. Note, also, that the frequency
of these fast oscillations increases with ω and
approximately scales as ω.
In the case of the third-order relay feedback sys-

tem, it is also possible to show that, when a multi-
sliding bifurcation occurs, the sliding section of the
bifurcating orbit must graze the boundary of the
sliding strip at the point x(1) = 0, x(2) = ±k, x(3) =
∓b2/b1. In fact, for the sliding section of the or-
bit to be tangent to the boundary of the sliding
strip we must have x(2) = ±1 and ẋ(2) = 0. From
the reduced-order sliding model (19), we can then
derive that:

ẋ(2) = −b2
b1
x(2) + x(3) = 0

and, since x(2) = ±1, we thus have

x(3) = ∓b2
b1

as expected. Hence, for the parameter values set
in Sec. 2.2, we have the tangency x(3) = ∓2. This
agrees well with the simulation reported in Figs. 12
and 13.
Finally, it is worth mentioning here that the

sliding-adding scenario depicted in Fig. 14 can yield
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Fig. 12. Local analysis of the multisliding bifurcation (c) occurring when ω = 7.1750, which causes the transition from the
sliding orbit observed when ω = 6.9 (a) to the two-sliding solution detected for ω = 7.5 (e). The projection of the orbits on
the switching plane are reported in (b), (d) and (f). Here, the sliding segments of the orbits are depicted by crosses while
the periodic connections (which do not belong to the switching hyperplane) are represented by solid line. Note that at the
bifurcation point (d), a lobe of the sliding part of the orbit becomes tangent to the boundary of the sliding strip (x2 = ±1).
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Fig. 13. Multisliding bifurcation observed at ω = 10.24, which causes the transition from a two-sliding orbit (a) to a three-
sliding solution (d). As shown in (b) at the bifurcation point, a lobe of the sliding part of the orbit (highlighted by dots in
the figure) is tangent to the boundary of the sliding strip. As the parameter is varied through the bifurcation point then an
additional sliding segment occurs (c).
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Fig. 14. Multisliding bifurcation diagram.
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Fig. 15. Time-domain diagrams of the x(1) component of multisliding orbits for varying values of ω. The cases are (a) ω = 5
and ℓ = 1 sliding segment per half-period, (b) ω = 8 and ℓ = 2, (c) ω = 11 and ℓ = 3, and (d) ω = 25 and ℓ = 7. Note how
the frequency of the fast oscillations increases with ω.

the formation of multisliding orbits with an arbi-
trarily large number of sliding segments per period.
As the number of sliding segments tends to infinity,
the multisliding part of the orbit tends to evolve
along the boundary of the sliding strip ∂Ŝ (corre-
sponding to the lines x(2) = ±1 for the third-order
example under investigation). This can be clearly
seen in Fig. 11(d), where a symmetric multisliding
orbit with seven sliding segments is shown. In this
figure we see that the orbit consists of two different
parts together with their symmetric counterparts:
a section consisting of shorter and shorter sliding
segments which get closer and closer to ∂Ŝ; a long
sliding segment taking the system evolution across
Ŝ. We conjecture that the limiting solution of the

sliding-adding scenario, if it exists, will be charac-
terized by evolving partly along the boundary of the
sliding strip ∂Ŝ.

8. Conclusions

Piecewise smooth dynamical systems have received
considerable attention in the control literature over
the last decade. One reason for this is the in-
creasing number of new applications which require
the use of control strategies involving both con-
ventional continuous-time controllers together with
discrete-event switching. Modeling of such con-
trol systems leads often to piecewise smooth model
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dynamics as, for instance, in two recent applica-
tions in the automotive industry and flight manage-
ment, see [Varaiya, 1993] and [Tomlin et al., 1998]
respectively.
In this paper, we have discussed the bifurcation

behavior of a class of relay feedback systems which
are particularly important in the applications men-
tioned above. Using a set of appropriately defined
Poincaré maps we have seen that, contrary to what
is usually assumed in the control literature, sym-
metric, unforced relay feedback systems can indeed
exhibit asymmetric self-oscillations. Moreover, we
have outlined the existence in these systems of novel
classes of local bifurcations, termed sliding and mul-
tisliding bifurcations, which cause the formation of
orbits characterized by one or more sliding sections.
Multisliding bifurcations have also been shown

to organize a peculiar sliding-adding scenario de-
scribing the formation of orbits characterized by an
increasing number of sliding sections as the system
parameters are varied.
During our investigation, we obtained strong

preliminary evidence that the bifurcation phenom-
ena discussed in the paper can lead to the occur-
rence of more complex attractors in relay feedback
systems symmetric and without hysteresis (for the
case of relay systems with hysteresis see [Cook,
1985]). In Fig. 16, we see for instance a seemingly
aperiodic stable solution clearly organized around
an asymmetric multisliding orbit.1 Current work
is directed towards the characterization of this and
other similar complex attractors.
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Fig. 16. Seemingly aperiodic attractor observed for σ = −1,
ρ = 1, ω = 10, ζ = −0.07, λ = 0.05. The underlying orga-
nizer is clearly an asymmetric multisliding solution.

Finally, we conjecture that sliding and mul-
tisliding bifurcations are types of bifurcations to
be found in a wider class of piecewise smooth dy-
namical systems. There is evidence to believe, for
example, that the so-called stick-slip oscillations
in friction oscillators could be reinterpreted as in-
stances of this more general class of bifurcation
events [Dankowicz & Nordmark, 1999]. Future
work will address this generalization.
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Appendix

The following result gives a class of relay feed-
back systems that do not have asymmetric periodic
solutions.
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Proposition 1. The relay feedback system (1)–(3)
with

C(sI −A)−1B = K
n
∏

k=1

(s+ λk)
−1 ,

K > 0, λ1 > · · · > λn > 0, n > 0

has no asymmetric one-periodic orbits.

Proof. Note first that for n = 1 and n = 2 the re-
lay feedback system is globally stable, so there exist
no periodic solutions at all. Therefore, assume that
n > 2. Moreover, assume by contradiction that
there exists an asymmetric one-periodic orbit with
switching times h1 6= h2. It follows from

Cx1 = −C[I − eA(t1+t2)]−1[eA(t1+t2)

− 2eAt2 + I]A−1B (A.1)

Cx2 = C[I − eA(t1+t2)]−1[eA(t1+t2)

− 2eAt1 + I]A−1B , (A.2)

that Cx1(t1, t2) = 0 and Cx2(t1, t2) = 0 for
(t1, t2) = (h1, h2). Note that if (h1, h2) is a so-
lution, then (h2, h1) is also a solution. It is no re-
striction to assume that A = diag(−λ1, . . . , −λn).
The solution of (A.1) satisfies

C(I − eÃ)−1(eÃ − 2eÃt2/(t1+t2) + I)Ã−1B̃ = 0 ,
(A.3)

where Ã = A(h1 + h2) and B̃ = B(h1 + h2). Note
that

C(sI − Ã)−1B̃ = K̃
n
∏

k=1

(s+ λ̃k)
−1,

K̃ > 0, λ̃1 > · · · > λ̃n > 0

has the same form as the original system. We next
show that there exists no diagonal Â, B̂ and Ĉ with

Ĉ(sI − Â)−1B̂ = K̂
n
∏

k=1

(s+ λ̂k)
−1,

K̂ > 0, λ̂1 > · · · > λ̂n > 0 ,

such that the function

f(t) = Ĉ(I − eÂ)−1(eÂ − 2eÂt + I)Â−1B̂ ,

has roots τ1, τ2 > 0 with τ1 6= τ2. It then fol-
lows that there exist no two solutions (h1, h2) and
(h2, h1) with h1 6= h2 for (47) and (48), which
proves the result.
Note that f(0) = −ĈÂ−1B̂ = K̂∏nk=1 λ̂−1k > 0

and

f ′(t) = −2Ĉ(I − eÂ)−1eÂtB̂ .

From the stability of Â and f(0) > 0, it follows that
f ′(t) < 0 for all t > 0. Hence, the equation f(t) = 0
only has one solution and the proof is complete. �


